1
|
Zhao R, Kaakati R, Lee AK, Liu X, Li F, Li CY. Novel roles of apoptotic caspases in tumor repopulation, epigenetic reprogramming, carcinogenesis, and beyond. Cancer Metastasis Rev 2018; 37:227-236. [PMID: 29858742 PMCID: PMC6204284 DOI: 10.1007/s10555-018-9736-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptotic caspases have long been studied for their roles in programmed cell death and tumor suppression. With recent discoveries, however, it is becoming apparent these cell death executioners are involved in additional biological pathways beyond killing cells. In some cases, apoptotic cells secrete growth signals to stimulate proliferation of neighboring cells. This pathway functions to regenerate tissues in multiple organisms, but it also poses problems in tumor resistance to chemo- and radiotherapy. Additionally, it was found that activation of caspases does not irreversibly lead to cell death, contrary to the established paradigm. Sub-lethal activation of caspases is evident in cell differentiation and epigenetic reprogramming. Furthermore, evidence indicates spontaneous, unprovoked activation of caspases in many cancer cells, which plays pivotal roles in maintaining their tumorigenicity and metastasis. These unexpected findings challenge current cancer therapy approaches aimed at activation of the apoptotic pathway. At the same time, the newly discovered functions of caspases suggest new treatment approaches for cancer and other pathological conditions in the future.
Collapse
Affiliation(s)
- Ruya Zhao
- Duke University School of Medicine, Durham, NC, USA
| | | | - Andrew K Lee
- Duke University School of Medicine, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3135, Med Ctr, Durham, NC, 27710, USA
| | - Xinjian Liu
- Department of Dermatology, Duke University Medical Center, Box 3135, Med Ctr, Durham, NC, 27710, USA
| | - Fang Li
- Department of Dermatology, Duke University Medical Center, Box 3135, Med Ctr, Durham, NC, 27710, USA
| | - Chuan-Yuan Li
- Duke University School of Medicine, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3135, Med Ctr, Durham, NC, 27710, USA.
- Department of Dermatology, Duke University Medical Center, Box 3135, Med Ctr, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Abstract
Three neurodegenerative diseases [Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD)] have many characteristics like pathological mechanisms and genes. In this sense some researchers postulate that these diseases share the same alterations and that one alteration in a specific protein triggers one of these diseases. Analyses of gene expression may shed more light on how to discover pathways, pathologic mechanisms associated with the disease, biomarkers and potential therapeutic targets. In this review, we analyze four microarrays related to three neurodegenerative diseases. We will systematically examine seven genes (CHN1, MDH1, PCP4, RTN1, SLC14A1, SNAP25 and VSNL1) that are altered in the three neurodegenerative diseases. A network was built and used to identify pathways, miRNA and drugs associated with ALS, AD and PD using Cytoscape software an interaction network based on the protein interactions of these genes. The most important affected pathway is PI3K-Akt signalling. Thirteen microRNAs (miRNA-19B1, miRNA-107, miRNA-124-1, miRNA-124-2, miRNA-9-2, miRNA-29A, miRNA-9-3, miRNA-328, miRNA-19B2, miRNA-29B2, miRNA-124-3, miRNA-15A and miRNA-9-1) and four drugs (Estradiol, Acetaminophen, Resveratrol and Progesterone) for new possible treatments were identified.
Collapse
Affiliation(s)
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
3
|
Sung HY, Choi EN, Lyu D, Mook-Jung I, Ahn JH. Amyloid beta-mediated epigenetic alteration of insulin-like growth factor binding protein 3 controls cell survival in Alzheimer's disease. PLoS One 2014; 9:e99047. [PMID: 24964199 PMCID: PMC4070895 DOI: 10.1371/journal.pone.0099047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 05/11/2014] [Indexed: 12/30/2022] Open
Abstract
Swedish double mutation (KM670/671NL) of amyloid precursor protein (APP) is reported to increase toxic amyloid β (Aβ) production via aberrant cleavage at the β-secretase site and thereby cause early-onset Alzheimer's disease (AD). However, the underlying molecular mechanisms leading to AD pathogenesis remains largely unknown. Previously, our transcriptome sequence analyses revealed global expressional modifications of over 600 genes in APP-Swedish mutant-expressing H4 (H4-sw) cells compared to wild type H4 cells. Insulin-like growth factor binding protein 3 (IGFBP3) is one gene that showed significantly decreased mRNA expression in H4-sw cells. In this study, we investigated the functional role of IGFBP3 in AD pathogenesis and elucidated the mechanisms regulating its expression. We observed decreased IGFBP3 expression in the H4-sw cell line as well as the hippocampus of AD model transgenic mice. Treatment with exogenous IGFBP3 protein inhibited Aβ1–42- induced cell death and caspase-3 activity, whereas siRNA-mediated suppression of IGFBP3 expression induced cell death and caspase-3 cleavage. In primary hippocampal neurons, administration of IGFBP3 protein blocked apoptotic cell death due to Aβ1–42 toxicity. These data implicate a protective role for IGFBP3 against Aβ1–42-mediated apoptosis. Next, we investigated the regulatory mechanisms of IGFBP3 expression in AD pathogenesis. We observed abnormal IGFBP3 hypermethylation within the promoter CpG island in H4-sw cells. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine restored IGFBP3 expression at both the mRNA and protein levels. Chronic exposure to Aβ1–42 induced IGFBP3 hypermethylation at CpGs, particularly at loci −164 and −173, and subsequently suppressed IGFBP3 expression. Therefore, we demonstrate that expression of anti-apoptotic IGFBP3 is regulated by epigenetic DNA methylation, suggesting a mechanism that contributes to AD pathogenesis.
Collapse
Affiliation(s)
- Hye Youn Sung
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun Nam Choi
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Dahyun Lyu
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Hyuck Ahn
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
4
|
Saraceno C, Musardo S, Marcello E, Pelucchi S, Di Luca M. Modeling Alzheimer's disease: from past to future. Front Pharmacol 2013; 4:77. [PMID: 23801962 PMCID: PMC3685797 DOI: 10.3389/fphar.2013.00077] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/30/2013] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is emerging as the most prevalent and socially disruptive illness of aging populations, as more people live long enough to become affected. Although AD is placing a considerable and increasing burden on society, it represents the largest unmet medical need in neurology, because current drugs improve symptoms, but do not have profound disease-modifying effects. Although AD pathogenesis is multifaceted and difficult to pinpoint, genetic and cell biological studies led to the amyloid hypothesis, which posits that amyloid β (Aβ) plays a pivotal role in AD pathogenesis. Amyloid precursor protein (APP), as well as β- and γ-secretases are the principal players involved in Aβ production, while α-secretase cleavage on APP prevents Aβ deposition. The association of early onset familial AD with mutations in the APP and γ-secretase components provided a potential tool of generating animal models of the disease. However, a model that recapitulates all the aspects of AD has not yet been produced. Here, we face the problem of modeling AD pathology describing several models, which have played a major role in defining critical disease-related mechanisms and in exploring novel potential therapeutic approaches. In particular, we will provide an extensive overview on the distinct features and pros and contras of different AD models, ranging from invertebrate to rodent models and finally dealing with computational models and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Claudia Saraceno
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano Milano, Italy ; Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano Milano, Italy
| | | | | | | | | |
Collapse
|
5
|
Schomburg ED, Steffens H, Zschüntzsch J, Dibaj P, Keller BU. Fatigability of spinal reflex transmission in a mouse model (SOD1(G93A) ) of amyotrophic lateral sclerosis. Muscle Nerve 2011; 43:230-6. [PMID: 21254088 DOI: 10.1002/mus.21835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons. To analyze the progressive motor deficits during the course of this disease, we investigated fatigability and ability of recovery of spinal motor neurons by testing monosynaptic reflex transmission with increasing stimulus frequencies in the lumbar spinal cord of the SOD1(G93A) mouse model for ALS in a comparison with wild-type (WT) mice. Monosynaptic reflexes in WT and SOD1(G93A) mice without behavioral deficits showed no difference with respect to their resistance to increasing stimulus frequencies. During the progression of motor deficits in SOD1(G93A) mice, the vulnerability of monosynaptic reflexes to higher frequencies increased, the required time for reflex recovery was extended, and recovery was often incomplete. Fatigability and demand for recovery of spinal motor neurons in SOD1(G93A) mice rose with increasing motor deficits. This supports the assumption that impairment of the energy supply may contribute to the pathogenesis of ALS.
Collapse
Affiliation(s)
- Eike D Schomburg
- Department of Physiology, Georg August University of Göttingen, Waldweg 33, Göttingen, Germany.
| | | | | | | | | |
Collapse
|
6
|
Salek RM, Xia J, Innes A, Sweatman BC, Adalbert R, Randle S, McGowan E, Emson PC, Griffin JL. A metabolomic study of the CRND8 transgenic mouse model of Alzheimer's disease. Neurochem Int 2010; 56:937-47. [PMID: 20398713 DOI: 10.1016/j.neuint.2010.04.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 04/04/2010] [Accepted: 04/06/2010] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease is the most common neurodegenerative disease of the central nervous system characterized by a progressive loss in memory and deterioration of cognitive functions. In this study the transgenic mouse TgCRND8, which encodes a mutant form of the amyloid precursor protein 695 with both the Swedish and Indiana mutations and develops extracellular amyloid beta-peptide deposits as early as 2-3 months, was investigated. Extract from eight brain regions (cortex, frontal cortex, cerebellum, hippocampus, olfactory bulb, pons, midbrain and striatum) were studied using (1)H NMR spectroscopy. Analysis of the NMR spectra discriminated control from APP695 tissues in hippocampus, cortex, frontal cortex, midbrain and cerebellum, with hippocampal and cortical region being most affected. The analysis of the corresponding loading plots for these brain regions indicated a decrease in N-acetyl-L-aspartate, glutamate, glutamine, taurine (exception hippocampus), gamma-amino butyric acid, choline and phosphocholine (combined resonances), creatine, phosphocreatine and succinate in hippocampus, cortex, frontal cortex (exception gamma-amino butyric acid) and midbrain of affected animals. An increase in lactate, aspartate, glycine (except in midbrain) and other amino acids including alanine (exception frontal cortex), leucine, iso-leucine, valine and water soluble free fatty acids (0.8-0.9 and 1.2-1.3 ppm) were observed in the TgCRND8 mice. Our findings demonstrate that the perturbations in metabolism are more widespread and include the cerebellum and midbrain. Furthermore, metabolic perturbations are associated with a wide range of metabolites which could improve the diagnosis and monitoring of the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Reza M Salek
- Department of Biochemistry, The Hopkins Building, Tennis Court Road, University of Cambridge, Cambridge CB21QW, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jellinger KA. Alzheimer 100 – highlights in the history of Alzheimer research. J Neural Transm (Vienna) 2006; 113:1603-23. [PMID: 17039299 DOI: 10.1007/s00702-006-0578-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 09/11/2006] [Indexed: 11/24/2022]
Abstract
Alzheimer disease, a progressive neurodegenerative disorder of hitherto unknown etiology leading progressively to severe incapacity and death, has become the pandemic of the 21(st) century. On World Alzheimer Day, September 21, 2006, the 100(th) anniversary of the first description of the clinical and histological findings in this disorder by A. Alzheimer, was celebrated. This retrospective review of the most important events and advances in Alzheimer research presents its early history in which only clinical and histologic signs of this peculiar disease were described. Electron microscopy, quantitative morphology and modern biochemistry emerging in the second half of the 20(th) century opened a new era in dementia research with description of the ultrastructure and biochemistry of senile plaques and neurofibrillary tangles, the major disease markers of AD. Advances in the development of clinical, neuropathological, and neuroimaging criteria, modern instruments and algorithms in the diagnosis of the disorder followed, enabling long-term studies and more exact diagnosis of AD and related disorders. Landmark studies were the development of operational criteria for the post mortem diagnosis of AD based on semiquantitative assessment and developmental patterns of its major markers. Basic research gave insight into the molecular genetics and pathophysiology of AD, and, based on the biochemical findings, new pharmacological treatment options were opened. Recently, biological and other surrogate, in particular functional neuroimaging, markers allow an early detection of presymptomatic stages of AD, their risk factors and progression which, in the future, might be prevented or at least slowed by new therapeutic approaches. Since the etiology of AD is hitherto unknown, causative therapies are still not available. The paper discusses future research needs and challenges for developing new diagnostic strategies for early and accurate detection of neurodegenerative processes leading to dementia, better epidemiologic and gender data as well as more insights into the pathogenic cascade of AD and other dementing disorders which will depend on international networks and close cooperation between clinicians, neuroscientists, caregivers, public health institutions, and individual sponsors.
Collapse
Affiliation(s)
- K A Jellinger
- Institute of Clinical Neurobiology, Vienna, Austria.
| |
Collapse
|
8
|
Aguzzi A, Raeber AJ. Transgenic models of neurodegeneration. Neurodegeneration: of (transgenic) mice and men. Brain Pathol 2006; 8:695-7. [PMID: 9804378 PMCID: PMC8098419 DOI: 10.1111/j.1750-3639.1998.tb00195.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- A Aguzzi
- Institute of Neuropathology, Department of Pathology, University Hospital, Zurich, Switzerland.
| | | |
Collapse
|
9
|
Zhao Z, Lange DJ, Voustianiouk A, MacGrogan D, Ho L, Suh J, Humala N, Thiyagarajan M, Wang J, Pasinetti GM. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci 2006; 7:29. [PMID: 16584562 PMCID: PMC1488864 DOI: 10.1186/1471-2202-7-29] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 04/03/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cause of neuronal death in amyotrophic lateral sclerosis (ALS) is uncertain but mitochondrial dysfunction may play an important role. Ketones promote mitochondrial energy production and membrane stabilization. RESULTS SOD1-G93A transgenic ALS mice were fed a ketogenic diet (KD) based on known formulations for humans. Motor performance, longevity, and motor neuron counts were measured in treated and disease controls. Because mitochondrial dysfunction plays a central role in neuronal cell death in ALS, we also studied the effect that the principal ketone body, D-beta-3 hydroxybutyrate (DBH), has on mitochondrial ATP generation and neuroprotection. Blood ketones were > 3.5 times higher in KD fed animals compared to controls. KD fed mice lost 50% of baseline motor performance 25 days later than disease controls. KD animals weighed 4.6 g more than disease control animals at study endpoint; the interaction between diet and change in weight was significant (p = 0.047). In spinal cord sections obtained at the study endpoint, there were more motor neurons in KD fed animals (p = 0.030). DBH prevented rotenone mediated inhibition of mitochondrial complex I but not malonate inhibition of complex II. Rotenone neurotoxicity in SMI-32 immunopositive motor neurons was also inhibited by DBH. CONCLUSION This is the first study showing that diet, specifically a KD, alters the progression of the clinical and biological manifestations of the G93A SOD1 transgenic mouse model of ALS. These effects may be due to the ability of ketone bodies to promote ATP synthesis and bypass inhibition of complex I in the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Zhong Zhao
- Neuroinflammation Research Laboratories, Department of Psychiatry, USA
| | - Dale J Lange
- Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1668, New York, New York 10029, USA
| | - Andrei Voustianiouk
- Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1668, New York, New York 10029, USA
| | - Donal MacGrogan
- Neuroinflammation Research Laboratories, Department of Psychiatry, USA
| | - Lap Ho
- Neuroinflammation Research Laboratories, Department of Psychiatry, USA
| | - Jason Suh
- Neuroinflammation Research Laboratories, Department of Psychiatry, USA
| | - Nelson Humala
- Neuroinflammation Research Laboratories, Department of Psychiatry, USA
| | | | - Jun Wang
- Neuroinflammation Research Laboratories, Department of Psychiatry, USA
| | - Giulio M Pasinetti
- Neuroinflammation Research Laboratories, Department of Psychiatry, USA
- Bronx Veterans Affairs Medical Center, 130 W Kingsbridge Road, Bronx, NY 10468, USA
| |
Collapse
|
10
|
Puig B, Gómez-Isla T, Ribé E, Cuadrado M, Torrejón-Escribano B, Dalfó E, Ferrer I. Expression of stress-activated kinases c-Jun N-terminal kinase (SAPK/JNK-P) and p38 kinase (p38-P), and tau
hyperphosphorylation in neurites surrounding βA plaques in APP Tg2576 mice. Neuropathol Appl Neurobiol 2004; 30:491-502. [PMID: 15488025 DOI: 10.1111/j.1365-2990.2004.00569.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hyperphosphorylated tau in neurites surrounding beta-amyloid (betaA) deposits, as revealed with phospho-specific anti-tau antibodies, are found in amyloid precursor protein (APP) Tg2576 mice. Because betaA is a source of oxidative stress and may be toxic for cultured cells, the present study examines the expression of phosphorylated (active) stress-activated kinase c-Jun N-terminal kinase (SAPK/JNK-P) and p38 kinase (p38-P), which have the capacity to phosphorylate tau at specific sites, and their specific substrates c-Jun and ATF-2, which are involved in cell death and survival in several paradigms, in Tg2576 mice. The study was planned to shed light about the involvement of these kinases in tau phosphorylation in cell processes surrounding amyloid plaques, as well as in the possible phosphorylation (activation) of c-Jun and activating transcription factor-2 (ATF-2) in relation to betaA deposition. Moderate increase in the expression of phosphorylated mitogen-activated protein kinase and extracelullar signal-regulated kinase (MAPK/ERK-P) occurs in a few amyloid plaques. However, strong expression of SAPK/JNK-P and p38-P is found in the majority of, if not all, amyloid plaques, as seen in serial consecutive sections stained for betaA and stress kinases. Moreover, confocal microscopy reveals colocalization of phospho-tau and SAPK/JNK-P, and phospho-tau and p38-P in many dystrophic neurites surrounding amyloid plaques. Increased expression levels of nonbound tau, SAPK/JNK-P and p38-P are corroborated by Western blots of total cortical homogenate supernatants in Tg2576 mice when compared with age-matched controls. No increase in phosphorylated c-JunSer63 (c-Jun-P) and ATF-2Thr71 (ATF-2-P) is found in association with betaA deposits. In addition, no expression of active (cleaved) caspase-3 (17 kDa) has been found in transgenic mice. Taken together, these observations provide a link between betaA-induced oxidative stress, activation of stress kinases SAPK/JNK and p38, and tau hyperphosphorylation in neurites surrounding amyloid plaques, but activation of these kinases is not associated with accumulation of c-Jun-P and ATF-2-P, nor with activation of active caspase-3 in the vicinity of betaA deposits.
Collapse
Affiliation(s)
- B Puig
- Institut de Neuropatologia, Servei Anatomia Patològica, Hospital de Bellvitge, Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhang J, Yarowsky P, Gordon MN, Di Carlo G, Munireddy S, van Zijl PCM, Mori S. Detection of amyloid plaques in mouse models of Alzheimer's disease by magnetic resonance imaging. Magn Reson Med 2004; 51:452-7. [PMID: 15004784 DOI: 10.1002/mrm.10730] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We performed three-dimensional, high-resolution magnetic resonance imaging (MRI) of fixed mouse brains to determine whether MRI can detect amyloid plaques in transgenic mouse models of Alzheimer's disease. Plaque-like structures in the cortex and hippocampus could be clearly identified in T2-weighted images with an image resolution of 46 microm x 72 microm x 72 microm. The locations of plaques were confirmed in coregistration studies comparing MR images with Congo red-stained histological results. This technique is quantitative, less labor-intensive compared to histology, and is free from artifacts related to sectioning process (deformation and missing tissues). It enabled us to study the distribution of plaques in the entire brain in 3D. The results of this study suggest that this method may be useful for assessing treatment efficacy in mouse models of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Jiangyang Zhang
- Department of Radiology, Division of NMR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Federoff HJ. CNS diseases amenable to gene therapy. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2004:117-58. [PMID: 12894455 DOI: 10.1007/978-3-662-05352-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- H J Federoff
- Center for Aging and Development, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
13
|
Lalonde R, Strazielle C. Neurobehavioral characteristics of mice with modified intermediate filament genes. Rev Neurosci 2003; 14:369-85. [PMID: 14640321 DOI: 10.1515/revneuro.2003.14.4.369] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intermediate proteins comprise cytoskeletal elements that preserve the shape and structure of neurons. These proteins have been proposed to be involved in the onset and progression of amyotrophic lateral sclerosis (ALS), mainly characterized by motoneuron atrophy and paresis. In support of this hypothesis are the findings that genetically modified mice for intermediate filaments successfully mimic certain neuropathological aspects of ALS, such as reduced axonal caliber and retarded conduction speed in peripheral nerves, although often without leading to paresis. Nevertheless, even in those models with no overt phenotype, the involvement of intermediate proteins in motor function is underlined by the deficits in tests of balance and equilibrium revealed in mice containing transgenes for neurofilament of heavy molecular weight (NFH), alpha-internexin, peripherin, and vimentin. In addition, spatial learning was impaired in transgenic mice expressing transgenes for NFH and NFM, similar to the memory deficits reported in patients with ALS.
Collapse
Affiliation(s)
- R Lalonde
- Université de Rouen, Faculté de Médecine et de Pharmacie, INSERM, Rouen, France.
| | | |
Collapse
|
14
|
Dubois M, Strazielle C, Eyer J, Lalonde R. Sensorimotor functions in transgenic mice expressing the neurofilament/heavy-LacZ fusion protein on two genetic backgrounds. Neuroscience 2002; 112:447-54. [PMID: 12044462 DOI: 10.1016/s0306-4522(02)00076-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NFH-LacZ transgenic mice are characterized by expression of a non-endogenous fusion protein between a truncated form of mouse NFH (neurofilament of heavy molecular weight) and the complete Escherichia coli beta-galactosidase protein. These transgenic mice were compared to their respective controls on two background strains (C3H and FVB) in several sensorimotor tests. NFH-LacZ mice were deficient in tests requiring balance and equilibrium in a manner generally independent of genetic background. In particular, NFH-LacZ mice fell more quickly than controls from two stationary beams and had fewer rears in an open-field. The transgenic mice were also impaired during the initial trials of sensorimotor learning on the rotorod. We conclude that despite the absence of overt signs of sensorimotor weakness in their home cage, the disruption of the NFH gene, causing neurofilament accumulations in the cell body and diminished axonal calibers of motoneurons, is sufficient to cause motor deficits that resemble the early stages of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- M Dubois
- Université de Rouen, Faculté des Sciences, UPRES PSY.CO-1780, Laboratoire de Neurobiologie de l'Apprentissage, Mont-Saint-Aignan, France
| | | | | | | |
Collapse
|
15
|
LaMonte BH, Wallace KE, Holloway BA, Shelly SS, Ascaño J, Tokito M, Van Winkle T, Howland DS, Holzbaur ELF. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 2002; 34:715-27. [PMID: 12062019 DOI: 10.1016/s0896-6273(02)00696-7] [Citation(s) in RCA: 393] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To test the hypothesis that inhibition of axonal transport is sufficient to cause motor neuron degeneration such as that observed in amyotrophic lateral sclerosis (ALS), we engineered a targeted disruption of the dynein-dynactin complex in postnatal motor neurons of transgenic mice. Dynamitin overexpression was found to disassemble dynactin, a required activator of cytoplasmic dynein, resulting in an inhibition of retrograde axonal transport. Mice overexpressing dynamitin demonstrate a late-onset progressive motor neuron degenerative disease characterized by decreased strength and endurance, motor neuron degeneration and loss, and denervation of muscle. Previous transgenic mouse models of ALS have shown abnormalities in microtubule-based axonal transport. In this report, we describe a mouse model that confirms the critical role of disrupted axonal transport in the pathogenesis of motor neuron degenerative disease.
Collapse
Affiliation(s)
- Bernadette H LaMonte
- Department of Physiology, School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Longhi L, Saatman KE, Raghupathi R, Laurer HL, Lenzlinger PM, Riess P, Neugebauer E, Trojanowski JQ, Lee VM, Grady MS, Graham DI, McIntosh TK. A review and rationale for the use of genetically engineered animals in the study of traumatic brain injury. J Cereb Blood Flow Metab 2001; 21:1241-58. [PMID: 11702040 DOI: 10.1097/00004647-200111000-00001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The mechanisms underlying secondary cell death after traumatic brain injury (TBI) are poorly understood. Animal models of TBI recapitulate many clinical and pathologic aspects of human head injury, and the development of genetically engineered animals has offered the opportunity to investigate the specific molecular and cellular mechanisms associated with cell dysfunction and death after TBI, allowing for the evaluation of specific cause-effect relations and mechanistic hypotheses. This article represents a compendium of the current literature using genetically engineered mice in studies designed to better understand the posttraumatic inflammatory response, the mechanisms underlying DNA damage, repair, and cell death, and the link between TBI and neurodegenerative diseases.
Collapse
Affiliation(s)
- L Longhi
- Department of Neurosurgery, University of Pennsylvania and Veterans Administration Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Neuronal death underlies the symptoms of many human neurological disorders, including Alzheimer's, Parkinson's and Huntington's diseases, stroke, and amyotrophic lateral sclerosis. The identification of specific genetic and environmental factors responsible for these diseases has bolstered evidence for a shared pathway of neuronal death--apoptosis--involving oxidative stress, perturbed calcium homeostasis, mitochondrial dysfunction and activation of cysteine proteases called caspases. These death cascades are counteracted by survival signals, which suppress oxyradicals and stabilize calcium homeostasis and mitochondrial function. With the identification of mechanisms that either promote or prevent neuronal apoptosis come new approaches for preventing and treating neurodegenerative disorders.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Gerontology Research Center, 5,600 Nathan Shock Drive, Baltimore, Maryland 21224, USA.
| |
Collapse
|