1
|
Bergh S, Cheong RY, Petersén Å, Gabery S. Oxytocin in Huntington’s disease and the spectrum of amyotrophic lateral sclerosis-frontotemporal dementia. Front Mol Neurosci 2022; 15:984317. [PMID: 36187357 PMCID: PMC9515306 DOI: 10.3389/fnmol.2022.984317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disorders (NDDs) such as Huntington’s disease (HD) and the spectrum of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by progressive loss of selectively vulnerable populations of neurons. Although often associated with motor impairments, these NDDs share several commonalities in early symptoms and signs that extend beyond motor dysfunction. These include impairments in social cognition and psychiatric symptoms. Oxytocin (OXT) is a neuropeptide known to play a pivotal role in the regulation of social cognition as well as in emotional behaviors such as anxiety and depression. Here, we present an overview of key results implicating OXT in the pathology of HD, ALS and FTD and seek to identify commonalities across these NDDs. OXT is produced in the hypothalamus, a region in the brain that during the past decade has been shown to be affected in HD, ALS, and FTD. Several studies using human post-mortem neuropathological analyses, measurements of cerebrospinal fluid, experimental treatments with OXT as well as genetic animal models have collectively implicated an important role of central OXT in the development of altered social cognition and psychiatric features across these diseases. Understanding central OXT signaling may unveil the underlying mechanisms of early signs of the social cognitive impairment and the psychiatric features in NDDs. It is therefore possible that OXT might have potential therapeutic value for early disease intervention and better symptomatic treatment in NDDs.
Collapse
|
2
|
Stewart CA, Finger EC. The supraoptic and paraventricular nuclei in healthy aging and neurodegeneration. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:105-123. [PMID: 34225924 DOI: 10.1016/b978-0-12-820107-7.00007-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus undergo structural and functional changes over the course of healthy aging. These nuclei and their connections are also heterogeneously affected by several different neurodegenerative diseases. This chapter reviews the involvement of the SON and PVN, the hypothalamic-pituitary axes, and the peptide hormones produced in both nuclei in healthy aging and in neurodegeneration, with a focus on Alzheimer's disease (AD), frontotemporal dementia (FTD), amyotrophic lateral sclerosis, progressive supranuclear palsy, Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy, and Huntington's disease. Although age-related changes occur in several regions of the hypothalamus, the SON and PVN are relatively preserved during aging and in many neurodegenerative disorders. With aging, these nuclei do undergo some sexually dimorphic changes including changes in size and levels of vasopressin and corticotropin-releasing hormone, likely due to age-related changes in sex hormones. In contrast, oxytocinergic cells and circulating levels of thyrotropin-releasing hormone remain stable. A relative resistance to many forms of neurodegenerative pathology is also observed, in comparison to other hypothalamic and brain regions. Mirroring the pattern observed in aging, pathologic hallmarks of AD, and some subtypes of FTD are observed in the PVN, though to a milder degree than are observed in other brain regions, while the SON is relatively spared. In contrast, the SON appears more vulnerable to alpha-synuclein pathology of DLB and PD. The consequences of these alterations may help to inform several of the physiologic changes observed in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Chloe A Stewart
- Department of Clinical Neurological Sciences, Lawson Health Research Institute, London, ON, Canada; Graduate Program in Neuroscience, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Elizabeth C Finger
- Department of Clinical Neurological Sciences, Lawson Health Research Institute, London, ON, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
3
|
van Wamelen DJ, Aziz NA. Hypothalamic pathology in Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:245-255. [PMID: 34266596 DOI: 10.1016/b978-0-12-819973-2.00017-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Huntington's disease (HD), an autosomal dominant hereditary disorder associated with the accumulation of mutant huntingtin, is classically associated with cognitive decline and motor symptoms, notably chorea. However, growing evidence suggests that nonmotor symptoms are equally prevalent and debilitating. Some of these symptoms may be linked to hypothalamic pathology, demonstrated by findings in HD animal models and HD patients showing specific changes in hypothalamic neuropeptidergic populations and their associated functions. At least some of these alterations are likely due to local mutant huntingtin expression and toxicity, while others are likely caused by disturbed hypothalamic circuitry. Common problems include circadian rhythm disorders, including desynchronization of daily hormone excretion patterns, which could be targeted by novel therapeutic interventions, such as timed circadian interventions with light therapy or melatonin. However, translation of these findings from bench-to-bedside is hampered by differences in murine HD models and HD patients, including mutant huntingtin trinucleotide repeat length, which is highly heterogeneous across the various models. In this chapter, we summarize the current knowledge regarding hypothalamic alterations in HD patients and animal models, and the potential for these findings to be translated into clinical practice and management.
Collapse
Affiliation(s)
- Daniel J van Wamelen
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom; Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Møller M. Vasopressin and oxytocin beyond the pituitary in the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:7-24. [PMID: 34225951 DOI: 10.1016/b978-0-12-820107-7.00002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vasopressin and oxytocin are primarily synthesized in the magnocellular supraoptic and paraventricular nuclei of the hypothalamus and transported to the posterior pituitary. In the human, an extensive accessory magnocellular neuroendocrine system is present with contact to the posterior pituitary and blood vessels in the hypothalamus itself. Vasopressin and oxytocin are involved in social and behavioral functions. However, only few neocortical areas are targeted by vasopressinergic and oxytocinergic nerve fibers, which mostly project to limbic areas in the forebrain, where also their receptors are located. Vasopressinergic/oxytocinergic perikarya in the forebrain project to the brain stem and spinal cord targeting nuclei and areas involved in autonomic functions. Parvocellular neurons containing vasopressin are located in the suprachiasmatic nucleus and synchronize the activity of the pacemaker in this nucleus. From the suprachiasmatic nucleus fibers project to the parvocellular part of the paraventricular nucleus, where preautonomic neurons project to the intermediolateral nucleus in the thoracic spinal cord, from where the superior cervical ganglion is reached whose noradrenergic fibers terminate in the pineal gland to stimulate melatonin secretion at night. The pineal gland is also innervated by vasopressin- and oxytocin-containing fibers reaching the gland via the "central innervation" in the pineal stalk, which might be involve in an annual regulation of melatonin secretion.
Collapse
Affiliation(s)
- Morten Møller
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Cheong RY, Gabery S, Petersén Å. The Role of Hypothalamic Pathology for Non-Motor Features of Huntington's Disease. J Huntingtons Dis 2020; 8:375-391. [PMID: 31594240 PMCID: PMC6839491 DOI: 10.3233/jhd-190372] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Huntington’s disease (HD) is a fatal genetic neurodegenerative disorder. It has mainly been considered a movement disorder with cognitive symptoms and these features have been associated with pathology of the striatum and cerebral cortex. Importantly, individuals with the mutant huntingtin gene suffer from a spectrum of non-motor features often decades before the motor disorder manifests. These symptoms and signs include a range of psychiatric symptoms, sleep problems and metabolic changes with weight loss particularly in later stages. A higher body mass index at diagnosis is associated with slower disease progression. The common psychiatric symptom of apathy progresses with the disease. The fact that non-motor features are present early in the disease and that they show an association to disease progression suggest that unravelling the underlying neurobiological mechanisms may uncover novel targets for early disease intervention and better symptomatic treatment. The hypothalamus and the limbic system are important brain regions that regulate emotion, social cognition, sleep and metabolism. A number of studies using neuroimaging, postmortem human tissue and genetic manipulation in animal models of the disease has collectively shown that the hypothalamus and the limbic system are affected in HD. These findings include the loss of neuropeptide-expressing neurons such as orexin (hypocretin), oxytocin, vasopressin, somatostatin and VIP, and increased levels of SIRT1 in distinct nuclei of the hypothalamus. This review provides a summary of the results obtained so far and highlights the potential importance of these changes for the understanding of non-motor features in HD.
Collapse
Affiliation(s)
- Rachel Y Cheong
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sanaz Gabery
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Zeun P, Scahill RI, Tabrizi SJ, Wild EJ. Fluid and imaging biomarkers for Huntington's disease. Mol Cell Neurosci 2019; 97:67-80. [PMID: 30807825 DOI: 10.1016/j.mcn.2019.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease is a chronic progressive neurodegenerative condition for which there is no disease-modifying treatment. The known genetic cause of Huntington's disease makes it possible to identify individuals destined to develop the disease and instigate treatments before the onset of symptoms. Multiple trials are already underway that target the cause of HD, yet clinical measures are often insensitive to change over typical clinical trial duration. Robust biomarkers of drug target engagement, disease severity and progression are required to evaluate the efficacy of treatments and concerted efforts are underway to achieve this. Biofluid biomarkers have potential advantages of direct quantification of biological processes at the molecular level, whilst imaging biomarkers can quantify related changes at a structural level in the brain. The most robust biofluid and imaging biomarkers can offer complementary information, providing a more comprehensive evaluation of disease stage and progression to inform clinical trial design and endpoints.
Collapse
Affiliation(s)
- Paul Zeun
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Rachael I Scahill
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Sarah J Tabrizi
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Edward J Wild
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| |
Collapse
|
7
|
Baschieri F, Cortelli P. Circadian rhythms of cardiovascular autonomic function: Physiology and clinical implications in neurodegenerative diseases. Auton Neurosci 2019; 217:91-101. [DOI: 10.1016/j.autneu.2019.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
|
8
|
|
9
|
Kalliolia E, Silajdžić E, Nambron R, Costelloe SJ, Martin NG, Hill NR, Frost C, Watt HC, Hindmarsh P, Björkqvist M, Warner TT. A 24-Hour Study of the Hypothalamo-Pituitary Axes in Huntington's Disease. PLoS One 2015; 10:e0138848. [PMID: 26431314 PMCID: PMC4592185 DOI: 10.1371/journal.pone.0138848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/06/2015] [Indexed: 11/18/2022] Open
Abstract
Background Huntington’s disease is an inherited neurodegenerative disorder characterised by motor, cognitive and psychiatric disturbances. Patients exhibit other symptoms including sleep and mood disturbances, muscle atrophy and weight loss which may be linked to hypothalamic pathology and dysfunction of hypothalamo-pituitary axes. Methods We studied neuroendocrine profiles of corticotropic, somatotropic and gonadotropic hypothalamo-pituitary axes hormones over a 24-hour period in controlled environment in 15 healthy controls, 14 premanifest and 13 stage II/III Huntington’s disease subjects. We also quantified fasting levels of vasopressin, oestradiol, testosterone, dehydroepiandrosterone sulphate, thyroid stimulating hormone, free triiodothyronine, free total thyroxine, prolactin, adrenaline and noradrenaline. Somatotropic axis hormones, growth hormone releasing hormone, insulin-like growth factor-1 and insulin-like factor binding protein-3 were quantified at 06:00 (fasting), 15:00 and 23:00. A battery of clinical tests, including neurological rating and function scales were performed. Results 24-hour concentrations of adrenocorticotropic hormone, cortisol, luteinizing hormone and follicle-stimulating hormone did not differ significantly between the Huntington’s disease group and controls. Daytime growth hormone secretion was similar in control and Huntington’s disease subjects. Stage II/III Huntington’s disease subjects had lower concentration of post-sleep growth hormone pulse and higher insulin-like growth factor-1:growth hormone ratio which did not reach significance. In Huntington’s disease subjects, baseline levels of hypothalamo-pituitary axis hormones measured did not significantly differ from those of healthy controls. Conclusions The relatively small subject group means that the study may not detect subtle perturbations in hormone concentrations. A targeted study of the somatotropic axis in larger cohorts may be warranted. However, the lack of significant results despite many variables being tested does imply that the majority of them do not differ substantially between HD and controls.
Collapse
Affiliation(s)
- Eirini Kalliolia
- Department of Clinical Neurosciences, UCL Institute of Neurology, London, United Kingdom
| | - Edina Silajdžić
- Brain Disease Biomarker Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| | - Rajasree Nambron
- Department of Clinical Neurosciences, UCL Institute of Neurology, London, United Kingdom
| | - Seán J Costelloe
- Biochemistry Department, Royal Free Hospital, London, United Kingdom
| | - Nicholas G Martin
- Biochemistry Department, Royal Free Hospital, London, United Kingdom
| | - Nathan R Hill
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Chris Frost
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hilary C Watt
- Department of Public Health and Primary Care, Imperial College, London, United Kingdom
| | - Peter Hindmarsh
- Developmental Endocrinology Research Group, UCL Institute of Child Health, London, United Kingdom
| | - Maria Björkqvist
- Brain Disease Biomarker Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| | - Thomas T Warner
- Department of Clinical Neurosciences, UCL Institute of Neurology, London, United Kingdom; Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
10
|
Gabery S, Georgiou-Karistianis N, Lundh SH, Cheong RY, Churchyard A, Chua P, Stout JC, Egan GF, Kirik D, Petersén Å. Volumetric analysis of the hypothalamus in Huntington Disease using 3T MRI: the IMAGE-HD Study. PLoS One 2015; 10:e0117593. [PMID: 25659157 PMCID: PMC4319930 DOI: 10.1371/journal.pone.0117593] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/29/2014] [Indexed: 12/25/2022] Open
Abstract
Huntington disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Non-motor symptoms and signs such as psychiatric disturbances, sleep problems and metabolic dysfunction are part of the disease manifestation. These aspects may relate to changes in the hypothalamus, an area of the brain involved in the regulation of emotion, sleep and metabolism. Neuropathological and imaging studies using both voxel-based morphometry (VBM) of magnetic resonance imaging (MRI) as well as positron emission tomography (PET) have demonstrated pathological changes in the hypothalamic region during early stages in symptomatic HD. In this investigation, we aimed to establish a robust method for measurements of the hypothalamic volume in MRI in order to determine whether the hypothalamic dysfunction in HD is associated with the volume of this region. Using T1-weighted imaging, we describe a reproducible delineation procedure to estimate the hypothalamic volume which was based on the same landmarks used in histologically processed postmortem hypothalamic tissue. Participants included 36 prodromal HD (pre-HD), 33 symptomatic HD (symp-HD) and 33 control participants who underwent MRI scanning at baseline and 18 months follow-up as part of the IMAGE-HD study. We found no evidence of cross-sectional or longitudinal changes between groups in hypothalamic volume. Our results suggest that hypothalamic pathology in HD is not associated with volume changes.
Collapse
Affiliation(s)
- Sanaz Gabery
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Sofia Hult Lundh
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rachel Y. Cheong
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Andrew Churchyard
- School of Psychological Sciences, Monash University, Clayton, Victoria, 3180, Australia
- Huntington’s Disease Unit, Bethlehem Hospital, Kooyong Rd, Caulfield, Victoria, 3162, Australia
| | - Phyllis Chua
- Huntington’s Disease Unit, Bethlehem Hospital, Kooyong Rd, Caulfield, Victoria, 3162, Australia
- Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
| | - Julie C. Stout
- School of Psychological Sciences, Monash University, Clayton, Victoria, 3180, Australia
| | - Gary F. Egan
- School of Psychological Sciences, Monash University, Clayton, Victoria, 3180, Australia
- Monash Biomedical Imaging (MBI), Monash University, Clayton, Victoria, 3180, Australia
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative (VLSCI), Melbourne, Victoria, Australia
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund University Bioimaging Center, Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Du X, Pang TY. Is Dysregulation of the HPA-Axis a Core Pathophysiology Mediating Co-Morbid Depression in Neurodegenerative Diseases? Front Psychiatry 2015; 6:32. [PMID: 25806005 PMCID: PMC4353372 DOI: 10.3389/fpsyt.2015.00032] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/16/2015] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence of prodromal manifestation of neuropsychiatric symptoms in a variety of neurodegenerative diseases such as Parkinson's disease (PD) and Huntington's disease (HD). These affective symptoms may be observed many years before the core diagnostic symptoms of the neurological condition. It is becoming more apparent that depression is a significant modifying factor of the trajectory of disease progression and even treatment outcomes. It is therefore crucial that we understand the potential pathophysiologies related to the primary condition, which could contribute to the development of depression. The hypothalamic-pituitary-adrenal (HPA)-axis is a key neuroendocrine signaling system involved in physiological homeostasis and stress response. Disturbances of this system lead to severe hormonal imbalances, and the majority of such patients also present with behavioral deficits and/or mood disorders. Dysregulation of the HPA-axis is also strongly implicated in the pathology of major depressive disorder. Consistent with this, antidepressant drugs, such as the selective serotonin reuptake inhibitors have been shown to alter HPA-axis activity. In this review, we will summarize the current state of knowledge regarding HPA-axis pathology in Alzheimer's, PD and HD, differentiating between prodromal and later stages of disease progression when evidence is available. Both clinical and preclinical evidence will be examined, but we highlight animal model studies as being particularly useful for uncovering novel mechanisms of pathology related to co-morbid mood disorders. Finally, we purpose utilizing the preclinical evidence to better inform prospective, intervention studies.
Collapse
Affiliation(s)
- Xin Du
- Mental Health Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC , Australia
| | - Terence Y Pang
- Behavioural Neurosciences Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
12
|
van Wamelen DJ, Aziz NA, Roos RAC, Swaab DF. Hypothalamic alterations in Huntington's disease patients: comparison with genetic rodent models. J Neuroendocrinol 2014; 26:761-75. [PMID: 25074766 DOI: 10.1111/jne.12190] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/26/2014] [Accepted: 07/26/2014] [Indexed: 11/27/2022]
Abstract
Unintended weight loss, sleep and circadian disturbances and autonomic dysfunction are prevalent features of Huntington's disease (HD), an autosomal dominantly inherited neurodegenerative disorder caused by an expanded CAG repeat sequence in the HTT gene. These features form a substantial contribution to disease burden in HD patients and appear to be accompanied by a number of neuroendocrine and metabolic changes, pointing towards hypothalamic pathology as a likely underlying mechanism. Neuronal inclusion bodies of mutant huntingtin, which are hallmarks of the disease, occur throughout the hypothalamus, and indicate local mutant huntingtin expression that could interfere with hypothalamic neuropeptide production. Also, several genetic rodent models of HD show features that could be related to hypothalamic pathology, such as weight loss and circadian rhythm disturbances. In these rodents, several hypothalamic neuropeptide populations are affected. In the present review, we summarise the changes in genetic rodent models of HD for individual hypothalamic nuclei, compare these observations to the hypothalamic changes that occur in HD patients, and make an inventory of the work that still needs to be done. Surprisingly, there is only limited overlap in the hypothalamic changes reported in HD patients and genetic rodent models. At present, the only similarity between the hypothalamic alterations in HD patients and genetic rodent models is a decrease in the number of orexin-expressing neurones in the lateral hypothalamus. Possible reasons for these discrepancies, as well as potential consequences for the development of novel therapeutic strategies, are discussed.
Collapse
Affiliation(s)
- D J van Wamelen
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam ZO, The Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
13
|
Decreased Hypothalamic Prohormone Convertase Expression in Huntington Disease Patients. J Neuropathol Exp Neurol 2013; 72:1126-34. [DOI: 10.1097/nen.0000000000000010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
14
|
Aziz NA, Roos RAC. Characteristics, pathophysiology and clinical management of weight loss in Huntington’s disease. Neurodegener Dis Manag 2013. [DOI: 10.2217/nmt.13.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
SUMMARY Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion in the HTT gene. Clinically, the disease is characterized by motor impairment, cognitive deterioration and behavioral disturbances. Unintended weight loss is also a hallmark of the disease and frequently leads to general weakening and a decline in the quality of life of HD patients. Moreover, a higher BMI has been associated with a slower rate of disease progression. In this review, the authors first delineate the characteristics of weight loss in both HD patients and genetic models of the disease. Subsequently, they discuss the pathophysiological processes underlying weight loss in HD and highlight the implications for management and care of HD patients with, or at risk of, unintended weight loss.
Collapse
Affiliation(s)
- N Ahmad Aziz
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Raymund AC Roos
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
van Wamelen DJ, Aziz NA, Anink JJ, Roos RAC, Swaab DF. Neuropeptide alterations in the infundibular nucleus of Huntington's disease patients. J Neuroendocrinol 2013; 25:198-205. [PMID: 22928483 DOI: 10.1111/j.1365-2826.2012.02379.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 08/05/2012] [Accepted: 08/24/2012] [Indexed: 11/29/2022]
Abstract
Data from transgenic mouse models of Huntington's disease (HD) suggest that dysfunction of the hypothalamic infundibular nucleus (INF) (in rodents, the arcuate nucleus) may contribute to unintended weight loss and insatiable appetite among HD patients. Using post-mortem paraffin-embedded tissue, we assessed the total number of INF neurones by thionin staining and four major regulatory neuropeptides in the INF of HD patients by immunocytochemistry and in situ hybridisation. In HD patients, the total number of neurones in the INF was unchanged compared to control subjects (P = 0.92), whereas it contained over 30% less neuropeptide Y-immunoreactive (IR) neurones (P = 0.016), as well as reduced peptide levels, in fibres to the paraventricular and ventromedial nucleus (P = 0.003, P = 0.005, respectively). Conversely, neuropeptide Y mRNA expression levels were increased three-fold (P = 0.047). No changes were observed in the number of neurones immunoreactive for α-melanocyte-stimulating hormone, agouti-related peptide, and cocaine- and amphetamine-regulated transcript (P ≥ 0.17). Our findings suggest changes in the pathology of the INF neuropeptide Y-expressing neurones in HD patients without changes in other (an)orexigenic neuropeptides and without neuronal cell loss. These findings indicate that unintended weight loss in patients suffering from this disease may be partly a result of neuropeptidergic alterations in the hypothalamic infundibular nucleus.
Collapse
Affiliation(s)
- D J van Wamelen
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
van Wamelen DJ, Aziz NA, Anink JJ, van Steenhoven R, Angeloni D, Fraschini F, Jockers R, Roos RAC, Swaab DF. Suprachiasmatic nucleus neuropeptide expression in patients with Huntington's Disease. Sleep 2013; 36:117-25. [PMID: 23288978 DOI: 10.5665/sleep.2314] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
STUDY OBJECTIVE To study whether sleep and circadian rhythm disturbances in patients with Huntington's disease (HD) arise from dysfunction of the body's master clock, the hypothalamic suprachiasmatic nucleus. DESIGN Postmortem cohort study. PATIENTS Eight patients with HD and eight control subjects matched for sex, age, clock time and month of death, postmortem delay, and fixation time of paraffin-embedded hypothalamic tissue. MEASUREMENTS AND RESULTS Using postmortem paraffin-embedded tissue, we assessed the functional integrity of the suprachiasmatic nucleus in patients with HD and control subjects by determining the expression of two major regulatory neuropeptides, vasoactive intestinal polypeptide and arginine vasopressin. Additionally, we studied melatonin 1 and 2 receptor expression. Compared with control subjects, the suprachiasmatic nucleus contained 85% fewer neurons immunoreactive for vasoactive intestinal polypeptide and 33% fewer neurons for arginine vasopressin in patients with HD (P = 0.002 and P = 0.027). The total amount of vasoactive intestinal polypeptide and arginine vasopressin messenger RNA was unchanged. No change was observed in the number of melatonin 1 or 2 receptor immunoreactive neurons. CONCLUSIONS These findings indicate posttranscriptional neuropeptide changes in the suprachiasmatic nucleus of patients with HD, and suggest that sleep and circadian rhythm disorders in these patients may at least partly arise from suprachiasmatic nucleus dysfunction.
Collapse
Affiliation(s)
- Daniel J van Wamelen
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|