1
|
Zakaria L. An Overview of Aspergillus Species Associated with Plant Diseases. Pathogens 2024; 13:813. [PMID: 39339004 PMCID: PMC11435247 DOI: 10.3390/pathogens13090813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The genus Aspergillus contains several species that are important plant pathogens. Plant pathogenic Aspergillus spp. affect agricultural crops in the field as well as after harvest, often associated with corn ear rot, cotton boll rot, peanut yellow mold, black mold of onion and garlic, fruit rot on grapes, pomegranates, olives, citrus, and apples. Coffee berries and coffee beans as well as tree nuts are also frequently infected by Aspergillus spp. Some of the plant pathogenic Aspergillus spp. are also mycotoxigenic, produced mycotoxin in the plant tissues leading to contamination of agricultural products. Over the years, reports of plant diseases caused by Aspergillus in various crops have increased, suggesting they are commonly encountered plant pathogens. This review focuses on agricultural crops or cultivated plants infected by Aspergillus spp. The compilation of plant pathogenic Aspergillus spp. provides information to mycologists, particularly those involved in plant pathology and crop protection, with updated information on plant diseases caused by various species of Aspergillus. The updated information also includes the locality or location, province, state and the country. The knowledge on the prevalence and geographic distribution of plant pathogenic Aspergillus spp. is beneficial in the application of crop protection.
Collapse
Affiliation(s)
- Latiffah Zakaria
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia
| |
Collapse
|
2
|
Schamann A, Soukup ST, Geisen R, Kulling S, Schmidt-Heydt M. Comparative analysis of the genomes and aflatoxin production patterns of three species within the Aspergillus section Flavi reveals an undescribed chemotype and habitat-specific genetic traits. Commun Biol 2024; 7:1134. [PMID: 39271769 PMCID: PMC11399119 DOI: 10.1038/s42003-024-06738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Aflatoxins are the most dangerous mycotoxins for food safety. They are mainly produced by Aspergillus flavus, A. parasiticus, and A. minisclerotigenes. The latter, an understudied species, was the main culprit for outbreaks of fatal aflatoxicosis in Kenya in the past. To determine specific genetic characteristics of these Aspergillus species, their genomes are comparatively analyzed. Differences reflecting the typical habitat are reported, such as an increased number of carbohydrate-active enzymes, including enzymes for lignin degradation, in the genomes of A. minisclerotigenes and A. parasiticus. Further, variations within the aflatoxin gene clusters are described, which are related to different chemotypes of aflatoxin biosynthesis. These include a substitution within the aflL gene of the A. parasiticus isolate, which leads to the translation of a stop codon, thereby switching off the production of the group 1 aflatoxins B1 and G1. In addition, we demonstrate that the inability of the A. minisclerotigenes isolates to produce group G aflatoxins is associated with a 2.2 kb deletion within the aflF and aflU genes. These findings reveal a relatively high genetic homology among the three Aspergillus species investigated. However, they also demonstrate consequential genetic differences that have an important impact on risk-assessment and food safety.
Collapse
Affiliation(s)
- Alexandra Schamann
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Rolf Geisen
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Sabine Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Markus Schmidt-Heydt
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany.
| |
Collapse
|
3
|
Ortega-Beltran A, Aikore MOS, Kaptoge L, Agbetiameh D, Moral J, Bandyopadhyay R. Impact of storage conditions on the shelf life of aflatoxin biocontrol products containing atoxigenic isolates of Aspergillus flavus as active ingredient applied in various countries in Africa. CABI AGRICULTURE AND BIOSCIENCE 2024; 5:78. [PMID: 39267987 PMCID: PMC11387433 DOI: 10.1186/s43170-024-00283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024]
Abstract
Aflatoxin contamination significantly threatens food safety and security, particularly in tropical and sub-tropical regions where staple crops such as maize, groundnut, and sorghum become frequently affected. This contamination is primarily caused by the fungus Aspergillus flavus. The contamination causes adverse health effects, reduced income, and trade restrictions. In response to this challenge, various technologies have been developed to mitigate the impacts of aflatoxin. Among these, biocontrol products containing atoxigenic isolates of A. flavus as the active ingredient can effectively reduce aflatoxin levels both at pre- and post-harvest. A notable example of such products is Aflasafe, which contains four atoxigenic isolates native to specific target regions. These products have undergone rigorous testing, have received regulatory approval, and are commercially available in multiple African countries. However, their manufacturing processes have evolved, and comprehensive shelf life studies for current formulations are lacking. Evaluations of the spore production ability of atoxigenic A. flavus isolates in Aflasafe products over 4 years, under various storage conditions, revealed a significant linear decrease in sporulation with storage months (P < 0.001; R 2 = 0.203), with no significant differences observed between treatments. However, this marginal decline (P = 0.398) is unlikely to be sufficient to prevent the effectiveness in limiting aflatoxin. In addition, storing the products for 2 weeks at 54 °C did not affect (P > 0.05) the ability of the coated fungi to produce spores compared to when the products were stored at 24 °C. The findings contribute valuable insights for manufacturers and users of atoxigenic-based aflatoxin biocontrol products, informing best practices for product storage and utilization to ensure prolonged effectivenes in aflatoxin mitigation efforts.
Collapse
Affiliation(s)
| | | | - Lawrence Kaptoge
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Daniel Agbetiameh
- International Institute of Tropical Agriculture, Ibadan, Nigeria
- Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Juan Moral
- Departamento de Agronomía, Universidad de Córdoba, Maria de Maeztu Unit of Excelente, Córdoba, Spain
| | | |
Collapse
|
4
|
Rasheed U, Cotty PJ, Ain QU, Wang Y, Liu B. Efficacy of atoxigenic Aspergillus flavus from southern China as biocontrol agents against aflatoxin contamination in corn and peanuts. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105887. [PMID: 38685218 DOI: 10.1016/j.pestbp.2024.105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 05/02/2024]
Abstract
Aspergillus flavus is a ubiquitous facultative pathogen that routinely infects important crops leading to formation of aflatoxins during crop development and after harvest. Corn and peanuts in warm and/or drought-prone regions are highly susceptible to aflatoxin contamination. Controlling aflatoxin using atoxigenic A. flavus is a widely adopted strategy. However, no A. flavus genotypes are currently approved for use in China. The current study aimed to select atoxigenic A. flavus endemic to Guangxi Zhuang Autonomous Region with potential as active ingredients of aflatoxin biocontrol products. A total of 204 A. flavus isolates from corn, peanuts, and field soil were evaluated for ability to produce the targeted mycotoxins. Overall, 57.3% could not produce aflatoxins while 17.15% were incapable of producing both aflatoxins and CPA. Atoxigenic germplasm endemic to Guangxi was highly diverse, yielding 8 different gene deletion patterns in the aflatoxin and CPA biosynthesis gene clusters ranging from no deletion to deletion of both clusters. Inoculation of corn and peanuts with both an aflatoxin producer and selected atoxigenic genotypes showed significant reduction (74 to 99%) in aflatoxin B1 (AFB1) formation compared with inoculation with the aflatoxin producer alone. Atoxigenic genotypes also efficiently degraded AFB1 (61%). Furthermore, atoxigenic isolates were also highly efficient at reducing aflatoxin concentrations even when present at lower concentrations than aflatoxin producers. The use of multiple atoxigenics was not always as effective as the use of a single atoxigenic. Effective atoxigenic genotypes of A. flavus with known mechanisms of atoxigenicity are demonstrated to be endemic to Southern China. These A. flavus may be utilized as active ingredients of biocontrol products without concern for detrimental impacts that may result from introduction of exotic fungi. Field efficacy trials in the agroecosystems of Southern China are needed to determine the extent to which such products may allow the production of safer food and feed.
Collapse
Affiliation(s)
- Usman Rasheed
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
| | - Peter J Cotty
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qurat Ul Ain
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - YiFan Wang
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China.
| |
Collapse
|
5
|
Ouadhene MA, Callicott KA, Ortega‐Beltran A, Mehl HL, Cotty PJ, Battilani P. Structure of Aspergillus flavus populations associated with maize in Greece, Spain, and Serbia: Implications for aflatoxin biocontrol on a regional scale. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13249. [PMID: 38634243 PMCID: PMC11024511 DOI: 10.1111/1758-2229.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
Aspergillus flavus is the most frequently identified producer of aflatoxins. Non-aflatoxigenic members of the A. flavus L strains are used in various continents as active ingredients of bioprotectants directed at preventing aflatoxin contamination by competitive displacement of aflatoxin producers. The current research examined the genetic diversity of A. flavus L strain across southern Europe to gain insights into the population structure and evolution of this species and to evaluate the prevalence of genotypes closely related to MUCL54911, the active ingredient of AF-X1. A total of 2173L strain isolates recovered from maize collected across Greece, Spain, and Serbia in 2020 and 2021 were subjected to simple sequence repeat (SSR) genotyping. The analysis revealed high diversity within and among countries and dozens of haplotypes shared. Linkage disequilibrium analysis indicated asexual reproduction and clonal evolution of A. flavus L strain resident in Europe. Moreover, haplotypes closely related to MUCL54911 were found to belong to the same vegetative compatibility group (VCG) IT006 and were relatively common in all three countries. The results indicate that IT006 is endemic to southern Europe and may be utilized as an aflatoxin mitigation tool for maize across the region without concern for potential adverse impacts associated with the introduction of an exotic microorganism.
Collapse
Affiliation(s)
- Mohamed Ali Ouadhene
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | | | | | | | - Peter J. Cotty
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Paola Battilani
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| |
Collapse
|
6
|
Musangi CR, Juma BS, Mukhebi DW, Isoe EM, Kibiti CM, Mbinda WM. Aspergillus population diversity and its role in aflatoxin contamination of cashew nuts from coastal Kenya. PLoS One 2024; 19:e0292519. [PMID: 38271327 PMCID: PMC10810534 DOI: 10.1371/journal.pone.0292519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/23/2023] [Indexed: 01/27/2024] Open
Abstract
Cashew nuts are among the main cash crops in coastal Kenya, due in large part to their high nutritional value. Unfortunately, they also make them highly susceptible to mold contamination, resulting in biodeterioration of the nutritional value and potential contamination with toxic secondary metabolites, such as aflatoxins, that cause them to be rejected for sale at the market. We determined the population diversity of the Aspergillus species and their role in aflatoxin contamination in cashew nuts in selected coastal regions of Kenya. Fifty raw cashew nut samples were collected from post-harvest storage facilities across three counties in Kenya's coastal region and examined for moisture content and the presence of Aspergillus fungi. About 63 presumptive isolates were recovered from the cashew nuts. ITS and 28S rDNA regions were sequenced. The aflD, aflM and aflR genes were amplified to identify the potentially aflatoxigenic from the Aspergillus isolates. The Aflatoxins' presence on the isolates was screened using UV and the ammonia vapour test on coconut milk agar and validated using ELISA assay. A comparison of cashew moisture content between the three counties sampled revealed a significant difference. Sixty-three isolates were recovered and identified to section based on morphological characters and their respective ITS regions were used to obtain species identifications. Three sections from the genus were represented, Flavi and Nigri, and Terrei with isolates from the section Nigri having slightly greater abundance (n = 35). The aflD, aflM and aflR genes were amplified for all isolates to assess the presence of the aflatoxin biosynthesis pathway, indicating the potential for aflatoxin production. Less than half of the Aspergillus isolates (39.68%) contained the aflatoxin pathway genes, while 22.22% isolates were aflatoxigenic, which included only the section Flavi isolates. Section Flavi isolates identification was confirmed by calmodulin gene. The presence of species from Aspergillus section Flavi and section Nigri indicate the potential for aflatoxin or ochratoxin in the cashew nuts. The study established a foundation for future investigations of the fungi and mycotoxins contaminating cashew nuts in Kenya, which necessitates developing strategies to prevent infection by mycotoxigenic fungi, especially during the storage and processing phases.
Collapse
Affiliation(s)
- Colletah Rhoda Musangi
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Bicko Steve Juma
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Dennis Wamalabe Mukhebi
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Everlyne Moraa Isoe
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| | - Cromwell Mwiti Kibiti
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Wilton Mwema Mbinda
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| |
Collapse
|
7
|
Castano-Duque L, Winzeler E, Blackstock JM, Liu C, Vergopolan N, Focker M, Barnett K, Owens PR, van der Fels-Klerx HJ, Vaughan MM, Rajasekaran K. Dynamic geospatial modeling of mycotoxin contamination of corn in Illinois: unveiling critical factors and predictive insights with machine learning. Front Microbiol 2023; 14:1283127. [PMID: 38029202 PMCID: PMC10646420 DOI: 10.3389/fmicb.2023.1283127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Mycotoxin contamination of corn is a pervasive problem that negatively impacts human and animal health and causes economic losses to the agricultural industry worldwide. Historical aflatoxin (AFL) and fumonisin (FUM) mycotoxin contamination data of corn, daily weather data, satellite data, dynamic geospatial soil properties, and land usage parameters were modeled to identify factors significantly contributing to the outbreaks of mycotoxin contamination of corn grown in Illinois (IL), AFL >20 ppb, and FUM >5 ppm. Two methods were used: a gradient boosting machine (GBM) and a neural network (NN). Both the GBM and NN models were dynamic at a state-county geospatial level because they used GPS coordinates of the counties linked to soil properties. GBM identified temperature and precipitation prior to sowing as significant influential factors contributing to high AFL and FUM contamination. AFL-GBM showed that a higher aflatoxin risk index (ARI) in January, March, July, and November led to higher AFL contamination in the southern regions of IL. Higher values of corn-specific normalized difference vegetation index (NDVI) in July led to lower AFL contamination in Central and Southern IL, while higher wheat-specific NDVI values in February led to higher AFL. FUM-GBM showed that temperature in July and October, precipitation in February, and NDVI values in March are positively correlated with high contamination throughout IL. Furthermore, the dynamic geospatial models showed that soil characteristics were correlated with AFL and FUM contamination. Greater calcium carbonate content in soil was negatively correlated with AFL contamination, which was noticeable in Southern IL. Greater soil moisture and available water-holding capacity throughout Southern IL were positively correlated with high FUM contamination. The higher clay percentage in the northeastern areas of IL negatively correlated with FUM contamination. NN models showed high class-specific performance for 1-year predictive validation for AFL (73%) and FUM (85%), highlighting their accuracy for annual mycotoxin prediction. Our models revealed that soil, NDVI, year-specific weekly average precipitation, and temperature were the most important factors that correlated with mycotoxin contamination. These findings serve as reliable guidelines for future modeling efforts to identify novel data inputs for the prediction of AFL and FUM outbreaks and potential farm-level management practices.
Collapse
Affiliation(s)
- Lina Castano-Duque
- Food and Feed Safety Research Unit, Southern Regional Research Center, Agriculture Research Service, United States Department of Agriculture, New Orleans, LA, United States
| | - Edwin Winzeler
- Dale Bumpers Small Farms Research Center, Agriculture Research Service, United States Department of Agriculture, Booneville, AR, United States
| | - Joshua M. Blackstock
- Dale Bumpers Small Farms Research Center, Agriculture Research Service, United States Department of Agriculture, Booneville, AR, United States
| | - Cheng Liu
- Microbiology and Agrochains Wageningen Food Safety Research, Wageningen, Netherlands
| | - Noemi Vergopolan
- Atmospheric and Ocean Science Program, Princeton University, Princeton, NJ, United States
| | - Marlous Focker
- Microbiology and Agrochains Wageningen Food Safety Research, Wageningen, Netherlands
| | - Kristin Barnett
- Agricultural Products Inspection, Illinois Department of Agriculture, Springfield, IL, United States
| | - Phillip Ray Owens
- Dale Bumpers Small Farms Research Center, Agriculture Research Service, United States Department of Agriculture, Booneville, AR, United States
| | | | - Martha M. Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, United States
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, Southern Regional Research Center, Agriculture Research Service, United States Department of Agriculture, New Orleans, LA, United States
| |
Collapse
|
8
|
Legan AW, Mack BM, Mehl HL, Wissotski M, Ching’anda C, Maxwell LA, Callicott KA. Complete genome of the toxic mold Aspergillus pseudotamarii isolate NRRL 25517 reveals genomic instability of the aflatoxin biosynthesis cluster. G3 (BETHESDA, MD.) 2023; 13:jkad150. [PMID: 37401423 PMCID: PMC10468309 DOI: 10.1093/g3journal/jkad150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Fungi can synthesize a broad array of secondary metabolite chemicals. The genes underpinning their biosynthesis are typically arranged in tightly linked clusters in the genome. For example, ∼25 genes responsible for the biosynthesis of carcinogenic aflatoxins by Aspergillus section Flavi species are grouped in a ∼70 Kb cluster. Assembly fragmentation prevents assessment of the role of structural genomic variation in secondary metabolite evolution in this clade. More comprehensive analyses of secondary metabolite evolution will be possible by working with more complete and accurate genomes of taxonomically diverse Aspergillus species. Here, we combined short- and long-read DNA sequencing to generate a highly contiguous genome of the aflatoxigenic fungus, Aspergillus pseudotamarii (isolate NRRL 25517 = CBS 766.97; scaffold N50 = 5.5 Mb). The nuclear genome is 39.4 Mb, encompassing 12,639 putative protein-encoding genes and 74-97 candidate secondary metabolite biosynthesis gene clusters. The circular mitogenome is 29.7 Kb and contains 14 protein-encoding genes that are highly conserved across the genus. This highly contiguous A. pseudotamarii genome assembly enables comparisons of genomic rearrangements between Aspergillus section Flavi series Kitamyces and series Flavi. Although the aflatoxin biosynthesis gene cluster of A. pseudotamarii is conserved with Aspergillus flavus, the cluster has an inverted orientation relative to the telomere and occurs on a different chromosome.
Collapse
Affiliation(s)
- Andrew W Legan
- US Department of Agriculture, Arid Land Agricultural Research Center, Tucson, AZ 85701, USA
| | - Brian M Mack
- US Department of Agriculture, Food and Feed Safety Research Unit, New Orleans, LA 70124, USA
| | - Hillary L Mehl
- US Department of Agriculture, Arid Land Agricultural Research Center, Tucson, AZ 85701, USA
| | - Marina Wissotski
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Connel Ching’anda
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Lourena A Maxwell
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Kenneth A Callicott
- US Department of Agriculture, Arid Land Agricultural Research Center, Tucson, AZ 85701, USA
| |
Collapse
|
9
|
Ouadhene MA, Ortega-Beltran A, Sanna M, Cotty PJ, Battilani P. Multiple Year Influences of the Aflatoxin Biocontrol Product AF-X1 on the A. flavus Communities Associated with Maize Production in Italy. Toxins (Basel) 2023; 15:184. [PMID: 36977075 PMCID: PMC10057891 DOI: 10.3390/toxins15030184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
AF-X1 is a commercial aflatoxin biocontrol product containing the non-aflatoxigenic (AF-) strain of Aspergillus flavus MUCL54911 (VCG IT006), endemic to Italy, as an active ingredient. The present study aimed to evaluate the long-term persistence of VCG IT006 in the treated fields, and the multi-year influence of the biocontrol application on the A. flavus population. Soil samples were collected in 2020 and 2021 from 28 fields located in four provinces in north Italy. A vegetative compatibility analysis was conducted to monitor the occurrence of VCG IT006 on the total of the 399 isolates of A. flavus that were collected. IT006 was present in all the fields, mainly in the fields treated for 1 yr or 2 consecutive yrs (58% and 63%, respectively). The densities of the toxigenic isolates, detected using the aflR gene, were 45% vs. 22% in the untreated and treated fields, respectively. After displacement via the AF- deployment, a variability from 7% to 32% was noticed in the toxigenic isolates. The current findings support the long-term durability of the biocontrol application benefits without deleterious effects on each fungal population. Nevertheless, based on the current results, as well as on previous studies, the yearly applications of AF-X1 to Italian commercial maize fields should continue.
Collapse
Affiliation(s)
- Mohamed Ali Ouadhene
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | | | - Martina Sanna
- AGROINNOVA—Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Torino, 10095 Grugliasco, Italy
| | - Peter J. Cotty
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
10
|
Ortega-Beltran A, Bandyopadhyay R. Aflatoxin biocontrol in practice requires a multidisciplinary, long-term approach. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
One of the most elusive food safety problems is the contamination of staple crops with the highly carcinogenic aflatoxins produced by Aspergillus section Flavi fungi. Governments, farmers, institutions, consumers, and companies demand aflatoxin solutions. Many aflatoxin management technologies exist, but their real-life use and effectiveness is determined by diverse factors. Biocontrol products based on atoxigenic isolates of A. flavus can effectively reduce aflatoxins from field to fork. However, development, testing, and registration of this technology is a laborious process. Further, several barriers prevent the sustainable use of biocontrol products. There are challenges to have the products accepted, to make them available at scale and develop mechanisms for farmers to buy them, to have the products correctly used, to demonstrate their value, and to link farmers to buyers of aflatoxin-safe crops. Developing an effective aflatoxin management technology is the first, major step. The second one, perhaps more complicated and unfortunately seldomly discussed, is to develop mechanisms to have it used at scale, sustainably, and converged with other complementary technologies. Here, challenges and actions to scale the aflatoxin biocontrol technology in several countries in sub-Saharan Africa are described with a view to facilitating aflatoxin management efforts in Africa and beyond.
Collapse
|
11
|
Atehnkeng J, Ojiambo PS, Ortega-Beltran A, Augusto J, Cotty PJ, Bandyopadhyay R. Impact of frequency of application on the long-term efficacy of the biocontrol product Aflasafe in reducing aflatoxin contamination in maize. Front Microbiol 2022; 13:1049013. [PMID: 36504767 PMCID: PMC9732863 DOI: 10.3389/fmicb.2022.1049013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Aflatoxins, produced by several Aspergillus section Flavi species in various crops, are a significant public health risk and a barrier to trade and development. In sub-Saharan Africa, maize and groundnut are particularly vulnerable to aflatoxin contamination. Aflasafe, a registered aflatoxin biocontrol product, utilizes atoxigenic A. flavus genotypes native to Nigeria to displace aflatoxin producers and mitigate aflatoxin contamination. Aflasafe was evaluated in farmers' fields for 3 years, under various regimens, to quantify carry-over of the biocontrol active ingredient genotypes. Nine maize fields were each treated either continuously for 3 years, the first two successive years, in year 1 and year 3, or once during the first year. For each treated field, a nearby untreated field was monitored. Aflatoxins were quantified in grain at harvest and after simulated poor storage. Biocontrol efficacy and frequencies of the active ingredient genotypes decreased in the absence of annual treatment. Maize treated consecutively for 2 or 3 years had significantly (p < 0.05) less aflatoxin (92% less) in grain at harvest than untreated maize. Maize grain from treated fields subjected to simulated poor storage had significantly less (p < 0.05) aflatoxin than grain from untreated fields, regardless of application regimen. Active ingredients occurred at higher frequencies in soil and grain from treated fields than from untreated fields. The incidence of active ingredients recovered in soil was significantly correlated (r = 0.898; p < 0.001) with the incidence of active ingredients in grain, which in turn was also significantly correlated (r = -0.621, p = 0.02) with aflatoxin concentration. Although there were carry-over effects, caution should be taken when drawing recommendations about discontinuing biocontrol use. Cost-benefit analyses of single season and carry-over influences are needed to optimize use by communities of smallholder farmers in sub-Saharan Africa.
Collapse
Affiliation(s)
- Joseph Atehnkeng
- Pathology and Mycotoxin, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Peter S. Ojiambo
- Pathology and Mycotoxin, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria,Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Alejandro Ortega-Beltran
- Pathology and Mycotoxin, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Joao Augusto
- Pathology and Mycotoxin, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Peter J. Cotty
- College of Food Science and Engineering, Ocean University of China, Qingdao, China,Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | - Ranajit Bandyopadhyay
- Pathology and Mycotoxin, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria,*Correspondence: Ranajit Bandyopadhyay,
| |
Collapse
|
12
|
Glutamine Synthetase Contributes to the Regulation of Growth, Conidiation, Sclerotia Development, and Resistance to Oxidative Stress in the Fungus Aspergillus flavus. Toxins (Basel) 2022; 14:toxins14120822. [PMID: 36548719 PMCID: PMC9785230 DOI: 10.3390/toxins14120822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The basic biological function of glutamine synthetase (Gs) is to catalyze the conversion of ammonium and glutamate to glutamine. This synthetase also performs other biological functions. However, the roles of Gs in fungi, especially in filamentous fungi, are not fully understood. Here, we found that conditional disruption of glutamine synthetase (AflGsA) gene expression in Aspergillus flavus by using a xylose promoter leads to a complete glutamine deficiency. Supplementation of glutamine could restore the nutritional deficiency caused by AflGsA expression deficiency. Additionally, by using the xylose promoter for the downregulation of AflgsA expression, we found that AflGsA regulates spore and sclerotic development by regulating the transcriptional levels of sporulation genes abaA and brlA and the sclerotic generation genes nsdC and nsdD, respectively. In addition, AflGsA was found to maintain the balance of reactive oxygen species (ROS) and to aid in resisting oxidative stress. AflGsA is also involved in the regulation of light signals through the production of glutamine. The results also showed that the recombinant AflGsA had glutamine synthetase activity in vitro and required the assistance of metal ions. The inhibitor molecule L-α-aminoadipic acid suppressed the activity of rAflGsA in vitro and disrupted the morphogenesis of spores, sclerotia, and colonies in A. flavus. These results provide a mechanistic link between nutrition metabolism and glutamine synthetase in A. flavus and suggest a strategy for the prevention of fungal infection.
Collapse
|
13
|
Characterization of the Aspergillus flavus Population from Highly Aflatoxin-Contaminated Corn in the United States. Toxins (Basel) 2022; 14:toxins14110755. [PMID: 36356005 PMCID: PMC9698142 DOI: 10.3390/toxins14110755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Aflatoxin contamination of corn is a major threat to the safe food and feed. The United States Federal Grain Inspection Service (FGIS) monitors commercial grain shipments for the presence of aflatoxin. A total of 146 Aspergillus flavus were isolated from 29 highly contaminated grain samples to characterize the visual phenotypes, aflatoxin-producing potential, and genotypes to explore the etiological cause of high aflatoxin contamination of US corn. Five of the isolates had reduced sensitivity (43-49% resistant) to the fungicide azoxystrobin, with the remainder all being over 50% resistant to azoxystrobin at the discriminating dose of 2.5 µg/mL. Only six isolates of the highly aflatoxigenic S morphotype were found, and 48 isolates were non-aflatoxigenic. Analysis of the mating type locus revealed 45% MAT 1-1 and 55% MAT 1-2. The A. flavus population originating from the highly aflatoxin contaminated grain samples was compared to a randomly selected subset of isolates originating from commercial corn samples with typical levels of aflatoxin contamination (average < 50 ppb). Use of simple sequence repeat (SSR) genotyping followed by principal component analysis (PCoA) revealed a similar pattern of genotypic distribution in the two populations, but greater diversity in the FGIS-derived population. The noticeable difference between the two populations was that genotypes identical to strain NRRL 21882, the active component of the aflatoxin biocontrol product Afla-Guard™, were ten times more common in the commercial corn population of A. flavus compared to the population from the high-aflatoxin corn samples. The other similarities between the two populations suggest that high aflatoxin concentrations in corn grain are generally the result of infection with common A. flavus genotypes.
Collapse
|
14
|
Application of Non-Aflatoxigenic Aspergillus flavus for the Biological Control of Aflatoxin Contamination in China. Toxins (Basel) 2022; 14:toxins14100681. [PMID: 36287950 PMCID: PMC9611986 DOI: 10.3390/toxins14100681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Biological control through the application of competitive non-aflatoxigenic Aspergillus flavus (A. flavus) to the soil during peanut growth is a practical method for controlling aflatoxin contamination. However, appropriate materials need to be found to reduce the cost of biocontrol products. In this study, a two-year experiment was conducted under field conditions in China, using a native non-aflatoxigenic strain to explore its effect. After three months of storage under high humidity, aflatoxin levels remained low in peanuts from fields treated with the biocontrol agent. Three types of substrates were tested with the biocontrol agent: rice grains, peanut meal (peanut meal fertilizer) and peanut coating. Compared to untreated fields, these formulations resulted in reductions of 78.23%, 67.54% and 38.48%, respectively. Furthermore, the ratios of non-aflatoxigenic A. flavus recovered in the soils at harvest in the treated fields were between 41.11% and 96.67% higher than that in untreated fields (25.00%), indicating that the rice inoculum was the most effective, followed by the peanut meal fertilizer and peanut coating. In 2019, the mean aflatoxin content of freshly harvested peanuts in untreated fields was 19.35 µg/kg higher than that in the fields treated with 7.5 kg/ha rice inoculum, which was 1.37 µg/kg. Moreover, no aflatoxin was detected in the two other plots treated with 10 and 15 kg/ha rice inoculum. This study showed that the native Chinese non-aflatoxigenic strain of A. flavus (18PAsp-zy1) had the potential to reduce aflatoxin contamination in peanuts. In addition, peanut meal can be used as an alternative substrate to replace traditional grains, reducing the cost of biocontrol products.
Collapse
|
15
|
Ola OT, Ogedengbe OO, Raji TM, Eze B, Chama M, Ilori ON, Awofisayo MA, Kaptoge L, Bandyopadhyay R, Ortega-Beltran A, Ndarubu AA. Aflatoxin biocontrol effectiveness in the real world—Private sector-led efforts to manage aflatoxins in Nigeria through biocontrol-centered strategies. Front Microbiol 2022; 13:977789. [PMID: 36118233 PMCID: PMC9478371 DOI: 10.3389/fmicb.2022.977789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aflatoxins are toxic compounds produced by several Aspergillus species that contaminate various crops. The impact of aflatoxin on the health of humans and livestock is a concern across the globe. Income, trade, and development sectors are affected as well. There are several technologies to prevent aflatoxin contamination but there are difficulties in having farmers use them. In Nigeria, an aflatoxin biocontrol product containing atoxigenic isolates of A. flavus has been registered with regulatory authorities and is now being produced at scale by the private company Harvestfield Industries Limited (HIL). The current study reports results of biocontrol effectiveness trials in maize conducted by HIL during 2020 in several locations across Nigeria and compared to untreated maize from nearby locations. Also, maize was collected from open markets to assess levels of contamination. All treated maize met tolerance thresholds (i.e., <4 ppb total aflatoxin). In contrast, most maize from untreated fields had a higher risk of aflatoxin contamination, with some areas averaging 38.5 ppb total aflatoxin. Maize from open markets had aflatoxin above tolerance thresholds with even an average of up to 90.3 ppb. Results from the trials were presented in a National Workshop attended by key officers of Government agencies, farmer organizations, the private sector, NGOs, and donors. Overall, we report (i) efforts spearheaded by the private sector to have aflatoxin management strategies used at scale in Nigeria, and (ii) deliberations of key stakeholders to ensure the safety of crops produced in Nigeria for the benefit of farmers, consumers, and industries.
Collapse
Affiliation(s)
- O. T. Ola
- Harvestfield Industries Limited, Lagos, Nigeria
| | | | - T. M. Raji
- Harvestfield Industries Limited, Lagos, Nigeria
| | - B. Eze
- Harvestfield Industries Limited, Lagos, Nigeria
| | - M. Chama
- Harvestfield Industries Limited, Lagos, Nigeria
| | - O. N. Ilori
- Harvestfield Industries Limited, Lagos, Nigeria
| | | | - L. Kaptoge
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - R. Bandyopadhyay
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | - A. A. Ndarubu
- Harvestfield Industries Limited, Lagos, Nigeria
- *Correspondence: A. A. Ndarubu,
| |
Collapse
|
16
|
Mahuku G, Mauro A, Pallangyo B, Nsami E, Boni S, Koyano E, Mponda O, Ortega-Beltran A, Atehnkeng J, Aquiline F, Samuel R, Njela J, Cotty P, Bandyopadhyay R. Atoxigenic-based technology for biocontrol of aflatoxin in maize and groundnuts for Tanzania. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Application of biocontrol products containing atoxigenic isolates of Aspergillus flavus to reduce aflatoxin content in crops is an effective strategy for managing aflatoxin in several regions throughout the world. We report the development and validation of two aflatoxin biocontrol products, Aflasafe TZ01 and Aflasafe TZ02, for use in maize and groundnut in Tanzania, a country frequently affected by aflatoxin contamination. Each product contains four atoxigenic A. flavus genotypes native and widely distributed in Tanzania. Efficacy tests on maize and groundnut were conducted over two years and in four regions of Tanzania where aflatoxin contamination is prevalent. Application of both products significantly (P<0.05) reduced aflatoxin levels in maize and groundnut in both years and in all districts. No differences were observed in total Aspergillus section Flavi population in treated and untreated fields, revealing that application of the biocontrol products do not alter overall Aspergillus populations in the environment. The results indicate that both products are effective tools for aflatoxin mitigation in groundnut and maize. The products were officially registered in 2018. Currently, there are scale-out and-up efforts of aflatoxin biocontrol products in Tanzania through a private sector company that is making the products available to farmers. Protecting maize and groundnut from aflatoxin contamination in Tanzania can result in health, income, and trade benefits.
Collapse
Affiliation(s)
- G. Mahuku
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - A. Mauro
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - B. Pallangyo
- Plant Health Services, Ministry of Agriculture, P.O. Box 2182, Dodoma, Tanzania
| | - E. Nsami
- National Biological Control Center, P.O. Box 30031, Kibaha, Tanzania
| | - S.B. Boni
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
- World Vegetable Center, Eastern and Southern Africa, P.O. Box 10, Duluti, Arusha, Tanzania
| | - E. Koyano
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - O. Mponda
- Department of Research, Ministry of Agriculture, Livestock and Fisheries, P.O. Box 9192, Dar es Salaam, Tanzania
| | - A. Ortega-Beltran
- IITA Headquarters, PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria
| | - J. Atehnkeng
- IITA Headquarters, PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria
| | - F. Aquiline
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - R. Samuel
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - J. Njela
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - P.J. Cotty
- USDA-ARS, 416 West Congress Street, Tucson, AZ 85701, USA
| | - R. Bandyopadhyay
- IITA Headquarters, PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria
| |
Collapse
|
17
|
Singh P, Mehl HL, Orbach MJ, Callicott KA, Cotty PJ. Genetic Diversity of Aspergillus flavus Associated with Chili in Nigeria and Identification of Haplotypes with Potential in Aflatoxin Mitigation. PLANT DISEASE 2022; 106:1818-1825. [PMID: 35084943 DOI: 10.1094/pdis-07-21-1464-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dried red chili (Capsicum spp.), a widely produced and consumed spice in Nigeria, is often contaminated by aflatoxins. Aflatoxins are potent mycotoxins of severe health and economic concern worldwide. Aspergillus flavus often contaminates crops with aflatoxins in warm regions; however, not all isolates are aflatoxin producers. Nonaflatoxigenic isolates have potential as biocontrol agents for aflatoxin mitigation. The current study examined the genetic diversity of A. flavus (n = 325) associated with chilies in Nigeria and identified 123 nonaflatoxigenic isolates. The Nigerian A. flavus isolates from chili were diverse at 17 microsatellite loci, with 5 to 36 alleles per locus, and included 152 haplotypes. The isolates that are active ingredients in Aflasafe, registered for aflatoxin biocontrol on maize and groundnuts in Nigeria, did not share haplotypes with the chili isolates. Of the 152 haplotypes, 65% produced aflatoxins in autoclaved maize, some of which (17%) produced >100,000 µg/kg of aflatoxins. Aflatoxins were not detected in 35% of the haplotypes. Cluster amplification pattern assay detected large deletions in the aflatoxin biosynthetic clusters of some (32%) of the nonaflatoxigenic haplotypes. Coinfection of chili with nonaflatoxigenic isolates from chilies (n = 7) and A. aflatoxiformans resulted in a significantly greater average reduction in total aflatoxins compared with that achieved by Aflasafe active ingredient isolates (P < 0.01). These nonaflatoxigenic isolates are a genetic resource for the development of biological control products for aflatoxin mitigation in chilies in Nigeria and should be evaluated under field conditions.
Collapse
Affiliation(s)
- Pummi Singh
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, U.S.A
| | | | - Marc J Orbach
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, U.S.A
| | | | - Peter J Cotty
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, U.S.A
- USDA-ARS, Tucson, AZ 85701, U.S.A
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
18
|
Bilandžić N, Varga I, Varenina I, Solomun Kolanović B, Božić Luburić Đ, Đokić M, Sedak M, Cvetnić L, Cvetnić Ž. Seasonal Occurrence of Aflatoxin M1 in Raw Milk during a Five-Year Period in Croatia: Dietary Exposure and Risk Assessment. Foods 2022; 11:1959. [PMID: 35804774 PMCID: PMC9265853 DOI: 10.3390/foods11131959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
This study's objective was to estimate the seasonal occurrence of aflatoxin M1 (AFM1) in cow's milk between winter 2016 and winter 2022 and to assess dietary exposure and risk assessment for the adult Croatian population. In total, 5817 cow milk samples were screened for AFM1 concentrations using the enzyme immunoassay assay (ELISA). For confirmation purposes of AFM1 concentration above the European Union maximum permitted level (MRL), ultra high-performance liquid chromatography with tandem mass spectrometry was performed. In 94.7% of milk samples, AFM1 levels were below the detection limit (LOD) of the ELISA test. For 3.47% of samples, the AFM1 was between the LOD and MRL values. Only 1.87% of all samples exceeded the MRL. The mean value of elevated AFM1 in different seasons ranged between 59.2 ng/kg (autumn 2017) and 387.8 ng/kg (autumn 2021). The highest incidences of positive AFM1 were determined in autumn and winter and the maximum (6.4%) was in winter 2019/2020. The largest percentage of positive samples (69.7%) was found in central Croatia. The estimated daily intakes for positive samples ranged between 0.17 and 2.82 ng/kg body weight/day. Risk assessment indicated a high level of concern during autumn and winter, especially for consumers of large amounts of milk.
Collapse
Affiliation(s)
- Nina Bilandžić
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (I.V.); (I.V.); (B.S.K.); (Đ.B.L.); (M.Đ.); (M.S.)
| | - Ines Varga
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (I.V.); (I.V.); (B.S.K.); (Đ.B.L.); (M.Đ.); (M.S.)
| | - Ivana Varenina
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (I.V.); (I.V.); (B.S.K.); (Đ.B.L.); (M.Đ.); (M.S.)
| | - Božica Solomun Kolanović
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (I.V.); (I.V.); (B.S.K.); (Đ.B.L.); (M.Đ.); (M.S.)
| | - Đurđica Božić Luburić
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (I.V.); (I.V.); (B.S.K.); (Đ.B.L.); (M.Đ.); (M.S.)
| | - Maja Đokić
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (I.V.); (I.V.); (B.S.K.); (Đ.B.L.); (M.Đ.); (M.S.)
| | - Marija Sedak
- Laboratory for Residue Control, Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (I.V.); (I.V.); (B.S.K.); (Đ.B.L.); (M.Đ.); (M.S.)
| | - Luka Cvetnić
- Laboratory for Mastitis and Raw Milk Quality, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia;
| | - Željko Cvetnić
- Croatian Veterinary Institute, Veterinary Institute Križevci, Zakmardijeva 10, 48260 Križevci, Croatia;
| |
Collapse
|
19
|
Dietary Exposure to Aflatoxins in Some Randomly Selected Foods and Cancer Risk Estimations of Cereals Consumed on a Ghanaian Market. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5770836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aflatoxins have gained so much reputation among all mycotoxins due to their notoriety in causing countless adverse health effects on humans as well as animals. It continues to be a major concern in food safety globally. In this study, total and constitutive aflatoxins levels as well as the carcinogenic risks posed by 110 food and feed samples (55 cereals, 20 nuts and oils, 18 animal feed, and 18 fruits and vegetables) collected from the Ho Central market in the Volta region, Ghana, were assessed. Using high-performance liquid chromatography connected to a fluorescent detector (HPLC-FLD), levels of total aflatoxins (AFtotal) and aflatoxins constituents, namely, AFB1, AFB2, AFG1, and AFG2, were analyzed. By using the model prescribed by Joint FAO/WHO Expert Committee on Food Additives (JECFA), the risks posed by the food and feed samples were determined. The degrees of toxicity were in the ranges of 0.78–234.73 μg/kg, 0.47–21.6 μg/kg, 1.01–13.75 μg/kg, and 0.66–5.51 μg/kg, respectively, for AFB1, AFB2, AFG1, and AFG2. Out of the samples analyzed for AFtotal, about 51 (46.4%) exceeded the limits of GSA and were in the range 10.63 ± 1.20–236.28 ± 4.2 μg/kg. While for EFSA, 71 (64.54%) exceeded and ranged between 4.72 ± 0.28 and 236.28 ± 4.2 μg/kg. Furthermore, estimated daily intake (EDI) of 27.10–283.70 ng/kg·bw/day, margin of exposure (MOE) of 1.409–14.76, average potency of 0–0.00396 ng aflatoxins/kg·bw/day, and cancer risks with a range of 0.107–1.122 cases/100,000 person/yr were observed. Taken together, it could be concluded that consuming cereals pose adverse effects on human health regardless of the age of the consumer.
Collapse
|
20
|
Ortega‐Beltran A, Kaptoge L, Senghor AL, Aikore MOS, Jarju P, Momanyi H, Konlambigue M, Falade TDO, Bandyopadhyay R. Can it be all more simple? Manufacturing aflatoxin biocontrol products using dry spores of atoxigenic isolates of Aspergillus flavus as active ingredients. Microb Biotechnol 2022; 15:901-914. [PMID: 33755307 PMCID: PMC8913866 DOI: 10.1111/1751-7915.13802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 03/07/2021] [Indexed: 11/30/2022] Open
Abstract
Aflatoxin contamination of staple crops, commonly occurring in warm areas, negatively impacts human and animal health, and hampers trade and economic development. The fungus Aspergillus flavus is the major aflatoxin producer. However, not all A. flavus genotypes produce aflatoxins. Effective aflatoxin control is achieved using biocontrol products containing spores of atoxigenic A. flavus. In Africa, various biocontrol products under the tradename Aflasafe are available. Private and public sector licensees manufacture Aflasafe using spores freshly produced in laboratories adjacent to their factories. BAMTAARE, the licensee in Senegal, had difficulties to obtain laboratory equipment during its first year of production. To overcome this, a process was developed in Ibadan, Nigeria, for producing high-quality dry spores. Viability and stability of the dry spores were tested and conformed to set standards. In 2019, BAMTAARE manufactured Aflasafe SN01 using dry spores produced in Ibadan and sent via courier and 19 000 ha of groundnut and maize in Senegal and The Gambia were treated. Biocontrol manufactured with dry spores was as effective as biocontrol manufactured with freshly produced spores. Treated crops contained safe and significantly (P < 0.05) less aflatoxin than untreated crops. The dry spore innovation will make biocontrol manufacturing cost-efficient in several African countries.
Collapse
Affiliation(s)
| | - Lawrence Kaptoge
- International Institute of Tropical Agriculture (IITA)IbadanNigeria
| | | | | | - Patrick Jarju
- National Food Security, Processing and Marketing CorporationBanjulThe Gambia
| | | | | | | | | |
Collapse
|
21
|
Moral J, Garcia-Lopez MT, Gordon A, Ortega-Beltran A, Puckett R, Tomari K, Gradziel TM, Michailides TJ. Resistance to Aspergillus flavus and Aspergillus parasiticus in Almond Advanced Selections and Cultivars and Its Interaction with the Aflatoxin Biocontrol Strategy. PLANT DISEASE 2022; 106:504-509. [PMID: 34569835 DOI: 10.1094/pdis-05-21-0892-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aflatoxin contamination of almond kernels, caused by Aspergillus flavus and A. parasiticus, is a severe concern for growers because of its high toxicity. In California, the global leader of almond production, aflatoxin can be managed by applying the biological control strain AF36 of A. flavus and selecting resistant cultivars. Here, we classified the almond genotypes by K-Means cluster analysis into three groups (susceptible [S], moderately susceptible [MS], or resistant [R]) based on aflatoxin content of inoculated kernels. The protective effects of the shell and seedcoat in preventing aflatoxin contamination were also examined. The presence of intact shells reduced aflatoxin contamination >100-fold. The seedcoat provided a layer of protection but not complete protection. In kernel inoculation assays, none of the studied almond genotypes showed a total resistance to the pathogen. However, nine traditional cultivars and four advanced selections were classified as R. Because these advanced selections contained germplasm derived from peach, we compared the kernel resistance of three peach cultivars to that shown by kernels of an R (Sonora) and an S (Carmel) almond cultivar and five pistachio cultivars. Overall, peach kernels were significantly more resistant to the pathogen than almond kernels, which were more resistant than pistachio kernels. Finally, we studied the combined effect of the cultivar resistance and the biocontrol strain AF36 in limiting aflatoxin contamination. For this, we coinoculated almond kernels of R Sonora and S Carmel with AF36 72 h before or 48 h after inoculating with an aflatoxin-producing strain of A. flavus. The percentage of aflatoxin reduction by AF36 strain was greater in kernels of Carmel (98%) than in those of Sonora (83%). Cultivar resistance also affected the kernel colonization by the biological control strain. AF36 strain limited aflatoxin contamination in almond kernels even when applied 48 h after the aflatoxin-producing strain. Our results show that biocontrol combined with the use of cultivars with resistance to aflatoxin contamination can result in a more robust protection strategy than the use of either practice in isolation.
Collapse
Affiliation(s)
- Juan Moral
- Department of Agronomy, Maria de Maeztu Excellence Unit, University of Córdoba, 14071 Córdoba, Spain
- Department of Biology, College of Science and Mathematics, California State University, Fresno, CA 93740, U.S.A
| | - M Teresa Garcia-Lopez
- Department of Agronomy, Maria de Maeztu Excellence Unit, University of Córdoba, 14071 Córdoba, Spain
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - Ana Gordon
- Department of Agronomy, Maria de Maeztu Excellence Unit, University of Córdoba, 14071 Córdoba, Spain
| | | | - Ryan Puckett
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - Kenji Tomari
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - Thomas M Gradziel
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616, U.S.A
| | - Themis J Michailides
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| |
Collapse
|
22
|
Sserumaga JP, Wagacha JM, Biruma M, Mutegi CK. Contamination of groundnut (Arachis hypogaea L.) with Aspergillus section Flavi communities and aflatoxin at the post-harvest stage. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Xu J, Wang P, Zhou Z, Cotty PJ, Kong Q. Selection of Atoxigenic Aspergillus flavus for Potential Use in Aflatoxin Prevention in Shandong Province, China. J Fungi (Basel) 2021; 7:jof7090773. [PMID: 34575811 PMCID: PMC8472152 DOI: 10.3390/jof7090773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/13/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Aspergillus flavus is a common filamentous fungus widely present in the soil, air, and in crops. This facultative pathogen of both animals and plants produces aflatoxins, a group of mycotoxins with strong teratogenic and carcinogenic properties. Peanuts are highly susceptible to aflatoxin contamination and consumption of contaminated peanuts poses serious threats to the health of humans and domestic animals. Currently, the competitive displacement of aflatoxin-producers from agricultural environments by atoxigenic A. flavus is the most effective method of preventing crop aflatoxin contamination. In the current study, 47 isolates of A. flavus collected from peanut samples originating in Shandong Province were characterized with molecular methods and for aflatoxin-producing ability in laboratory studies. Isolates PA04 and PA10 were found to be atoxigenic members of the L strains morphotype. When co-inoculated with A. flavus NRRL3357 at ratios of 1:10, 1:1, and 10:1 (PA04/PA10: NRRL3357), both atoxigenic strains were able to reduce aflatoxin B1 (AFB1) levels, on both culture media and peanut kernels, by up to 90%. The extent to which atoxigenic strains reduced contamination was correlated with the inoculation ratio. Abilities to compete of PA04 and PA10 were also independently verified against local aflatoxin-producer PA37. The results suggest that the two identified atoxigenic strains are good candidates for active ingredients of biocontrol products for the prevention of aflatoxin contamination of peanuts in Shandong Province.
Collapse
Affiliation(s)
- Jia Xu
- School of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.X.); (P.W.); (P.J.C.)
| | - Peng Wang
- School of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.X.); (P.W.); (P.J.C.)
| | - Zehua Zhou
- Food Technology Department, Wageningen University & Research, 6700 AK Wageningen, The Netherlands;
| | - Peter John Cotty
- School of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.X.); (P.W.); (P.J.C.)
| | - Qing Kong
- School of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.X.); (P.W.); (P.J.C.)
- Correspondence: ; Tel.: +86-532-8203-2290; Fax: +86-532-8203-238
| |
Collapse
|
24
|
Ponce-García N, Palacios-Rojas N, Serna-Saldivar SO, García-Lara S. Aflatoxin contamination in maize: occurrence and health implications in Latin America. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
According to the United Nations Food and Agriculture Organisation, mycotoxicoses constitute the second most pressing food safety problem worldwide, with most cases occurring in developing countries. Maize (Zea mays L.), the main staple for many Latin Americans, is one of the best suitable substrates for mycotoxigenic Aspergillus fungi. Aflatoxins (AFs) produced primarily by Aspergillus flavus, are of significant concern, especially in developing countries. While AFs production occurs mainly in warmer, tropical, and subtropical environments, recent evidence suggests that global climate change favours their presence in regions with little or no awareness of this issue. AFs interfere with metabolic processes, causing cancer and other health disorders resulting in health hazards and even death. The setting of national acceptable regulatory levels of AFs is necessary for Latin American countries. Unfortunately, no estimates of the economic impact of AFs in this region are currently available nor the cost of regulatory programs designed to reduce health risks to animals and humans. This review explores relevant data about incidence of AFs in maize produced in the region and the adverse effects of the consumption of contaminated foods and the associated health consequences for Latin American consumers. Regulations aimed to mitigate AFs exposure to consumers are also reviewed and identified gaps for researchers and actors of the maize value chain are also proposed.
Collapse
Affiliation(s)
- N. Ponce-García
- Faculty of Agricultural Sciences, Autonomous University of Mexico State, UAEMéx, Campus Universitario ‘El Cerrillo’, El Cerrillo Piedras Blancas, P.O. Box 50200, Toluca, Estado de Mexico, Mexico
| | - N. Palacios-Rojas
- International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45, P.O. Box 56237, El Batán, Texcoco, Mexico
| | - S. O. Serna-Saldivar
- Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo León, Mexico
| | - S. García-Lara
- Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo León, Mexico
| |
Collapse
|
25
|
Ortega-Beltran A, Bandyopadhyay R. Contributions of integrated aflatoxin management strategies to achieve the sustainable development goals in various African countries. GLOBAL FOOD SECURITY 2021. [DOI: 10.1016/j.gfs.2021.100559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Ching'anda C, Atehnkeng J, Bandyopadhyay R, Callicott KA, Orbach MJ, Mehl HL, Cotty PJ. Temperature Influences on Interactions Among Aflatoxigenic Species of Aspergillus Section Flavi During Maize Colonization. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:720276. [PMID: 37744097 PMCID: PMC10512225 DOI: 10.3389/ffunb.2021.720276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 09/26/2023]
Abstract
Fungal species within Aspergillus section Flavi contaminate food and feed with aflatoxins. These toxic fungal metabolites compromise human and animal health and disrupt trade. Genotypically and phenotypically diverse species co-infect crops, but temporal and spatial variation in frequencies of different lineages suggests that environmental factors such as temperature may influence structure of aflatoxin-producing fungal communities. Furthermore, though most species within Aspergillus section Flavi produce sclerotia, divergent sclerotial morphologies (small or S-type sclerotia vs. large or L-type sclerotia) and differences in types and quantities of aflatoxins produced suggest lineages are adapted to different life strategies. Temperature is a key parameter influencing pre- and post-harvest aflatoxin contamination of crops. We tested the hypothesis that species of aflatoxin-producing fungi that differ in sclerotial morphology will vary in competitive ability and that outcomes of competition and aflatoxin production will be modulated by temperature. Paired competition experiments between highly aflatoxigenic S-type species (A. aflatoxiformans and Lethal Aflatoxicosis Fungus) and L-type species (A. flavus L morphotype and A. parasiticus) were conducted on maize kernels at 25 and 30°C. Proportions of each isolate growing within and sporulating on kernels were measured using quantitative pyrosequencing. At 30°C, S-type fungi were more effective at host colonization compared to L-type isolates. Total aflatoxins and the proportion of B vs. G aflatoxins were greater at 30°C compared to 25°C. Sporulation by L-type isolates was reduced during competition with S-type fungi at 30°C, while relative quantities of conidia produced by S-type species either increased or did not change during competition. Results indicate that both species interactions and temperature can shape population structure of Aspergillus section Flavi, with warmer temperatures favoring growth and dispersal of highly toxigenic species with S-type sclerotia.
Collapse
Affiliation(s)
- Connel Ching'anda
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture (IITA), Lilongwe, Malawi
| | | | - Kenneth A. Callicott
- United States Department of Agriculture - Agriculture Research Service, Tucson, AZ, United States
| | - Marc J. Orbach
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Hillary L. Mehl
- United States Department of Agriculture - Agriculture Research Service, Tucson, AZ, United States
| | - Peter J. Cotty
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
- United States Department of Agriculture - Agriculture Research Service, Tucson, AZ, United States
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
27
|
Islam M, Callicott KA, Mutegi C, Bandyopadhyay R, Cotty PJ. Distribution of active ingredients of a commercial aflatoxin biocontrol product in naturally occurring fungal communities across Kenya. Microb Biotechnol 2021; 14:1331-1342. [PMID: 33336897 PMCID: PMC8313261 DOI: 10.1111/1751-7915.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022] Open
Abstract
Human populations in Kenya are repeatedly exposed to dangerous aflatoxin levels through consumption of contaminated crops. Biocontrol with atoxigenic Aspergillus flavus is an effective method for preventing aflatoxin in crops. Although four atoxigenic A. flavus isolates (C6E, E63I, R7H and R7K) recovered from maize produced in Kenya are registered as active ingredients for a biocontrol product (Aflasafe KE01) directed at preventing contamination, natural distributions of these four genotypes prior to initiation of commercial use have not been reported. Distributions of the active ingredients of KE01 based on haplotypes at 17 SSR loci are reported. Incidences of the active ingredients and closely related haplotypes were determined in soil collected from 629 maize fields in consecutive long and short rains seasons of 2012. The four KE01 haplotypes were among the top ten most frequent. Haplotype H-1467 of active ingredient R7K was the most frequent and widespread haplotype in both seasons and was detected in the most soils (3.8%). The four KE01 haplotypes each belonged to large clonal groups containing 27-46 unique haplotypes distributed across multiple areas and in 21% of soils. Each of the KE01 haplotypes belonged to a distinct vegetative compatibility group (VCG), and all A. flavus with haplotypes matching a KE01 active ingredient belonged to the same VCG as the matching active ingredient as did all A. flavus haplotypes differing at only one SSR locus. Persistence of the KE01 active ingredients in Kenyan agroecosystems is demonstrated by detection of identical SSR haplotypes six years after initial isolation. The data provide baselines for assessing long-term influences of biocontrol applications in highly vulnerable production areas of Kenya.
Collapse
Affiliation(s)
- Md‐Sajedul Islam
- School of Plant SciencesUSDA‐ARSThe University of ArizonaTucsonAZ85721USA
| | | | - Charity Mutegi
- International Institute of Tropical AgricultureNairobiKenya
| | | | - Peter J. Cotty
- School of Plant SciencesUSDA‐ARSThe University of ArizonaTucsonAZ85721USA
- College of Food Science and EngineeringOcean University of ChinaQingdaoShandong266003China
| |
Collapse
|
28
|
Garcia-Lopez MT, Luo Y, Ortega-Beltran A, Jaime R, Moral J, Michailides TJ. Quantification of the Aflatoxin Biocontrol Strain Aspergillus flavus AF36 in Soil and in Nuts and Leaves of Pistachio by Real-Time PCR. PLANT DISEASE 2021; 105:1657-1665. [PMID: 33084543 DOI: 10.1094/pdis-05-20-1097-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The species Aspergillus flavus and A. parasiticus are commonly found in the soils of nut-growing areas in California. Several isolates can produce aflatoxins that occasionally contaminate nut kernels, conditioning their sale. Strain AF36 of A. flavus, which does not produce aflatoxins, is registered as a biocontrol agent for use in almond, pistachio, and fig crops in California. After application in orchards, AF36 displaces aflatoxin-producing Aspergillus spp. and thus reduces aflatoxin contamination. Vegetative compatibility assays (VCAs) have traditionally been used to track AF36 in soils and crops where it has been applied. However, VCAs are labor intensive and time consuming. Here, we developed a quantitative real-time PCR (qPCR) protocol to quantify proportions of AF36 accurately and efficiently in different substrates. Specific primers to target AF36 and toxigenic strains of A. flavus and A. parasiticus were designed based on the sequence of aflC, a gene essential for aflatoxin biosynthesis. Standard curves were generated to calculate proportions of AF36 based on threshold cycle values. Verification assays using pure DNA and conidial suspension mixtures demonstrated a significant relationship by regression analysis between known and qPCR-measured AF36 proportions in DNA (R2 = 0.974; P < 0.001) and conidia mixtures (R2 = 0.950; P < 0.001). Tests conducted by qPCR in pistachio leaves, nuts, and soil samples demonstrated the usefulness of the qPCR method to precisely quantify proportions of AF36 in diverse substrates, ensuring important time and cost savings. The outputs of this study will serve to design better aflatoxin management strategies for pistachio and other crops.
Collapse
Affiliation(s)
- M Teresa Garcia-Lopez
- Department of Agronomy (Maria de Maeztu Excellence Unit), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - Yong Luo
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | | | - Ramon Jaime
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - Juan Moral
- Department of Agronomy (Maria de Maeztu Excellence Unit), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Themis J Michailides
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| |
Collapse
|
29
|
Senghor AL, Ortega-Beltran A, Atehnkeng J, Jarju P, Cotty PJ, Bandyopadhyay R. Aflasafe SN01 is the First Biocontrol Product Approved for Aflatoxin Mitigation in Two Nations, Senegal and The Gambia. PLANT DISEASE 2021; 105:1461-1473. [PMID: 33332161 DOI: 10.1094/pdis-09-20-1899-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aflatoxin contamination is caused by Aspergillus flavus and closely related fungi. In The Gambia, aflatoxin contamination of groundnut and maize, two staple and economically important crops, is common. Groundnut and maize consumers are chronically exposed to aflatoxins, sometimes at alarming levels, and this has severe consequences on their health and productivity. Aflatoxin contamination also impedes commercialization in local and international premium markets. In neighboring Senegal, an aflatoxin biocontrol product containing four atoxigenic isolates of A. flavus, Aflasafe SN01, has been registered and is approved for commercial use in groundnut and maize. We detected that the four genotypes composing Aflasafe SN01 are also native to The Gambia. The biocontrol product was tested during two years in 129 maize and groundnut fields and compared with corresponding untreated fields cropped by smallholder farmers in The Gambia. Treated crops contained up to 100% less aflatoxins than untreated crops. A large portion of the crops could have been commercialized in premium markets due to the low aflatoxin content (in many cases no detectable aflatoxins), both at harvest and after storage. Substantial aflatoxin reductions were also achieved when commercially produced groundnut received treatment. Here we report for the first time the use and effectiveness of an aflatoxin biocontrol product registered for use in two nations. With the current scale-out and -up efforts of Aflasafe SN01, a large number of farmers, consumers, and traders in The Gambia and Senegal will obtain health, income, and trade benefits.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- A L Senghor
- La Direction de Protection Végétaux, BP20054 Dakar, Senegal
| | - A Ortega-Beltran
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - J Atehnkeng
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - P Jarju
- National Food Security, Processing and Marketing Corporation, Denton Bridge, Banjul, The Gambia
| | - P J Cotty
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ 85719, U.S.A
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - R Bandyopadhyay
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
30
|
Brazilian Coffee Production and the Future Microbiome and Mycotoxin Profile Considering the Climate Change Scenario. Microorganisms 2021; 9:microorganisms9040858. [PMID: 33923588 PMCID: PMC8073662 DOI: 10.3390/microorganisms9040858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Brazil holds a series of favorable climatic conditions for agricultural production including the hours and intensity of sunlight, the availability of agricultural land and water resources, as well as diverse climates, soils and biomes. Amidst such diversity, Brazilian coffee producers have obtained various standards of qualities and aromas, between the arabica and robusta species, which each present a wide variety of lineages. However, temperatures in coffee producing municipalities in Brazil have increased by about 0.25 °C per decade and annual precipitation has decreased. Therefore, the agricultural sector may face serious challenges in the upcoming decades due to crop sensitivity to water shortages and thermal stress. Furthermore, higher temperatures may reduce the quality of the culture and increase pressure from pests and diseases, reducing worldwide agricultural production. The impacts of climate change directly affect the coffee microbiota. Within the climate change scenario, aflatoxins, which are more toxic than OTA, may become dominant, promoting greater food insecurity surrounding coffee production. Thus, closer attention on the part of authorities is fundamental to stimulate replacement of areas that are apt for coffee production, in line with changes in climate zoning, in order to avoid scarcity of coffee in the world market.
Collapse
|
31
|
Kortei NK, Annan T, Akonor PT, Richard SA, Annan HA, Kyei-Baffour V, Akuamoa F, Akpaloo PG, Esua-Amoafo P. The occurrence of aflatoxins and human health risk estimations in randomly obtained maize from some markets in Ghana. Sci Rep 2021; 11:4295. [PMID: 33619306 PMCID: PMC7900254 DOI: 10.1038/s41598-021-83751-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/01/2021] [Indexed: 01/18/2023] Open
Abstract
Maize and its products are most often prone to fungal contamination especially during cultivation and storage by toxigenic fungi. Aflatoxicosis still persist in Ghana despite the numerous education on several ways of its prevention at the farm as well as its adverse health implications which are food safety concerns. A random assessment and human risk analysis was conducted on 90 maize (72 white and 18 colored) samples from markets across all the regions of Ghana. Total aflatoxins (AFtotal) and the constitutive aflatoxins (AFB1, AFB2, AFG1, and AFG2) were analyzed by High-Performance Liquid Chromatography (HPLC). Out of a total of ninety (90) samples investigated, 72 (80%) tested positive for AFB1 and the contamination levels ranged from 0.78 ± 0.04 to 339.3 ± 8.6 µg kg−1. Similarly, AFG2 was detected in only 14 (15.5%) samples, and their values ranged between 1.09 ± 0.03 and 5.51 ± 0.26 µg kg−1 while AF total ranged between 0.78 ± 0.04 and 445.01 ± 8.9 µg kg−1 constituting approximately 72 (80%). Limits of AFB1 and total aflatoxins (AFtotal) for the Ghana Standards Authority (GSA) (5 and 10 µg kg−1) and the European Food Safety Authority (EFSA) (2 and 4 µg kg−1), were used as checks. A total of 33 (41.25%) samples were above the limits for both. Risk assessments recorded for Estimated Daily Intake (EDI), Hazard Quotient (H.Q), Hazard Index (H.I), Margin of Exposure (MOE), av. Potency, and population risks ranged 0.087–0.38 μg kg−1 bw day−1, 1.5–6.9, 0.0087–0.38, 3.64–12.09, 0–0.0396 ng Aflatoxins kg−1 bw day−1 and, 3.5 × 10–1–0.015 respectively for total aflatoxins. While ranges for aflatoxins B1 (AFB1) recorded were 0.068–0.3 μg Kg bw−1 day−1, 2.43–10.64, 0.0068–0.030, 4.73–20.51, 0–0.0396 ng Aflatoxins kg−1 bw day−1 and, 2.69 × 10–3–0.012 for Estimated Daily Intake (EDI), Hazard Quotient (H.Q), Hazard Index (H.I), Margin of Exposure (MOE), Av. potency, and population risks respectively. It was deduced that although there was some observed contamination of maize across the different ecological zones, the consumption of maize (white and colored) posed no adverse health effects on the population of Ghana since computed H.I was less than 1 (< 1).
Collapse
Affiliation(s)
- Nii Korley Kortei
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana.
| | - Theophilus Annan
- Food Microbiology Division, Council for Scientific and Industrial Research- Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Papa Toah Akonor
- Food Processing and Engineering Division, Council for Scientific and Industrial Research- Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Seidu A Richard
- Department of Medicine, Princefield University, P.O. Box MA 128, Ho, Ghana
| | - Helen Ama Annan
- Food Processing and Engineering Division, Council for Scientific and Industrial Research- Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Vincent Kyei-Baffour
- Food Chemistry and Nutrition Research Division, Council for Scientific and Industrial Research- Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Felicia Akuamoa
- Applied Radiation Biology Centre, Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, P. O. Box AE 1, Atomic, Accra, Ghana
| | - Princess Golda Akpaloo
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Paul Esua-Amoafo
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| |
Collapse
|
32
|
Mitema A, Feto NA, Rafudeen MS. Development and validation of TOF/Q-TOF MS/MS, HPLC method and in vitro bio-strategy for aflatoxin mitigation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:2149-2164. [PMID: 33151829 DOI: 10.1080/19440049.2020.1815861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Some secondary metabolites produced by fungi are carcinogenic, hepatotoxic, and/or cause birth defects in humans and animals. We developed and optimised bio-analytical tools for detection of metabolites, aflatoxins and evaluated the effectiveness of the methods in co-infected maize tissues. Isolate KSM012 (atoxigenic) demonstrated no peaks and no blue fluorescence on HPLC and TLC plates respectively confirming non-toxicity. AFB1 and AFB2 were produced by Isolate KSM015 in addition to AFG1 and AFG2, which is an indication of possible SBG morphotype. The limits of quantification and detection ranged from 0.02 to 35.81 µg/mL and 0.01-6.8 µg/mL, respectively. The best mass spectrum with lowest noise was obtained at 100% ACN and sterile water spiked with 0.1% formic acid at a flow rate of 0.3 mL/min. The positive ion mode with electrospray ionisation application exhibited better fragmentation for mycotoxins. In total 17 metabolites were detected by targeted and formula mass. KDVI maize line exhibited high fungal colonisation in comparison to GAF4 at equal co-infection ratio 50:50. AFB1 and AFG2 were remarkably higher in GAF4 in comparison to sensitive KDV1 (p ˂ 0.05). The detection limits, linearity and sensitivity showed the method developed was suitable for the determination of mycotoxin in comparisons to the guidelines of European Commission 657/EC 2002.
Collapse
Affiliation(s)
- Alfred Mitema
- OMICS Research Group, Department of Biotechnology, Vaal University of Technology , Vanderbijlpark, South Africa.,Plant Stress Laboratory, Department of Molecular and Cell Biology, University of Cape Town , Cape Town, South Africa.,School of Biological Sciences, University of Nairobi , Nairobi, Kenya
| | - Naser Aliye Feto
- OMICS Research Group, Department of Biotechnology, Vaal University of Technology , Vanderbijlpark, South Africa
| | - Mohamed Suhail Rafudeen
- Plant Stress Laboratory, Department of Molecular and Cell Biology, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
33
|
Agbetiameh D, Ortega-Beltran A, Awuah RT, Atehnkeng J, Elzein A, Cotty PJ, Bandyopadhyay R. Field efficacy of two atoxigenic biocontrol products for mitigation of aflatoxin contamination in maize and groundnut in Ghana. BIOLOGICAL CONTROL : THEORY AND APPLICATIONS IN PEST MANAGEMENT 2020; 150:104351. [PMID: 33144821 PMCID: PMC7457722 DOI: 10.1016/j.biocontrol.2020.104351] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Biological control is one of the recommended methods for aflatoxin mitigation. Biocontrol products must be developed, and their efficacy demonstrated before widespread use. Efficacy of two aflatoxin biocontrol products, Aflasafe GH01 and Aflasafe GH02, were evaluated in 800 maize and groundnut farmers' fields during 2015 and 2016 in the Ashanti, Brong Ahafo, Northern, Upper East, and Upper West regions of Ghana. Both products were developed after an extensive examination of fungi associated with maize and groundnut in Ghana. Each product contains as active ingredient fungi four Aspergillus flavus isolates belonging to atoxigenic African Aspergillus Vegetative Compatibility Groups (AAVs) widely distributed across Ghana. An untreated field was maintained for each treated field to determine product efficacy. Proportions of atoxigenic AAVs composing each product were assessed in soils before product application, and soils and grains at harvest. Significant (P < 0.05) displacement of toxigenic fungi occurred in both crops during both years, in all five regions. Biocontrol-treated crops consistently had significantly (P < 0.05) less aflatoxins (range = 76% to 100% less; average = 99% less) than untreated crops. Results indicate that both biocontrol products are highly efficient, cost-effective, environmentally safe tools for aflatoxin mitigation. Most crops from treated fields could have been sold in both local and international food and feed premium markets. Adoption and use of biocontrol products have the potential to improve the health of Ghanaians, and both income and trade opportunities of farmers, aggregators, distributors, and traders.
Collapse
Affiliation(s)
- Daniel Agbetiameh
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
- Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Richard T. Awuah
- Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
| | - Abuelgasim Elzein
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
| | - Peter J. Cotty
- United States Department of Agriculture – Agricultural Research Service, Tucson, AZ 85721, USA
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | |
Collapse
|
34
|
Acur A, Arias RS, Odongo S, Tuhaise S, Ssekandi J, Adriko J, Muhanguzi D, Buah S, Kiggundu A. Genetic diversity of aflatoxin-producing Aspergillus flavus isolated from selected groundnut growing agro-ecological zones of Uganda. BMC Microbiol 2020; 20:252. [PMID: 32795262 PMCID: PMC7427931 DOI: 10.1186/s12866-020-01924-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/26/2020] [Indexed: 12/30/2022] Open
Abstract
Background Groundnut pre- and post-harvest contamination is commonly caused by fungi from the Genus Aspergillus. Aspergillus flavus is the most important of these fungi. It belongs to section Flavi; a group consisting of aflatoxigenic (A. flavus, A. parasiticus and A. nomius) and non-aflatoxigenic (A. oryzae, A. sojae and A. tamarii) fungi. Aflatoxins are food-borne toxic secondary metabolites of Aspergillus species associated with severe hepatic carcinoma and children stuntedness. Despite the well-known public health significance of aflatoxicosis, there is a paucity of information about the prevalence, genetic diversity and population structure of A. flavus in different groundnut growing agro-ecological zones of Uganda. This cross-sectional study was therefore conducted to fill this knowledge gap. Results The overall pre- and post-harvest groundnut contamination rates with A. flavus were 30.0 and 39.2% respectively. Pre- and post-harvest groundnut contamination rates with A. flavus across AEZs were; 2.5 and 50.0%; (West Nile), 55.0 and 35.0% (Lake Kyoga Basin) and 32.5 and 32.5% (Lake Victoria Basin) respectively. There was no significant difference (χ2 = 2, p = 0.157) in overall pre- and post-harvest groundnut contamination rates with A. flavus and similarly no significant difference (χ2 = 6, p = 0.199) was observed in the pre- and post-harvest contamination of groundnut with A. flavus across the three AEZs. The LKB had the highest incidence of aflatoxin-producing Aspergillus isolates while WN had no single Aspergillus isolate with aflatoxin-producing potential. Aspergillus isolates from the pre-harvest groundnut samples had insignificantly higher incidence of aflatoxin production (χ2 = 2.667, p = 0.264) than those from the post-harvest groundnut samples. Overall, A. flavus isolates exhibited moderate level (92%, p = 0.02) of genetic diversity across the three AEZs and low level (8%, p = 0.05) of genetic diversity within the individual AEZs. There was a weak positive correlation (r = 0.1241, p = 0.045) between genetic distance and geographic distance among A. flavus populations in the LKB, suggesting that genetic differentiation in the LKB population might be associated to geographic distance. A very weak positive correlation existed between genetic variation and geographic location in the entire study area (r = 0.01, p = 0.471), LVB farming system (r = 0.0141, p = 0.412) and WN farming system (r = 0.02, p = 0.478). Hierarchical clustering using the unweighted pair group method with arithmetic means (UPGMA) revealed two main clusters of genetically similar A. flavus isolates. Conclusions These findings provide evidence that genetic differentiation in A. flavus populations is independent of geographic distance. This information can be valuable in the development of a suitable biocontrol management strategy of aflatoxin-producing A. flavus.
Collapse
Affiliation(s)
- Amos Acur
- National Agricultural Research Laboratories, P.O. Box 7065, Kampala, Uganda
| | - Renée S Arias
- National Peanut Research Laboratories, P.O. Box 509, 1011 Forrester Drive, S.E, Dawson, GA, 39842, USA
| | - Steven Odongo
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Samuel Tuhaise
- National Agricultural Research Laboratories, P.O. Box 7065, Kampala, Uganda
| | - Joseph Ssekandi
- National Agricultural Research Laboratories, P.O. Box 7065, Kampala, Uganda
| | - John Adriko
- National Agricultural Research Laboratories, P.O. Box 7065, Kampala, Uganda
| | - Dennis Muhanguzi
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Stephen Buah
- National Agricultural Research Laboratories, P.O. Box 7065, Kampala, Uganda.
| | - Andrew Kiggundu
- National Agricultural Research Laboratories, P.O. Box 7065, Kampala, Uganda
| |
Collapse
|
35
|
Ortega‐Beltran A, Callicott KA, Cotty PJ. Founder events influence structures of Aspergillus flavus populations. Environ Microbiol 2020; 22:3522-3534. [PMID: 32515100 PMCID: PMC7496522 DOI: 10.1111/1462-2920.15122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 04/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
In warm regions, agricultural fields are occupied by complex Aspergillus flavus communities composed of isolates in many vegetative compatibility groups (VCGs) with varying abilities to produce highly toxic, carcinogenic aflatoxins. Aflatoxin contamination is reduced with biocontrol products that enable atoxigenic isolates from atoxigenic VCGs to dominate the population. Shifts in VCG frequencies similar to those caused by the introduction of biocontrol isolates were detected in Sonora, Mexico, where biocontrol is not currently practiced. The shifts were attributed to founder events. Although VCGs reproduce clonally, significant diversity exists within VCGs. Simple sequence repeat (SSR) fingerprinting revealed that increased frequencies of VCG YV150 involved a single haplotype. This is consistent with a founder event. Additionally, great diversity was detected among 82 YV150 isolates collected over 20 years across Mexico and the United States. Thirty-six YV150 haplotypes were separated into two populations by Structure and SplitsTree analyses. Sixty-five percent of isolates had MAT1-1 and belonged to one population. The remaining had MAT1-2 and belonged to the second population. SSR alleles varied within populations, but recombination between populations was not detected despite co-occurrence at some locations. Results suggest that YV150 isolates with opposite mating-type have either strongly restrained or lost sexual reproduction among themselves.
Collapse
Affiliation(s)
- Alejandro Ortega‐Beltran
- School of Plant SciencesUniversity of ArizonaTucsonAZ85721USA
- International Institute of Tropical AgriculturePMB 5320 Oyo Road, IbadanNigeria
| | | | - Peter J. Cotty
- USDA‐ARSTucsonAZ85721USA
- School of Food Science and EngineeringOcean University of ChinaQingdaoShandong266003China
| |
Collapse
|
36
|
Ortega-Beltran A, Callicott KA, Cotty PJ. Founder events influence structures of Aspergillus flavus populations. Environ Microbiol 2020; 22:3522-3534. [PMID: 32515100 DOI: 10.1111/emi.15122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 04/29/2020] [Accepted: 06/04/2020] [Indexed: 05/25/2023]
Abstract
In warm regions, agricultural fields are occupied by complex Aspergillus flavus communities composed of isolates in many vegetative compatibility groups (VCGs) with varying abilities to produce highly toxic, carcinogenic aflatoxins. Aflatoxin contamination is reduced with biocontrol products that enable atoxigenic isolates from atoxigenic VCGs to dominate the population. Shifts in VCG frequencies similar to those caused by the introduction of biocontrol isolates were detected in Sonora, Mexico, where biocontrol is not currently practiced. The shifts were attributed to founder events. Although VCGs reproduce clonally, significant diversity exists within VCGs. Simple sequence repeat (SSR) fingerprinting revealed that increased frequencies of VCG YV150 involved a single haplotype. This is consistent with a founder event. Additionally, great diversity was detected among 82 YV150 isolates collected over 20 years across Mexico and the United States. Thirty-six YV150 haplotypes were separated into two populations by Structure and SplitsTree analyses. Sixty-five percent of isolates had MAT1-1 and belonged to one population. The remaining had MAT1-2 and belonged to the second population. SSR alleles varied within populations, but recombination between populations was not detected despite co-occurrence at some locations. Results suggest that YV150 isolates with opposite mating-type have either strongly restrained or lost sexual reproduction among themselves.
Collapse
Affiliation(s)
- Alejandro Ortega-Beltran
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- International Institute of Tropical Agriculture, PMB 5320 Oyo Road, Ibadan, Nigeria
| | | | - Peter J Cotty
- USDA-ARS, Tucson, AZ, 85721, USA
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| |
Collapse
|
37
|
Singh P, Callicott KA, Orbach MJ, Cotty PJ. Molecular Analysis of S-morphology Aflatoxin Producers From the United States Reveals Previously Unknown Diversity and Two New Taxa. Front Microbiol 2020; 11:1236. [PMID: 32625180 PMCID: PMC7315800 DOI: 10.3389/fmicb.2020.01236] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/14/2020] [Indexed: 01/12/2023] Open
Abstract
Aflatoxins are highly toxic carcinogens that detrimentally influence profitability of agriculture and the health of humans and domestic animals. Several phylogenetically distinct fungi within Aspergillus section Flavi have S-morphology (average sclerotial size < 400 μm), and consistently produce high concentrations of aflatoxins in crops. S-morphology fungi have been implicated as important etiologic agents of aflatoxin contamination in the United States (US), but little is known about the diversity of these fungi. The current study characterized S-morphology fungi (n = 494) collected between 2002 and 2017, from soil and maize samples, in US regions where aflatoxin contamination is a perennial problem. Phylogenetic analyses based on sequences of the calmodulin (1.9 kb) and nitrate reductase (2.1 kb) genes resolved S-morphology isolates from the US into four distinct clades: (1) Aspergillus flavus S-morphotype (89.7%); (2) Aspergillus agricola sp. nov. (2.4%); (3) Aspergillus texensis (2.2%); and (4) Aspergillus toxicus sp. nov. (5.7%). All four S-morphology species produced high concentrations of aflatoxins in maize at 25, 30, and 35°C, but only the A. flavus S-morphotype produced unacceptable aflatoxin concentrations at 40°C. Genetic typing of A. flavus S isolates using 17 simple sequence repeat markers revealed high genetic diversity, with 202 haplotypes from 443 isolates. Knowledge of the occurrence of distinct species and haplotypes of S-morphology fungi that are highly aflatoxigenic under a range of environmental conditions may provide insights into the etiology, epidemiology, and management of aflatoxin contamination in North America.
Collapse
Affiliation(s)
- Pummi Singh
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Kenneth A. Callicott
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ, United States
| | - Marc J. Orbach
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Peter J. Cotty
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
38
|
Savić Z, Dudaš T, Loc M, Grahovac M, Budakov D, Jajić I, Krstović S, Barošević T, Krska R, Sulyok M, Stojšin V, Petreš M, Stankov A, Vukotić J, Bagi F. Biological Control of Aflatoxin in Maize Grown in Serbia. Toxins (Basel) 2020; 12:toxins12030162. [PMID: 32150883 PMCID: PMC7150810 DOI: 10.3390/toxins12030162] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 03/03/2020] [Indexed: 11/18/2022] Open
Abstract
Aspergillus flavus is the main producer of aflatoxin B1, one of the most toxic contaminants of food and feed. With global warming, climate conditions have become favourable for aflatoxin contamination of agricultural products in several European countries, including Serbia. The infection of maize with A. flavus, and aflatoxin synthesis can be controlled and reduced by application of a biocontrol product based on non-toxigenic strains of A. flavus. Biological control relies on competition between atoxigenic and toxigenic strains. This is the most commonly used biological control mechanism of aflatoxin contamination in maize in countries where aflatoxins pose a significant threat. Mytoolbox Af01, a native atoxigenic A. flavus strain, was obtained from maize grown in Serbia and used to produce a biocontrol product that was applied in irrigated and non-irrigated Serbian fields during 2016 and 2017. The application of this biocontrol product reduced aflatoxin levels in maize kernels (51–83%). The biocontrol treatment had a highly significant effect of reducing total aflatoxin contamination by 73%. This study showed that aflatoxin contamination control in Serbian maize can be achieved through biological control methods using atoxigenic A. flavus strains.
Collapse
Affiliation(s)
- Zagorka Savić
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.S.); (M.L.); (M.G.); (D.B.); (I.J.); (S.K.); (T.B.); (V.S.); (M.P.); (A.S.); (J.V.); (F.B.)
| | - Tatjana Dudaš
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.S.); (M.L.); (M.G.); (D.B.); (I.J.); (S.K.); (T.B.); (V.S.); (M.P.); (A.S.); (J.V.); (F.B.)
- Correspondence:
| | - Marta Loc
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.S.); (M.L.); (M.G.); (D.B.); (I.J.); (S.K.); (T.B.); (V.S.); (M.P.); (A.S.); (J.V.); (F.B.)
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.S.); (M.L.); (M.G.); (D.B.); (I.J.); (S.K.); (T.B.); (V.S.); (M.P.); (A.S.); (J.V.); (F.B.)
| | - Dragana Budakov
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.S.); (M.L.); (M.G.); (D.B.); (I.J.); (S.K.); (T.B.); (V.S.); (M.P.); (A.S.); (J.V.); (F.B.)
| | - Igor Jajić
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.S.); (M.L.); (M.G.); (D.B.); (I.J.); (S.K.); (T.B.); (V.S.); (M.P.); (A.S.); (J.V.); (F.B.)
| | - Saša Krstović
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.S.); (M.L.); (M.G.); (D.B.); (I.J.); (S.K.); (T.B.); (V.S.); (M.P.); (A.S.); (J.V.); (F.B.)
| | - Tijana Barošević
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.S.); (M.L.); (M.G.); (D.B.); (I.J.); (S.K.); (T.B.); (V.S.); (M.P.); (A.S.); (J.V.); (F.B.)
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department IFA-Tulin, University of Natural Resources and Life Sciences Vienna (BOKU), A-3430 Tulln, Austria; (R.K.); (M.S.)
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast BT7 1NN, UK
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department IFA-Tulin, University of Natural Resources and Life Sciences Vienna (BOKU), A-3430 Tulln, Austria; (R.K.); (M.S.)
| | - Vera Stojšin
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.S.); (M.L.); (M.G.); (D.B.); (I.J.); (S.K.); (T.B.); (V.S.); (M.P.); (A.S.); (J.V.); (F.B.)
| | - Mladen Petreš
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.S.); (M.L.); (M.G.); (D.B.); (I.J.); (S.K.); (T.B.); (V.S.); (M.P.); (A.S.); (J.V.); (F.B.)
| | - Aleksandra Stankov
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.S.); (M.L.); (M.G.); (D.B.); (I.J.); (S.K.); (T.B.); (V.S.); (M.P.); (A.S.); (J.V.); (F.B.)
| | - Jelena Vukotić
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.S.); (M.L.); (M.G.); (D.B.); (I.J.); (S.K.); (T.B.); (V.S.); (M.P.); (A.S.); (J.V.); (F.B.)
| | - Ferenc Bagi
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.S.); (M.L.); (M.G.); (D.B.); (I.J.); (S.K.); (T.B.); (V.S.); (M.P.); (A.S.); (J.V.); (F.B.)
| |
Collapse
|
39
|
Soni P, Gangurde SS, Ortega-Beltran A, Kumar R, Parmar S, Sudini HK, Lei Y, Ni X, Huai D, Fountain JC, Njoroge S, Mahuku G, Radhakrishnan T, Zhuang W, Guo B, Liao B, Singam P, Pandey MK, Bandyopadhyay R, Varshney RK. Functional Biology and Molecular Mechanisms of Host-Pathogen Interactions for Aflatoxin Contamination in Groundnut ( Arachis hypogaea L.) and Maize ( Zea mays L.). Front Microbiol 2020; 11:227. [PMID: 32194520 PMCID: PMC7063101 DOI: 10.3389/fmicb.2020.00227] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
Aflatoxins are secondary metabolites produced by soilborne saprophytic fungus Aspergillus flavus and closely related species that infect several agricultural commodities including groundnut and maize. The consumption of contaminated commodities adversely affects the health of humans and livestock. Aflatoxin contamination also causes significant economic and financial losses to producers. Research efforts and significant progress have been made in the past three decades to understand the genetic behavior, molecular mechanisms, as well as the detailed biology of host-pathogen interactions. A range of omics approaches have facilitated better understanding of the resistance mechanisms and identified pathways involved during host-pathogen interactions. Most of such studies were however undertaken in groundnut and maize. Current efforts are geared toward harnessing knowledge on host-pathogen interactions and crop resistant factors that control aflatoxin contamination. This study provides a summary of the recent progress made in enhancing the understanding of the functional biology and molecular mechanisms associated with host-pathogen interactions during aflatoxin contamination in groundnut and maize.
Collapse
Affiliation(s)
- Pooja Soni
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sunil S. Gangurde
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Rakesh Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sejal Parmar
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Hari K. Sudini
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Yong Lei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinzhi Ni
- Crop Genetics and Breeding Research Unit, United States Department of Agriculture – Agriculture Research Service, Tifton, GA, United States
| | - Dongxin Huai
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jake C. Fountain
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Samuel Njoroge
- International Crops Research Institute for the Semi-Arid Tropics, Lilongwe, Malawi
| | - George Mahuku
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | | | - Weijian Zhuang
- Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, United States Department of Agriculture – Agricultural Research Service, Tifton, GA, United States
| | - Boshou Liao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| |
Collapse
|
40
|
Senghor LA, Ortega-Beltran A, Atehnkeng J, Callicott KA, Cotty PJ, Bandyopadhyay R. The Atoxigenic Biocontrol Product Aflasafe SN01 Is a Valuable Tool to Mitigate Aflatoxin Contamination of Both Maize and Groundnut Cultivated in Senegal. PLANT DISEASE 2020; 104:510-520. [PMID: 31790640 DOI: 10.1094/pdis-03-19-0575-re] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aflatoxin contamination of groundnut and maize infected by Aspergillus section Flavi fungi is common throughout Senegal. The use of biocontrol products containing atoxigenic Aspergillus flavus strains to reduce crop aflatoxin content has been successful in several regions, but no such products are available in Senegal. The biocontrol product Aflasafe SN01 was developed for use in Senegal. The four active ingredients of Aflasafe SN01 are atoxigenic A. flavus genotypes native to Senegal and distinct from active ingredients used in other biocontrol products. Efficacy tests on groundnut and maize in farmers' fields were carried out in Senegal during the course of 5 years. Active ingredients were monitored with vegetative compatibility analyses. Significant (P < 0.05) displacement of aflatoxin producers occurred in all years, districts, and crops. In addition, crops from Aflasafe SN01-treated fields contained significantly (P < 0.05) fewer aflatoxins both at harvest and after storage. Most crops from treated fields contained aflatoxin concentrations permissible in both local and international markets. Results suggest that Aflasafe SN01 is an effective tool for aflatoxin mitigation in groundnut and maize. Large-scale use of Aflasafe SN01 should provide health, trade, and economic benefits for Senegal.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- L A Senghor
- La Direction de Protection Végétaux, BP20054 Dakar, Senegal
| | - A Ortega-Beltran
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - J Atehnkeng
- Chitedze Research Station, International Institute of Tropical Agriculture, Lilongwe, Malawi
| | - K A Callicott
- U.S. Department of Agriculture-Agricultural Research Service, School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, U.S.A
| | - P J Cotty
- U.S. Department of Agriculture-Agricultural Research Service, School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, U.S.A
| | - R Bandyopadhyay
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| |
Collapse
|
41
|
Monda E, Masanga J, Alakonya A. Variation in Occurrence and Aflatoxigenicity of Aspergillus flavus from Two Climatically Varied Regions in Kenya. Toxins (Basel) 2020; 12:toxins12010034. [PMID: 31935922 PMCID: PMC7020432 DOI: 10.3390/toxins12010034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 02/01/2023] Open
Abstract
Aflatoxins are carcinogenic chemical metabolites produced by Aspergillus spp. of the section Flavi. In Kenya, Aspergillus flavus is the most prevalent and has been associated with several acute and chronic aflatoxin outbreaks in the past. In this study, we evaluated the occurrence of A. flavus in soils from two agro-ecological regions with contrasting climatic conditions, aflatoxin contamination histories and cropping systems. Aspergillus spp. were first isolated from soils before the identification and determination of their aflatoxigenicity. Further, we determined the occurrence of Pseudomonas and Bacillus spp. in soils from the two regions. These bacterial species have long been associated with biological control of several plant pathogens including Aspergillus spp. Our results show that A. flavus occurred widely and produced comparatively higher total aflatoxin levels in all (100%) study sites from the eastern to the western regions of Kenya. For the western region, A. flavus was detected in 4 locations (66.7%) that were previously under maize cultivation with the isolates showing low aflatoxigenicity. A. flavus was not isolated from soils under sugarcane cultivation. Distribution of the two bacterial species varied across the regions but we detected a weak relationship between occurrence of bacterial species and A. flavus. We discuss these findings in the context of the influence of climate, microbial profiles, cropping systems and applicability in the deployment of biological control remedies against aflatoxin contamination.
Collapse
Affiliation(s)
- Ethel Monda
- Department of Biochemistry, Biotechnology and Microbiology, Kenyatta University, Thika Road, Nairobi P.O. Box 43844-00100, Kenya; (E.M.); (J.M.)
| | - Joel Masanga
- Department of Biochemistry, Biotechnology and Microbiology, Kenyatta University, Thika Road, Nairobi P.O. Box 43844-00100, Kenya; (E.M.); (J.M.)
| | - Amos Alakonya
- Seed Health Unit, Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45 El Batan, Texcoco, Mexico C.P. 56237, Mexico
- Correspondence:
| |
Collapse
|
42
|
Shenge KC, Adhikari BN, Akande A, Callicott KA, Atehnkeng J, Ortega-Beltran A, Kumar PL, Bandyopadhyay R, Cotty PJ. Monitoring Aspergillus flavus Genotypes in a Multi-Genotype Aflatoxin Biocontrol Product With Quantitative Pyrosequencing. Front Microbiol 2019; 10:2529. [PMID: 31803149 PMCID: PMC6872644 DOI: 10.3389/fmicb.2019.02529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/21/2019] [Indexed: 11/13/2022] Open
Abstract
Aflatoxins pose significant food security and public health risks, decrease productivity and profitability of animal industries, and hamper trade. To minimize aflatoxin contamination in several crops, a biocontrol technology based on atoxigenic strains of Aspergillus flavus is commercially used in the United States and some African countries. Significant efforts are underway to popularize the use of biocontrol in Africa by various means including incentives. The purpose of this study was to develop quantitative pyrosequencing assays for rapid, simultaneous quantification of proportions of four A. flavus biocontrol genotypes within complex populations of A. flavus associated with maize crops in Nigeria to facilitate payment of farmer incentives for Aflasafe (a biocontrol product) use. Protocols were developed to confirm use of Aflasafe by small scale farmers in Nigeria. Nested PCR amplifications followed by sequence by synthesis pyrosequencing assays were required to quantify frequencies of the active ingredients and, in so doing, confirm successful use of biocontrol by participating farmers. The entire verification process could be completed in 3-4 days proving a savings over other monitoring methods in both time and costs and providing data in a time frame that could work with the commercial agriculture scheme. Quantitative pyrosequencing assays represent a reliable tool for rapid detection, quantification, and monitoring of multiple A. flavus genotypes within complex fungal communities, satisfying the requirements of the regulatory community and crop end-users that wish to determine which purchased crops were treated with the biocontrol product. Techniques developed in the current study can be modified for monitoring other crop-associated fungi.
Collapse
Affiliation(s)
- Kenneth C. Shenge
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ, United States
| | - Bishwo N. Adhikari
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ, United States
| | | | - Kenneth A. Callicott
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ, United States
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | - P. Lava Kumar
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | - Peter J. Cotty
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ, United States
| |
Collapse
|
43
|
Bandyopadhyay R, Atehnkeng J, Ortega-Beltran A, Akande A, Falade TDO, Cotty PJ. "Ground-Truthing" Efficacy of Biological Control for Aflatoxin Mitigation in Farmers' Fields in Nigeria: From Field Trials to Commercial Usage, a 10-Year Study. Front Microbiol 2019; 10:2528. [PMID: 31824438 PMCID: PMC6882503 DOI: 10.3389/fmicb.2019.02528] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/21/2019] [Indexed: 01/09/2023] Open
Abstract
In sub-Saharan Africa (SSA), diverse fungi belonging to Aspergillus section Flavi frequently contaminate staple crops with aflatoxins. Aflatoxins negatively impact health, income, trade, food security, and development sectors. Aspergillus flavus is the most common causal agent of contamination. However, certain A. flavus genotypes do not produce aflatoxins (i.e., are atoxigenic). An aflatoxin biocontrol technology employing atoxigenic genotypes to limit crop contamination was developed in the United States. The technology was adapted and improved for use in maize and groundnut in SSA under the trademark Aflasafe. Nigeria was the first African nation for which an aflatoxin biocontrol product was developed. The current study includes tests to assess biocontrol performance across Nigeria over the past decade. The presented data on efficacy spans years in which a relatively small number of maize and groundnut fields (8-51 per year) were treated through use on circa 36,000 ha in commercially-produced maize in 2018. During the testing phase (2009-2012), fields treated during one year were not treated in the other years while during commercial usage (2013-2019), many fields were treated in multiple years. This is the first report of a large-scale, long-term efficacy study of any biocontrol product developed to date for a field crop. Most (>95%) of 213,406 tons of maize grains harvested from treated fields contained <20 ppb total aflatoxins, and a significant proportion (>90%) contained <4 ppb total aflatoxins. Grains from treated plots had preponderantly >80% less aflatoxin content than untreated crops. The frequency of the biocontrol active ingredient atoxigenic genotypes in grains from treated fields was significantly higher than in grains from control fields. A higher proportion of grains from treated fields met various aflatoxin standards compared to grains from untreated fields. Results indicate that efficacy of the biocontrol product in limiting aflatoxin contamination is stable regardless of environment and cropping system. In summary, the biocontrol technology allows farmers across Nigeria to produce safer crops for consumption and increases potential for access to premium markets that require aflatoxin-compliant crops.
Collapse
Affiliation(s)
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | | | | | - Peter J. Cotty
- Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| |
Collapse
|
44
|
Sserumaga JP, Ortega-Beltran A, Wagacha JM, Mutegi CK, Bandyopadhyay R. Aflatoxin-producing fungi associated with pre-harvest maize contamination in Uganda. Int J Food Microbiol 2019; 313:108376. [PMID: 31731141 DOI: 10.1016/j.ijfoodmicro.2019.108376] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022]
Abstract
Maize is an important staple crop for the majority of the population in Uganda. However, in tropical and subtropical climates, maize is frequently contaminated with aflatoxins, a group of cancer-causing and immuno-suppressive mycotoxins produced by Aspergillus section Flavi fungi. In Uganda, there is limited knowledge about the causal agents of aflatoxin contamination. The current study determined both the aflatoxin levels in pre-harvest maize across Uganda and the structures of communities of aflatoxin-producing fungi associated with the maize. A total of 256 pre-harvest maize samples were collected from 23 major maize-growing districts in eight agro-ecological zones (AEZ). Maize aflatoxin content ranged from 0 to 3760 ng/g although only around 5% for Ugandan thresholds. For EU it is about 16% of the samples contained aflatoxin concentrations above tolerance thresholds. A total of 3105 Aspergillus section Flavi isolates were recovered and these were dominated by the A. flavus L morphotype (89.4%). Densities of aflatoxin-producing fungi were negatively correlated with elevation. Farming systems and climatic conditions of the AEZ are thought to have influenced communities' structure composition. Fungi from different AEZ varied significantly in aflatoxin-producing abilities and several atoxigenic genotypes were identified. The extremely high aflatoxin concentrations detected in some of the studied regions indicate that management strategies should be urgently designed for use at the pre-harvest stage. Atoxigenic genotypes detected across Uganda could serve as aflatoxin biocontrol agents to reduce crop contamination from fields conditions and throughout the maize value chain.
Collapse
Affiliation(s)
- Julius P Sserumaga
- National Agricultural Research Organisation, National Crops Resources Research Institute, Namulonge, P. O. Box 7084, Kampala, Uganda.
| | | | - John M Wagacha
- School of Biological Sciences, University of Nairobi, P. O. Box 30197, 00100 Nairobi, Kenya
| | - Charity K Mutegi
- International Institute of Tropical Agriculture, Nairobi, Kenya.
| | | |
Collapse
|
45
|
Hanano A, Almousally I, Shaban M. Exposure of Aspergillus flavus NRRL 3357 to the Environmental Toxin, 2,3,7,8-Tetrachlorinated Dibenzo- p-Dioxin, Results in a Hyper Aflatoxicogenic Phenotype: A Possible Role for Caleosin/Peroxygenase (AfPXG). Front Microbiol 2019; 10:2338. [PMID: 31681203 PMCID: PMC6803392 DOI: 10.3389/fmicb.2019.02338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
Aflatoxins (AFs) as potent food contaminants are highly detrimental to human and animal health. The production of such biological toxins is influenced by environmental factors including pollutants, such as dioxins. Here, we report the biological feedback of an active AF-producer strain of A. flavus upon in vitro exposure to the most toxic congener of dioxins, the 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD). The phenotype of TCDD-exposed A. flavus was typified by a severe limitation in vegetative growth, activation of conidia formation and a significant boost in AF production. Furthermore, the level of reactive oxygen species (ROS) in fungal protoplast was increased (3.1- to 3.8-fold) in response to TCDD exposure at 10 and 50 ng mL-1, respectively. In parallel, superoxide dismutase (SOD) and catalase (CAT) activities were, respectively, increased by a factor of 2 and 3. In contrast to controls, transcript, protein and enzymatic activity of caleosin/peroxygenase (AfPXG) was also significantly induced in TCDD-exposed fungi. Subsequently, fungal cells accumulated fivefold more lipid droplets (LDs) than controls. Moreover, the TCDD-exposed fungi exhibited twofold higher levels of AFB1. Interestingly, TCDD-induced hyperaflatoxicogenicity was drastically abolished in the AfPXG-silencing strain of A. flavus, suggesting a role for AfPXG in fungal response to TCDD. Finally, TCDD-exposed fungi showed an increased in vitro virulence in terms of sporulation and AF production. The data highlight the possible effects of dioxin on aflatoxicogenicity of A. flavus and suggest therefore that attention should be paid in particular to the potential consequences of climate change on global food safety.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | | | | |
Collapse
|
46
|
Agbetiameh D, Ortega-Beltran A, Awuah RT, Atehnkeng J, Islam MS, Callicott KA, Cotty PJ, Bandyopadhyay R. Potential of Atoxigenic Aspergillus flavus Vegetative Compatibility Groups Associated With Maize and Groundnut in Ghana as Biocontrol Agents for Aflatoxin Management. Front Microbiol 2019; 10:2069. [PMID: 31555251 PMCID: PMC6743268 DOI: 10.3389/fmicb.2019.02069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/22/2019] [Indexed: 11/24/2022] Open
Abstract
Increasing knowledge of the deleterious health and economic impacts of aflatoxin in crop commodities has stimulated global interest in aflatoxin mitigation. Current evidence of the incidence of Aspergillus flavus isolates belonging to vegetative compatibility groups (VCGs) lacking the ability to produce aflatoxins (i.e., atoxigenic) in Ghana may lead to the development of an aflatoxin biocontrol strategy to mitigate crop aflatoxin content. In this study, 12 genetically diverse atoxigenic African A. flavus VCGs (AAVs) were identified from fungal communities associated with maize and groundnut grown in Ghana. Representative isolates of the 12 AAVs were assessed for their ability to inhibit aflatoxin contamination by an aflatoxin-producing isolate in laboratory assays. Then, the 12 isolates were evaluated for their potential as biocontrol agents for aflatoxin mitigation when included in three experimental products (each containing four atoxigenic isolates). The three experimental products were evaluated in 50 maize and 50 groundnut farmers' fields across three agroecological zones (AEZs) in Ghana during the 2014 cropping season. In laboratory assays, the atoxigenic isolates reduced aflatoxin biosynthesis by 87-98% compared to grains inoculated with the aflatoxin-producing isolate alone. In field trials, the applied isolates moved to the crops and had higher (P < 0.05) frequencies than other A. flavus genotypes. In addition, although at lower frequencies, most atoxigenic genotypes were repeatedly found in untreated crops. Aflatoxin levels in treated crops were lower by 70-100% in groundnut and by 50-100% in maize (P < 0.05) than in untreated crops. Results from the current study indicate that combined use of appropriate, well-adapted isolates of atoxigenic AAVs as active ingredients of biocontrol products effectively displace aflatoxin producers and in so doing limit aflatoxin contamination. A member each of eight atoxigenic AAVs with superior competitive potential and wide adaptation across AEZs were selected for further field efficacy trials in Ghana. A major criterion for selection was the atoxigenic isolate's ability to colonize soils and grains after release in crop field soils. Use of isolates belonging to atoxigenic AAVs in biocontrol management strategies has the potential to improve food safety, productivity, and income opportunities for smallholder farmers in Ghana.
Collapse
Affiliation(s)
- Daniel Agbetiameh
- International Institute of Tropical Agriculture, Ibadan, Nigeria
- Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Richard T. Awuah
- Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Md-Sajedul Islam
- Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | - Kenneth A. Callicott
- Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | - Peter J. Cotty
- Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | | |
Collapse
|
47
|
Kachapulula PW, Bandyopadhyay R, Cotty PJ. Aflatoxin Contamination of Non-cultivated Fruits in Zambia. Front Microbiol 2019; 10:1840. [PMID: 31447824 PMCID: PMC6696894 DOI: 10.3389/fmicb.2019.01840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/25/2019] [Indexed: 11/26/2022] Open
Abstract
Wild fruits are an important food and income source for many households in Zambia. Non-cultivated plants may be as susceptible as crops to aflatoxin contamination. Concentrations of aflatoxins in commonly consumed wild fruits from markets and characteristics of associated aflatoxin-producers need to be determined to assess the aflatoxin risk posed by handling, processing, storage, and consumption. Samples of Schinziophyton rautanenii (n = 22), Vangueriopsis lanciflora (n = 7), Thespesia garckeana (n = 17), Parinari curatellifolia (n = 17), Ziziphus spp. (n = 10), Adansonia digitata (n = 9), and Tamarindus indica (n = 23) were assayed for aflatoxin using lateral-flow immunochromatography from 2016 to 2017. Aflatoxins were above Zambia’s regulatory limit (10 μg/kg) in S. rautanenii (average = 57 μg/kg), V. lanciflora (average = 12 μg/kg), and T. garckeana (average = 11 μg/kg). The L strain morphotype of Aspergillus flavus was the most frequent member of Aspergillus section Flavi in market samples, although Aspergillus parasiticus and fungi with S morphology were also found. All fruits except T. indica supported both growth (mean = 3.1 × 108 CFU/g) and aflatoxin production (mean = 35,375 μg/kg) by aflatoxigenic Aspergillus section Flavi. Innate resistance to aflatoxin producers was displayed by T. indica. For the other fruits, environment and infecting fungi appeared to have the greatest potential to influence aflatoxin concentrations in markets. This is the first report of aflatoxins and aflatoxin-producers on native fruits in Zambia and suggests mitigation is required.
Collapse
Affiliation(s)
- Paul W Kachapulula
- USDA-ARS Aflatoxin Laboratory, School of Plant Sciences, The University of Arizona, Tucson, AZ, United States.,Plant Pathology Laboratory, School of Agricultural Sciences, Department of Plant Science, University of Zambia, Lusaka, Zambia
| | | | - Peter J Cotty
- USDA-ARS Aflatoxin Laboratory, School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
48
|
Ezekiel CN, Ortega-Beltran A, Oyedeji EO, Atehnkeng J, Kössler P, Tairu F, Hoeschle-Zeledon I, Karlovsky P, Cotty PJ, Bandyopadhyay R. Aflatoxin in Chili Peppers in Nigeria: Extent of Contamination and Control Using Atoxigenic Aspergillus flavus Genotypes as Biocontrol Agents. Toxins (Basel) 2019; 11:toxins11070429. [PMID: 31336571 PMCID: PMC6669588 DOI: 10.3390/toxins11070429] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/17/2019] [Indexed: 11/26/2022] Open
Abstract
Across sub-Saharan Africa, chili peppers are fundamental ingredients of many traditional dishes. However, chili peppers may contain unsafe aflatoxin concentrations produced by Aspergillus section Flavi fungi. Aflatoxin levels were determined in chili peppers from three states in Nigeria. A total of 70 samples were collected from farmers’ stores and local markets. Over 25% of the samples contained unsafe aflatoxin concentrations. The chili peppers were associated with both aflatoxin producers and atoxigenic Aspergillus flavus genotypes. Efficacy of an atoxigenic biocontrol product, Aflasafe, registered in Nigeria for use on maize and groundnut, was tested for chili peppers grown in three states. Chili peppers treated with Aflasafe accumulated significantly less aflatoxins than nontreated chili peppers. The results suggest that Aflasafe is a valuable tool for the production of safe chili peppers. Use of Aflasafe in chili peppers could reduce human exposure to aflatoxins and increase chances to commercialize chili peppers in premium local and international markets. This is the first report of the efficacy of any atoxigenic biocontrol product for controlling aflatoxin in a spice crop.
Collapse
Affiliation(s)
- Chibundu N Ezekiel
- International Institute of Tropical Agriculture, Ibadan 200001, Nigeria
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Nigeria
| | | | - Eniola O Oyedeji
- International Institute of Tropical Agriculture, Ibadan 200001, Nigeria
- National Horticultural Research Institute (NIHORT), Ibadan 200272, Nigeria
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture, Ibadan 200001, Nigeria
| | - Philip Kössler
- Molecular Phytopathology and Mycotoxin Research Section, University of Gottingen, 37073 Gottingen, Germany
| | - Folasade Tairu
- National Horticultural Research Institute (NIHORT), Ibadan 200272, Nigeria
| | | | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research Section, University of Gottingen, 37073 Gottingen, Germany
| | - Peter J Cotty
- USDA-ARS, Tucson, AZ 85701, USA
- Present address of Peter Cotty: P.O. Box 65699, Tucson, AZ 85728, USA
| | | |
Collapse
|
49
|
Ortega-Beltran A, Moral J, Picot A, Puckett RD, Cotty PJ, Michailides TJ. Atoxigenic Aspergillus flavus Isolates Endemic to Almond, Fig, and Pistachio Orchards in California with Potential to Reduce Aflatoxin Contamination in these Crops. PLANT DISEASE 2019; 103:905-912. [PMID: 30807246 DOI: 10.1094/pdis-08-18-1333-re] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In California, aflatoxin contamination of almond, fig, and pistachio has become a serious problem in recent years due to long periods of drought and probably other climatic changes. The atoxigenic biocontrol product Aspergillus flavus AF36 has been registered for use to limit aflatoxin contamination of pistachio since 2012 and for use in almond and fig since 2017. New biocontrol technologies employ multiple atoxigenic genotypes because those provide greater benefits than using a single genotype. Almond, fig, and pistachio industries would benefit from a multi-strain biocontrol technology for use in these three crops. Several A. flavus vegetative compatibility groups (VCGs) associated with almond, fig, and pistachio composed exclusively of atoxigenic isolates, including the VCG to which AF36 belongs to, YV36, were previously characterized in California. Here, we report additional VCGs associated with either two or all three crops. Representative isolates of 12 atoxigenic VCGs significantly (P < 0.001) reduced (>80%) aflatoxin accumulation in almond and pistachio when challenged with highly toxigenic isolates of A. flavus and A. parasiticus under laboratory conditions. Isolates of the evaluated VCGs, including AF36, constitute valuable endemic, well-adapted, and efficient germplasm to design a multi-crop, multi-strain biocontrol strategy for use in tree crops in California. Availability of such a strategy would favor long-term atoxigenic A. flavus communities across the affected areas of California, and this would result in securing domestic and export markets for the nut crop and fig farmer industries and, most importantly, health benefits to consumers.
Collapse
Affiliation(s)
- Alejandro Ortega-Beltran
- 1 Department of Plant Pathology, University of California, Davis, and Kearney Agricultural Research and Extension Center, Parlier, CA 93648; and
| | - Juan Moral
- 1 Department of Plant Pathology, University of California, Davis, and Kearney Agricultural Research and Extension Center, Parlier, CA 93648; and
| | - Adeline Picot
- 1 Department of Plant Pathology, University of California, Davis, and Kearney Agricultural Research and Extension Center, Parlier, CA 93648; and
| | - Ryan D Puckett
- 1 Department of Plant Pathology, University of California, Davis, and Kearney Agricultural Research and Extension Center, Parlier, CA 93648; and
| | - Peter J Cotty
- 2 United States Department of Agriculture-Agricultural Research Service, School of Plant Sciences, The University of Arizona, Tucson, AZ 85721
| | - Themis J Michailides
- 1 Department of Plant Pathology, University of California, Davis, and Kearney Agricultural Research and Extension Center, Parlier, CA 93648; and
| |
Collapse
|
50
|
Pitt J. The pros and cons of using biocontrol by competitive exclusion as a means for reducing aflatoxin in maize in Africa. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin in maize remains a major problem in Africa. Biocontrol by competitive exclusion is one approach for reducing preharvest aflatoxin. This paper describes the methods used for preparing and disseminating biocontrol substrate in maize fields, followed by a discussion of the merits of, and problems associated with, the practical use of biocontrol for reducing aflatoxin in maize in Africa. The weight of evidence indicates that biocontrol is an effective process for reducing aflatoxin, but proof of claimed efficacy for smallholder farms in Africa is lacking. Indeed, an examination of sampling methodology in use in Africa indicates that proof of efficacy may be difficult or indeed impossible to obtain.
Collapse
Affiliation(s)
- J.I. Pitt
- CSIRO Food and Agriculture, North Ryde, P.O. Box 52, NSW 2113, Australia
| |
Collapse
|