1
|
Meel M, Jindal A, Kumar M, Mathur K, Singh A. IDH1, ATRX, p53, and Ki67 Expression in Glioblastoma patients: Their Clinical and Prognostic Significance-A Prospective Study. Asian J Neurosurg 2024; 19:14-20. [PMID: 38751398 PMCID: PMC11093636 DOI: 10.1055/s-0042-1750783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Context Glioblastoma multiforme (GBM) is a malignant and aggressive primary brain tumor with a poor prognosis. This adverse prognosis is due to the tumor's tendency for advancement and recurrence caused by highly intrusive nature of the persisting GBM cells that actively escape from the main tumor mass into the surrounding normal brain tissue. On the basis of biomarker illustration, it can be classified into molecular subgroups. Aims (1) To determine the expression of IDH1, ATRX, p53, and Ki67 by immunohistochemistry, in a cohort of GBMs. (2) To determine whether altered protein expression of any of these growth-control genes in GBM will show association with patient survival. (3) To establish prognostically distinct molecular subgroups of GBM, irrespective of histopathological diagnosis. Results In this prospective observational study, 35 histologically diagnosed cases of glioblastoma were enrolled. The mean age at the time of presentation was 43.46 ± 17.25 years with a male:female ratio of 1.3:1. Of the 35 cases, microvascular proliferation was seen in 23 cases. Large foci of necrosis (>50%) were seen in 10 cases and 27 cases had mitotic count ≥ 5/high power field (HPF). Of 35 cases, 5 (14.3%) cases showed IDH1 immunopositivity and 30 (85.7%) cases were negative for IDH1. ATRX was retained in 24 (68.6%) cases, while it was lost in 11 (31.4%) cases. The p53 immunoexpression was seen in 31 (88.6%) cases, whereas p53 was negative in 4 (11.4%) cases. The overall median survival (OS) was 6 months. In two protein pairs, the three compositions were IDH1-/p53+ (74.3%), ATRX +/IDH1- (62.9%), and ATRX +/p53+ (57.1%). Combined three-protein immunohistochemical analysis revealed five different molecular variants. Also, 8.6% (3/35) of the samples had aberrant protein expression of all three proteins, i.e., ATRX-/p53 +/IDH1 + , while 11.4% (4/35) were wild-type protein expression group, i.e., ATRX +/p53-/IDH1-. Conclusion In patients with single protein expression, Kaplan-Meier survival analysis showed statistically better OS in IDH1 mutant glioblastomas. In cases with double protein pairs, IDH1/p53 revealed statistically significant association with better median OS. The survival analysis of patients with IDH1/ATRX/p53 protein combinations also denoted a better OS. Hence, GBM can be grouped into prognostically relevant subgroups using these protein expression signatures individually, as well as the combined protein expression signatures.
Collapse
Affiliation(s)
- Mukta Meel
- Department of Pathology, SMS Medical College, Jaipur, Rajasthan, India
| | - Arpita Jindal
- Department of Pathology, SMS Medical College, Jaipur, Rajasthan, India
| | - Mukesh Kumar
- Department of Neurosurgery, SMS Medical College, Jaipur, Rajasthan, India
| | - Kusum Mathur
- Department of Pathology, SMS Medical College, Jaipur, Rajasthan, India
| | - Ashok Singh
- Department of Pathology, SMS Medical College, Jaipur, Rajasthan, India
| |
Collapse
|
2
|
Nikolova E, Laleva L, Milev M, Spiriev T, Stoyanov S, Ferdinandov D, Mitev V, Todorova A. miRNAs and related genetic biomarkers according to the WHO glioma classification: From diagnosis to future therapeutic targets. Noncoding RNA Res 2024; 9:141-152. [PMID: 38035044 PMCID: PMC10686814 DOI: 10.1016/j.ncrna.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
In the 2021 WHO classification of Tumors of the Central Nervous System, additional molecular characteristics have been included, defining the following adult-type diffuse glioma entities: Astrocytoma IDH-mutant, Oligodendroglioma IDH-mutant and 1p/19q-codeleted, and Glioblastoma IDH-wildtype. Despite advances in genetic analysis, precision oncology, and targeted therapy, malignant adult-type diffuse gliomas remain "hard-to-treat tumors", indicating an urgent need for better diagnostic and therapeutic strategies. In the last decades, miRNA analysis has been a hotspot for researching and developing diagnostic, prognostic, and predictive biomarkers for various disorders, including brain cancer. Scientific interest has recently been directed towards therapeutic applications of miRNAs, with encouraging results. Databases such as NCBI, PubMed, and Medline were searched for a selection of articles reporting the relationship between deregulated miRNAs and genetic aberrations used in the latest WHO CNS classification. The current review discussed the recommended molecular biomarkers and genetic aberrations based on the 2021 WHO classification in adult-type diffuse gliomas, along with associated deregulated miRNAs. Additionally, the study highlights miRNA-based treatment advancements in adults with gliomas.
Collapse
Affiliation(s)
- Emiliya Nikolova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| | - Lili Laleva
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Milko Milev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Toma Spiriev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Stoycho Stoyanov
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Dilyan Ferdinandov
- Department of Neurosurgery, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| |
Collapse
|
3
|
Sun H, Chen G, Guo B, Lv S, Yuan G. Potential clinical treatment prospects behind the molecular mechanism of alternative lengthening of telomeres (ALT). J Cancer 2023; 14:417-433. [PMID: 36860927 PMCID: PMC9969575 DOI: 10.7150/jca.80097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/25/2022] [Indexed: 02/04/2023] Open
Abstract
Normal somatic cells inevitably experience replicative stress and senescence during proliferation. Somatic cell carcinogenesis can be prevented in part by limiting the reproduction of damaged or old cells and removing them from the cell cycle [1, 2]. However, Cancer cells must overcome the issues of replication pressure and senescence as well as preserve telomere length in order to achieve immortality, in contrast to normal somatic cells [1, 2]. Although telomerase accounts for the bulk of telomere lengthening methods in human cancer cells, there is a non-negligible portion of telomere lengthening pathways that depend on alternative lengthening of telomeres (ALT) [3]. For the selection of novel possible therapeutic targets for ALT-related disorders, a thorough understanding of the molecular biology of these diseases is crucial [4]. The roles of ALT, typical ALT tumor cell traits, the pathophysiology and molecular mechanisms of ALT tumor disorders, such as adrenocortical carcinoma (ACC), are all summarized in this work. Additionally, this research compiles as many of its hypothetically viable but unproven treatment targets as it can (ALT-associated PML bodies (APB), etc.). This review is intended to contribute as much as possible to the development of research, while also trying to provide a partial information for prospective investigations on ALT pathways and associated diseases.
Collapse
Affiliation(s)
- Haolu Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230011, China
| | - Guijuan Chen
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, China
| | - Baochang Guo
- Rehabilitation Department of Traditional Chinese Medicine, 969 Hospital of the Joint Support Force of the Chinese People's Liberation Army, Hohhot, 010000, China
| | - Shushu Lv
- Department of Pathology, The First Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - Guojun Yuan
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, China
| |
Collapse
|
4
|
de Nonneville A, Salas S, Bertucci F, Sobinoff AP, Adélaïde J, Guille A, Finetti P, Noble JR, Churikov D, Chaffanet M, Lavit E, Pickett HA, Bouvier C, Birnbaum D, Reddel RR, Géli V. TOP3A amplification and ATRX inactivation are mutually exclusive events in pediatric osteosarcomas using ALT. EMBO Mol Med 2022; 14:e15859. [PMID: 35920001 PMCID: PMC9549729 DOI: 10.15252/emmm.202215859] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
In some types of cancer, telomere length is maintained by the alternative lengthening of telomeres (ALT) mechanism. In many ALT cancers, the α-thalassemia/mental retardation syndrome X-linked (ATRX) gene is mutated leading to the conclusion that the ATRX complex represses ALT. Here, we report that most high-grade pediatric osteosarcomas maintain their telomeres by ALT, and that the majority of these ALT tumors are ATRX wild-type (wt) and instead carry an amplified 17p11.2 chromosomal region containing TOP3A. We found that TOP3A was overexpressed in the ALT-positive ATRX-wt tumors consistent with its amplification. We demonstrated the functional significance of these results by showing that TOP3A overexpression in ALT cancer cells countered ATRX-mediated ALT inhibition and that TOP3A knockdown disrupted the ALT phenotype in ATRX-wt cells. Moreover, we report that TOP3A is required for proper BLM localization and promotes ALT DNA synthesis in ALT cell lines. Collectively, our results identify TOP3A as a major ALT player and potential therapeutic target.
Collapse
Affiliation(s)
- Alexandre de Nonneville
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance,Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia,Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance,Department of Medical Oncology, CRCM, CNRS, INSERM, Institut Paoli‐CalmettesAix‐Marseille UnivMarseilleFrance
| | - Sébastien Salas
- Department of Medical OncologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - François Bertucci
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance,Department of Medical Oncology, CRCM, CNRS, INSERM, Institut Paoli‐CalmettesAix‐Marseille UnivMarseilleFrance
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - José Adélaïde
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Arnaud Guille
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Pascal Finetti
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Jane R Noble
- Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Dimitri Churikov
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance
| | - Max Chaffanet
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Elise Lavit
- Department of Medical OncologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Corinne Bouvier
- Department of PathologyAssistance Publique Hôpitaux de Marseille ‐ Timone HospitalMarseilleFrance
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐CalmettesAix‐Marseille UniversityMarseilleFrance
| | - Roger R Reddel
- Cancer Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteUniversity of SydneyWestmeadNSWAustralia
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Team « Telomere and Chromatin ». Equipe labellisée Ligue Nationale Contre Le CancerAix‐Marseille UnivMarseilleFrance
| |
Collapse
|
5
|
Anand N, Husain N, Varshney R, Malhotra KP, Kaif M. Molecular classification and stratification of adult diffuse gliomas: A tertiary care center study. J Carcinog 2021; 20:20. [PMID: 34729052 PMCID: PMC8531577 DOI: 10.4103/jcar.jcar_17_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND: Diffuse gliomas in the adult population are the most common primary central nervous system (CNS) tumors. The World Health Organization incorporated isocitrate dehydrogenase (IDH) mutations and 1p/19q co-deletion with histopathological features into an “integrated diagnosis” in the revised classification of tumors of CNS. These molecular subgroups of diffuse gliomas are found to stratify patients into prognostically distinct groups better than the histological classification. The objectives of the current study were to assess the frequency of IDH mutation, ATRX expression loss, p53 overexpression, and 1p/19q co-deletion detection in adult diffuse gliomas (Grade II, III, and IV) and to correlate them with clinicopathological and histopathological features. MATERIALS AND METHODS: The current study was a tertiary care hospital-based retrospective case series of 112 cases of adult diffuse gliomas. Immunohistochemistry (IHC)-based molecular detection was performed for IDH-1, ATRX, and p53 and fluorescent in situ hybridization (FISH) was performed for 1p/19q co-deletion detection. RESULTS: IDH-1 mutation was present in 30.4% (n = 34/112) cases, ATRX expression was lost in 18% (n = 19/104) cases, p53 was mutated in 39.3% (n = 42/107) cases and 1p19q was co-deleted in 25% (n = 4/16) cases. In the IDH1 mutant cases, with retained ATRX, FISH for 1p/19q co-deletion was performed and was co-deleted in four cases. CONCLUSION: The results of the present study indicate that IHC including IDH1/2, ATRX, and p53 is useful for the molecular classification of diffuse gliomas, which could be useful for the evaluation of prognosis, especially Grade III and II. Although the immunohistochemical approach does not replace genetic testing completely, it is a practical and powerful means of assessing molecular genetic changes. IDH mutations are the established markers of better prognosis in diffuse gliomas.
Collapse
Affiliation(s)
- Nidhi Anand
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Nuzhat Husain
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Renu Varshney
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Kiran Preet Malhotra
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Mohammad Kaif
- Department of Neurosurgery, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Brosnan-Cashman JA, Davis CM, Diplas BH, Meeker AK, Rodriguez FJ, Heaphy CM. SMARCAL1 loss and alternative lengthening of telomeres (ALT) are enriched in giant cell glioblastoma. Mod Pathol 2021; 34:1810-1819. [PMID: 34103668 DOI: 10.1038/s41379-021-00841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022]
Abstract
Subsets of high-grade gliomas, including glioblastoma (GBM), are known to utilize the alternative lengthening of telomeres (ALT) pathway for telomere length maintenance. However, the telomere maintenance profile of one subtype of GBM-giant cell GBM-has not been extensively studied. Here, we investigated the prevalence of ALT, as well as ATRX and SMARCAL1 protein loss, in a cohort of classic giant cell GBM and GBM with giant cell features. To determine the presence of ALT, a telomere-specific fluorescence in situ hybridization assay was performed on 15 cases of classic giant cell GBM, 28 additional GBMs found to have giant cell features, and 1 anaplastic astrocytoma with giant cell features. ATRX, SMARCAL1, and IDH1 protein status were assessed in a proportion of cases by immunohistochemistry and were compared to clinical-pathologic and molecular characteristics. In the overall cohort of 44 cases, 19 (43%) showed evidence of ALT. Intriguingly, of the ALT-positive cases, only 9 (47.4%) displayed loss of the ALT suppressor ATRX by immunohistochemistry. Since inactivating mutations in SMARCAL1 have been identified in ATRX wild-type ALT-positive gliomas, we developed an immunohistochemistry assay for SMARCAL1 protein expression using genetically validated controls. Of the 19 ALT-positive cases, 6 (31.5%) showed loss or mis-localization of SMARCAL1 by immunohistochemistry. Of these cases, four retained ATRX protein expression, while two cases also displayed ATRX loss. Additionally, we assessed five cases from which multiple temporal samples were available and ALT status was concordant between both tumor biopsies. In summary, we have identified a subset of giant cell GBM that utilize the ALT telomere maintenance mechanism. Importantly, in addition to ATRX loss, ALT-positive tumors harboring SMARCAL1 alterations are prevalent in giant cell GBM.
Collapse
Affiliation(s)
- Jacqueline A Brosnan-Cashman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,American Association for Cancer Research, Publications Division, Boston, MA, USA
| | - Christine M Davis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bill H Diplas
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, NC, USA.,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Christopher M Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
7
|
Akter J, Kamijo T. How Do Telomere Abnormalities Regulate the Biology of Neuroblastoma? Biomolecules 2021; 11:1112. [PMID: 34439779 PMCID: PMC8392161 DOI: 10.3390/biom11081112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
Telomere maintenance plays important roles in genome stability and cell proliferation. Tumor cells acquire replicative immortality by activating a telomere-maintenance mechanism (TMM), either telomerase, a reverse transcriptase, or the alternative lengthening of telomeres (ALT) mechanism. Recent advances in the genetic and molecular characterization of TMM revealed that telomerase activation and ALT define distinct neuroblastoma (NB) subgroups with adverse outcomes, and represent promising therapeutic targets in high-risk neuroblastoma (HRNB), an aggressive childhood solid tumor that accounts for 15% of all pediatric-cancer deaths. Patients with HRNB frequently present with widely metastatic disease, with tumors harboring recurrent genetic aberrations (MYCN amplification, TERT rearrangements, and ATRX mutations), which are mutually exclusive and capable of promoting TMM. This review provides recent insights into our understanding of TMM in NB tumors, and highlights emerging therapeutic strategies as potential treatments for telomerase- and ALT-positive tumors.
Collapse
Affiliation(s)
- Jesmin Akter
- Saitama Cancer Center, Research Institute for Clinical Oncology, Saitama 362-0806, Japan;
| | - Takehiko Kamijo
- Saitama Cancer Center, Research Institute for Clinical Oncology, Saitama 362-0806, Japan;
- Laboratory of Tumor Molecular Biology, Department of Graduate School of Science and Engineering, Saitama University, Saitama 362-0806, Japan
| |
Collapse
|
8
|
MacKenzie D, Watters AK, To JT, Young MW, Muratori J, Wilkoff MH, Abraham RG, Plummer MM, Zhang D. ALT Positivity in Human Cancers: Prevalence and Clinical Insights. Cancers (Basel) 2021; 13:2384. [PMID: 34069193 PMCID: PMC8156225 DOI: 10.3390/cancers13102384] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023] Open
Abstract
Many exciting advances in cancer-related telomere biology have been made in the past decade. Of these recent advances, great progress has also been made with respect to the Alternative Lengthening of Telomeres (ALT) pathway. Along with a better understanding of the molecular mechanism of this unique telomere maintenance pathway, many studies have also evaluated ALT activity in various cancer subtypes. We first briefly review and assess a variety of commonly used ALT biomarkers. Then, we provide both an update on ALT-positive (ALT+) tumor prevalence as well as a systematic clinical assessment of the presently studied ALT+ malignancies. Additionally, we discuss the pathogenetic alterations in ALT+ cancers, for example, the mutation status of ATRX and DAXX, and their correlations with the activation of the ALT pathway. Finally, we highlight important ALT+ clinical associations within each cancer subtype and subdivisions within, as well as their prognoses. We hope this alternative perspective will allow scientists, clinicians, and drug developers to have greater insight into the ALT cancers so that together, we may develop more efficacious treatments and improved management strategies to meet the urgent needs of cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria M. Plummer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (D.M.J.); (A.K.W.); (J.T.T.); (M.W.Y.); (J.M.); (M.H.W.); (R.G.A.)
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (D.M.J.); (A.K.W.); (J.T.T.); (M.W.Y.); (J.M.); (M.H.W.); (R.G.A.)
| |
Collapse
|
9
|
da Silva GG, Morais KS, Arcanjo DS, de Oliveira DM. Clinical Relevance of Alternative Lengthening of Telomeres in Cancer. Curr Top Med Chem 2020; 20:485-497. [PMID: 31924155 DOI: 10.2174/1568026620666200110112854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022]
Abstract
The alternative lengthening of telomere (ALT) is a pathway responsible for cell immortalization in some kinds of tumors. Since the first description of ALT is relatively recent in the oncology field, its mechanism remains elusive, but recent works address ALT-related proteins or cellular structures as potential druggable targets for more specific and efficient antitumor therapies. Moreover, some new generation compounds for antitelomerase therapy in cancer were able to provoke acquisition of ALT phenotype in treated tumors, enhancing the importance of studies on this alternative lengthening of the telomere. However, ALT has been implicated in different - sometimes opposite - outcomes, according to the tumor type studied. Then, in order to design and develop new drugs for ALT+ cancer in an effective way, it is crucial to understand its clinical implications. In this review, we gathered works published in the last two decades to highlight the clinical relevance of ALT on oncology.
Collapse
Affiliation(s)
- Guilherme G da Silva
- Department of Biological Basis of Health Sciences, University of Brasilia, Ceilandia Campus, Federal District, Brazil
| | - Karollyne S Morais
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Federal District, Brazil
| | - Daniel S Arcanjo
- Department of Biological Basis of Health Sciences, University of Brasilia, Ceilandia Campus, Federal District, Brazil
| | - Diêgo M de Oliveira
- Department of Biological Basis of Health Sciences, University of Brasilia, Ceilandia Campus, Federal District, Brazil.,Laboratory of Molecular Pathology of Cancer, University of Brasilia, Federal District, Brazil
| |
Collapse
|
10
|
Claude E, Decottignies A. Telomere maintenance mechanisms in cancer: telomerase, ALT or lack thereof. Curr Opin Genet Dev 2020; 60:1-8. [PMID: 32114293 DOI: 10.1016/j.gde.2020.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 12/31/2022]
Abstract
Cancer cells acquire replicative immortality by activating a telomere maintenance mechanism (TMM), either the telomerase or the Alternative Lengthening of Telomeres (ALT) mechanism. ALT is frequently activated in tumors derived from mesenchymal cells, which are more frequent in childhood cancers. Recent studies showed that, occasionally, cancer cells can arise without any TMM activation. Here, we discuss the challenge in assessing which TMM is activated in tumors. We also evaluate the prevalence of ALT mechanism in pediatric cancers and review the associated survival prognosis in different tumor types. Finally, we discuss about possible anti-TMM therapies for new emerging cancer treatments.
Collapse
|
11
|
The molecular oncology of bilateral high-grade thalamic astrocytomas in children. Childs Nerv Syst 2019; 35:2047-2054. [PMID: 31522255 DOI: 10.1007/s00381-019-04372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Bilateral thalamic astrocytomas in children are exceedingly rare. These highly malignant tumors seldom respond to conventional treatment strategies and carry a grim prognosis for patients. However, recent advances in molecular oncology have had a positive impact on prognostication and treatment strategies of these tumors. CASE-BASED REVIEW We present a new case of WHO grade III bilateral thalamic astrocytoma in a child and review the pathophysiology, molecular oncogenesis, and relevant treatment strategies for this rare disease. CONCLUSIONS High-grade thalamic astrocytomas affecting both thalami pose a challenge to pediatric neurosurgeons, neuro-oncologists, and neuropathologists given the lack of effective treatment strategies. Understanding recent revelations in the field of molecular oncology can assist clinicians in adequately formulating a treatment plan in this patient population.
Collapse
|
12
|
Rodriguez FJ, Graham MK, Brosnan-Cashman JA, Barber JR, Davis C, Vizcaino MA, Palsgrove DN, Giannini C, Pekmezci M, Dahiya S, Gokden M, Noë M, Wood LD, Pratilas CA, Morris CD, Belzberg A, Blakeley J, Heaphy CM. Telomere alterations in neurofibromatosis type 1-associated solid tumors. Acta Neuropathol Commun 2019; 7:139. [PMID: 31462295 PMCID: PMC6712691 DOI: 10.1186/s40478-019-0792-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022] Open
Abstract
The presence of Alternative lengthening of telomeres (ALT) and/or ATRX loss, as well as the role of other telomere abnormalities, have not been formally studied across the spectrum of NF1-associated solid tumors. Utilizing a telomere-specific FISH assay, we classified tumors as either ALT-positive or having long (without ALT), short, or normal telomere lengths. A total of 426 tumors from 256 NF1 patients were evaluated, as well as 99 MPNST tumor samples that were sporadic or of unknown NF1 status. In the NF1-glioma dataset, ALT was present in the majority of high-grade gliomas: 14 (of 23; 60%) in contrast to only 9 (of 47; 19%) low-grade gliomas (p = 0.0009). In the subset of ALT-negative glioma cases, telomere lengths were estimated and we observed 17 (57%) cases with normal, 12 (40%) cases with abnormally long, and only 1 (3%) case with short telomeres. In the NF1-associated malignant nerve sheath tumor (NF1-MPNST) set (n = 75), ALT was present in 9 (12%). In the subset of ALT-negative NF1-MPNST cases, telomeres were short in 9 (38%), normal in 14 (58%) and long in 1 (3%). In the glioma set, overall survival was significantly decreased for patients with ALT-positive tumors (p < 0.0001). In the NF1-MPNST group, overall survival was superior for patients with tumors with short telomeres (p = 0.003). ALT occurs in a subset of NF1-associated solid tumors and is usually restricted to malignant subsets. In contrast, alterations in telomere lengths are more prevalent than ALT.
Collapse
Affiliation(s)
- Fausto J Rodriguez
- Departments of Pathology, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA.
- Departments of Ophthalmology, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA.
| | - Mindy K Graham
- Departments of Pathology, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA
| | - Jacqueline A Brosnan-Cashman
- Departments of Pathology, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA
| | - John R Barber
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Davis
- Departments of Pathology, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA
| | - M Adelita Vizcaino
- Departments of Pathology, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA
| | - Doreen N Palsgrove
- Departments of Pathology, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Melike Pekmezci
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | | | - Michael Noë
- Departments of Pathology, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA
| | - Laura D Wood
- Departments of Pathology, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA
| | - Christine A Pratilas
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA
| | - Carol D Morris
- Department of Orthopedics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allan Belzberg
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaishri Blakeley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA
| | - Christopher M Heaphy
- Departments of Pathology, Johns Hopkins University School of Medicine, Sheikh Zayed Tower, Room M2101, 1800 Orleans Street, Baltimore, MD, 21231, USA
| |
Collapse
|
13
|
Martínez H, Nagurney M, Wang ZX, Eberhart CG, Heaphy CM, Curtis MT, Rodriguez FJ. ATRX Mutations in Pineal Parenchymal Tumors of Intermediate Differentiation. J Neuropathol Exp Neurol 2019; 78:703-708. [PMID: 31225581 PMCID: PMC6640895 DOI: 10.1093/jnen/nlz050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pineal parenchymal tumors are rare neoplasms, ranging from WHO Grade I to IV. There are few studies characterizing the molecular profiles of these tumors. ATRX alterations are strongly associated with the presence of the alternative lengthening of telomeres (ALT) phenotype, and within the central nervous system they tend to occur in subsets of gliomas, including those with IDH, NF1, or histone (H3 K27M or G34) mutations. Here, we identified ATRX frameshift mutations by next generation sequencing associated with corresponding protein loss in 2 cases of pineal parenchymal tumors of intermediate differentiation (PPTID) developing in a 21-year-old woman and a 64-year-old man. In contrast, we identified partial ATRX loss in 1 pineoblastoma, among 14 pineal parenchymal tumors of various grades (6 pineoblastomas, 4 pineocytomas, and 4 PPTID) using tissue microarrays; ALT was absent in these cases. Evaluating the cBioPortal database, an ATRX mutation was identified in one (of 3 total) PPTIDs analyzed. Thus, ATRX mutations associated with protein loss and ALT develop in a small subset of pineal parenchymal tumors and may be limited to those with intermediate differentiation. The clinical significance of these alterations requires further study.
Collapse
Affiliation(s)
- Haydee Martínez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Hospital General “Dr. Manuel Gea González,” México City, Mexico
| | - Michelle Nagurney
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zi-Xuan Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher M Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark T Curtis
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Geraldo LHM, Garcia C, da Fonseca ACC, Dubois LGF, de Sampaio e Spohr TCL, Matias D, de Camargo Magalhães ES, do Amaral RF, da Rosa BG, Grimaldi I, Leser FS, Janeiro JM, Macharia L, Wanjiru C, Pereira CM, Moura-Neto V, Freitas C, Lima FRS. Glioblastoma Therapy in the Age of Molecular Medicine. Trends Cancer 2019; 5:46-65. [DOI: 10.1016/j.trecan.2018.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
|
15
|
Palsgrove DN, Brosnan-Cashman JA, Giannini C, Raghunathan A, Jentoft M, Bettegowda C, Gokden M, Lin D, Yuan M, Lin MT, Heaphy CM, Rodriguez FJ. Subependymal giant cell astrocytoma-like astrocytoma: a neoplasm with a distinct phenotype and frequent neurofibromatosis type-1-association. Mod Pathol 2018; 31:1787-1800. [PMID: 29973652 PMCID: PMC6269209 DOI: 10.1038/s41379-018-0103-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 11/09/2022]
Abstract
Neurofibromatosis type-1 is a familial genetic syndrome associated with a predisposition to develop peripheral and central nervous system neoplasms. We have previously reported on a subset of gliomas developing in these patients with morphologic features resembling subependymal giant cell astrocytoma, but the molecular features of these tumors remain undefined. A total of 14 tumors were studied and all available slides were reviewed. Immunohistochemical stains and telomere-specific FISH were performed on all cases. In addition, next-generation sequencing was performed on 11 cases using a platform targeting 644 cancer-related genes. The average age at diagnosis was 28 years (range: 4-60, 9F/5M). All tumors involved the supratentorial compartment. Tumors were predominantly low grade (n = 12), with two high-grade tumors, and displayed consistent expression of glial markers. Next-generation sequencing demonstrated inactivating NF1 mutations in 10 (of 11) cases. Concurrent TSC2 and RPTOR mutations were present in two cases (1 sporadic and 1 neurofibromatosis type-1-associated). Interestingly, alternative lengthening of telomeres was present in 4 (of 14) (29%) cases. However, an ATRX mutation associated with aberrant nuclear ATRX expression was identified in only one (of four) cases with alternative lenghtening of telomeres. Gene variants in the DNA helicase RECQL4 (n = 2) and components of the Fanconi anemia complementation group (FANCD2, FANCF, FANCG) (n = 1) were identified in two alternative lenghtening of telomere-positive/ATRX-intact cases. Other variants involved genes related to NOTCH signaling, DNA maintenance/repair pathways, and epigenetic modulators. There were no mutations identified in DAXX, PTEN, PIK3C genes, TP53, H3F3A, HIST1H3B, or in canonical hotspots of IDH1, IDH2, or BRAF. A subset of subependymal giant cell astrocytoma-like astrocytomas are alternative lenghtening of telomere-positive and occur in the absence of ATRX alterations, thereby suggesting mutations in other DNA repair/maintenance genes may also facilitate alternative lenghtening of telomeres. These findings suggest that subependymal giant cell astrocytoma-like astrocytoma represents a biologically distinct group that merits further investigation.
Collapse
Affiliation(s)
- Doreen N Palsgrove
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Aditya Raghunathan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Chetan Bettegowda
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Murat Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Doris Lin
- Department of Radiology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Ming Yuan
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Ming-Tseh Lin
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Heaphy
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fausto J Rodriguez
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Rodriguez FJ, Brosnan-Cashman JA, Allen SJ, Vizcaino MA, Giannini C, Camelo-Piragua S, Webb M, Matsushita M, Wadhwani N, Tabbarah A, Hamideh D, Jiang L, Chen L, Arvanitis LD, Alnajar HH, Barber JR, Rodríguez-Velasco A, Orr B, Heaphy CM. Alternative lengthening of telomeres, ATRX loss and H3-K27M mutations in histologically defined pilocytic astrocytoma with anaplasia. Brain Pathol 2018; 29:126-140. [PMID: 30192422 DOI: 10.1111/bpa.12646] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
Anaplasia may be identified in a subset of tumors with a presumed pilocytic astrocytoma (PA) component or piloid features, which may be associated with aggressive behavior, but the biologic basis of this change remains unclear. Fifty-seven resections from 36 patients (23 M, 13 F, mean age 32 years, range 3-75) were included. A clinical diagnosis of NF1 was present in 8 (22%). Alternative lengthening of telomeres (ALT) was assessed by telomere-specific FISH and/or CISH. A combination of immunohistochemistry, DNA sequencing and FISH were used to study BRAF, ATRX, CDKN2A/p16, mutant IDH1 p.R132H and H3-K27M proteins. ALT was present in 25 (69%) cases and ATRX loss in 20 (57%), mostly in the expected association of ALT+/ATRX- (20/24, 83%) or ALT-/ATRX+ (11/11, 100%). BRAF duplication was present in 8 (of 26) (31%). H3-K27M was present in 5 of 32 (16%) cases, all with concurrent ATRX loss and ALT. ALT was also present in 9 (of 11) cases in the benign PA precursor, 7 of which also had ATRX loss in both the precursor and the anaplastic tumor. In a single pediatric case, ALT and ATRX loss developed in the anaplastic component only, and in another adult case, ALT was present in the PA-A component only, but ATRX was not tested. Features associated with worse prognosis included subtotal resection, adult vs. pediatric, presence of a PA precursor preceding a diagnosis of anaplasia, necrosis, presence of ALT and ATRX expression loss. ALT and ATRX loss, as well as alterations involving the MAPK pathway, are frequent in PA with anaplasia at the time of development of anaplasia or in their precursors. Additionally, a small subset of PA with anaplasia have H3-K27M mutations. These findings further support the concept that PA with anaplasia is a neoplasm with heterogeneous genetic features and alterations typical of both PA and diffuse gliomas.
Collapse
Affiliation(s)
- Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD.,Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jacqueline A Brosnan-Cashman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD.,Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sariah J Allen
- Department of Pathology, UMAE, Pediatric Hospital CMN SXXI IMSS, Mexico City, Mexico
| | - M Adelita Vizcaino
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Caterina Giannini
- Department of Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | | | - Milad Webb
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | - Nitin Wadhwani
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Abeer Tabbarah
- Department of Pathology, American University of Beirut, Lebanon
| | - Dima Hamideh
- Department of Pediatric Oncology, American University of Beirut, Lebanon
| | - Liqun Jiang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Liam Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Hussein H Alnajar
- Department of Pathology, Rush University Medical Center, Chicago, IL
| | - John R Barber
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Alicia Rodríguez-Velasco
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Pathology, UMAE, Pediatric Hospital CMN SXXI IMSS, Mexico City, Mexico
| | - Brent Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Christopher M Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD.,Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
17
|
Brosnan-Cashman JA, Yuan M, Graham MK, Rizzo AJ, Myers KM, Davis C, Zhang R, Esopi DM, Raabe EH, Eberhart CG, Heaphy CM, Meeker AK. ATRX loss induces multiple hallmarks of the alternative lengthening of telomeres (ALT) phenotype in human glioma cell lines in a cell line-specific manner. PLoS One 2018; 13:e0204159. [PMID: 30226859 PMCID: PMC6143253 DOI: 10.1371/journal.pone.0204159] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/03/2018] [Indexed: 12/05/2022] Open
Abstract
Cancers must maintain their telomeres at lengths sufficient for cell survival. In several cancer subtypes, a recombination-like mechanism termed alternative lengthening of telomeres (ALT), is frequently used for telomere length maintenance. Cancers utilizing ALT often have lost functional ATRX, a chromatin remodeling protein, through mutation or deletion, thereby strongly implicating ATRX as an ALT suppressor. Herein, we have generated functional ATRX knockouts in four telomerase-positive, ALT-negative human glioma cell lines: MOG-G-UVW, SF188, U-251 and UW479. After loss of ATRX, two of the four cell lines (U-251 and UW479) show multiple characteristics of ALT-positive cells, including ultrabright telomeric DNA foci, ALT-associated PML bodies, and c-circles. However, telomerase activity and overall telomere length heterogeneity are unaffected after ATRX loss, regardless of cellular context. The two cell lines that showed ALT hallmarks after complete ATRX loss also did so upon ATRX depletion via shRNA-mediated knockdown. These results suggest that other genomic or epigenetic events, in addition to ATRX loss, are necessary for the induction of ALT in human cancer.
Collapse
Affiliation(s)
| | - Ming Yuan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Mindy K. Graham
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Anthony J. Rizzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kaylar M. Myers
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Christine Davis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Rebecca Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - David M. Esopi
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Eric H. Raabe
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Charles G. Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Christopher M. Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Alan K. Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
18
|
Kazantseva M, Eiholzer RA, Mehta S, Taha A, Bowie S, Roth I, Zhou J, Joruiz SM, Royds JA, Hung NA, Slatter TL, Braithwaite AW. Elevation of the TP53 isoform Δ133p53β in glioblastomas: an alternative to mutant p53 in promoting tumor development. J Pathol 2018; 246:77-88. [PMID: 29888503 PMCID: PMC6120556 DOI: 10.1002/path.5111] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/05/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023]
Abstract
As tumor protein 53 (p53) isoforms have tumor‐promoting, migration, and inflammatory properties, this study investigated whether p53 isoforms contributed to glioblastoma progression. The expression levels of full‐length TP53α (TAp53α) and six TP53 isoforms were quantitated by RT‐qPCR in 89 glioblastomas and correlated with TP53 mutation status, tumor‐associated macrophage content, and various immune cell markers. Elevated levels of Δ133p53β mRNA characterised glioblastomas with increased CD163‐positive macrophages and wild‐type TP53. In situ‐based analyses found Δ133p53β expression localised to malignant cells in areas with increased hypoxia, and in cells with the monocyte chemoattractant protein C‐C motif chemokine ligand 2 (CCL2) expressed. Tumors with increased Δ133p53β had increased numbers of cells positive for macrophage colony‐stimulating factor 1 receptor (CSF1R) and programmed death ligand 1 (PDL1). In addition, cells expressing a murine ‘mimic’ of Δ133p53 (Δ122p53) were resistant to temozolomide treatment and oxidative stress. Our findings suggest that elevated Δ133p53β is an alternative pathway to TP53 mutation in glioblastoma that aids tumor progression by promoting an immunosuppressive and chemoresistant environment. Adding Δ133p53β to a TP53 signature along with TP53 mutation status will better predict treatment resistance in glioblastoma. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Marina Kazantseva
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Ramona A Eiholzer
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sunali Mehta
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Ahmad Taha
- Department of Neurosurgery, Southern District Heath Board, New Zealand
| | - Sara Bowie
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Imogen Roth
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jean Zhou
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Department of Radiology, Southern District Health Board, New Zealand
| | - Sebastien M Joruiz
- Jacqui Wood Cancer Centre, Division of Cancer Research, University of Dundee, UK
| | - Janice A Royds
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Noelyn A Hung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Antony W Braithwaite
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| |
Collapse
|
19
|
Lee SC. Diffuse Gliomas for Nonneuropathologists: The New Integrated Molecular Diagnostics. Arch Pathol Lab Med 2018; 142:804-814. [PMID: 29775073 DOI: 10.5858/arpa.2017-0449-ra] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diffuse gliomas comprise the bulk of "brain cancer" in adults. The recent update to the 4th edition of the World Health Organization's classification of tumors of the central nervous system reflects an unprecedented change in the landscape of the diagnosis and management of diffuse gliomas that will affect all those involved in the management and care of patients. Of the recently discovered gene alterations, mutations in the Krebs cycle enzymes isocitrate dehydrogenases (IDHs) 1 and 2 have fundamentally changed the way the gliomas are understood and classified. Incorporating information on a few genetic parameters (IDH, ATRX and/or p53, and chromosome 1p19q codeletion), a relatively straightforward diagnostic algorithm has been generated with robust and reproducible results that correlate with patients' survival far better than relying on conventional histology alone. Evidence also supports the conclusion that the vast majority of diffuse gliomas without IDH mutations (IDH-wild-type astrocytomas) behave like IDH-wild-type glioblastomas ("molecular GBM"). Together, these changes reflect a big shift in the practice of diagnostic neuropathology in which tumor risk stratification aligns better with molecular information than histology/grading. The purpose of this review is to provide the readers with a brief synopsis of the changes in the 2016 World Health Organization update with an emphasis on diffuse gliomas and to summarize key gene abnormalities on which these classifications are based. Practical points involved in day-to-day diagnostic workup are also discussed, along with a comparison of the various diagnostic tests, including immunohistochemistry, with an emphasis on targeted next-generation sequencing panel technology as a future universal approach.
Collapse
Affiliation(s)
- Sunhee C Lee
- From the Department of Pathology, Albert Einstein College of Medicine, and the Department of Neuropathology, Montefiore Medical Center, Bronx, New York
| |
Collapse
|
20
|
Gaspar TB, Sá A, Lopes JM, Sobrinho-Simões M, Soares P, Vinagre J. Telomere Maintenance Mechanisms in Cancer. Genes (Basel) 2018; 9:E241. [PMID: 29751586 PMCID: PMC5977181 DOI: 10.3390/genes9050241] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Tumour cells can adopt telomere maintenance mechanisms (TMMs) to avoid telomere shortening, an inevitable process due to successive cell divisions. In most tumour cells, telomere length (TL) is maintained by reactivation of telomerase, while a small part acquires immortality through the telomerase-independent alternative lengthening of telomeres (ALT) mechanism. In the last years, a great amount of data was generated, and different TMMs were reported and explained in detail, benefiting from genome-scale studies of major importance. In this review, we address seven different TMMs in tumour cells: mutations of the TERT promoter (TERTp), amplification of the genes TERT and TERC, polymorphic variants of the TERT gene and of its promoter, rearrangements of the TERT gene, epigenetic changes, ALT, and non-defined TMM (NDTMM). We gathered information from over fifty thousand patients reported in 288 papers in the last years. This wide data collection enabled us to portray, by organ/system and histotypes, the prevalence of TERTp mutations, TERT and TERC amplifications, and ALT in human tumours. Based on this information, we discuss the putative future clinical impact of the aforementioned mechanisms on the malignant transformation process in different setups, and provide insights for screening, prognosis, and patient management stratification.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - Ana Sá
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - José Manuel Lopes
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Department of Pathology and Oncology, Centro Hospitalar São João, 4200-139 Porto, Portugal.
| | - Manuel Sobrinho-Simões
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Department of Pathology and Oncology, Centro Hospitalar São João, 4200-139 Porto, Portugal.
| | - Paula Soares
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - João Vinagre
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
| |
Collapse
|
21
|
Abstract
Recent advances in molecular pathology have reshaped the practice of brain tumor diagnostics. The classification of gliomas has been restructured with the discovery of isocitrate dehydrogenase (IDH) 1/2 mutations in the vast majority of lower grade infiltrating gliomas and secondary glioblastomas (GBM), with IDH-mutant astrocytomas further characterized by TP53 and ATRX mutations. Whole-arm 1p/19q codeletion in conjunction with IDH mutations now define oligodendrogliomas, which are also enriched for CIC, FUBP1, PI3K, NOTCH1, and TERT-p mutations. IDH-wild-type (wt) infiltrating astrocytomas are mostly primary GBMs and are characterized by EGFR, PTEN, TP53, NF1, RB1, PDGFRA, and CDKN2A/B alterations, TERT-p mutations, and characteristic copy number alterations including gains of chromosome 7 and losses of 10. Other clinically and genetically distinct infiltrating astrocytomas include the aggressive H3K27M-mutant midline gliomas, and smaller subsets that occur in the setting of NF1 or have BRAF V600E mutations. Low-grade pediatric gliomas are both genetically and biologically distinct from their adult counterparts and often harbor a single driver event often involving BRAF, FGFR1, or MYB/MYBL1 genes. Large scale genomic and epigenomic analyses have identified distinct subgroups of ependymomas tightly linked to tumor location and clinical behavior. The diagnosis of embryonal neoplasms also integrates molecular testing: (I) 4 molecularly defined, biologically distinct subtypes of medulloblastomas are now recognized; (II) 3 histologic entities have now been reclassified under a diagnosis of "embryonal tumor with multilayered rosettes (ETMR), C19MC-altered"; and (III) atypical teratoid/rhabdoid tumors (AT/RT) now require SMARCB1 (INI1) or SMARCA4 (BRG1) alterations for their diagnosis. We discuss the practical use of contemporary biomarkers for an integrative diagnosis of central nervous system neoplasia.
Collapse
|
22
|
Abstract
Predicting the expected outcome of patients diagnosed with cancer is a critical step in treatment. Advances in genomic and imaging technologies provide physicians with vast amounts of data, yet prognostication remains largely subjective, leading to suboptimal clinical management. We developed a computational approach based on deep learning to predict the overall survival of patients diagnosed with brain tumors from microscopic images of tissue biopsies and genomic biomarkers. This method uses adaptive feedback to simultaneously learn the visual patterns and molecular biomarkers associated with patient outcomes. Our approach surpasses the prognostic accuracy of human experts using the current clinical standard for classifying brain tumors and presents an innovative approach for objective, accurate, and integrated prediction of patient outcomes. Cancer histology reflects underlying molecular processes and disease progression and contains rich phenotypic information that is predictive of patient outcomes. In this study, we show a computational approach for learning patient outcomes from digital pathology images using deep learning to combine the power of adaptive machine learning algorithms with traditional survival models. We illustrate how these survival convolutional neural networks (SCNNs) can integrate information from both histology images and genomic biomarkers into a single unified framework to predict time-to-event outcomes and show prediction accuracy that surpasses the current clinical paradigm for predicting the overall survival of patients diagnosed with glioma. We use statistical sampling techniques to address challenges in learning survival from histology images, including tumor heterogeneity and the need for large training cohorts. We also provide insights into the prediction mechanisms of SCNNs, using heat map visualization to show that SCNNs recognize important structures, like microvascular proliferation, that are related to prognosis and that are used by pathologists in grading. These results highlight the emerging role of deep learning in precision medicine and suggest an expanding utility for computational analysis of histology in the future practice of pathology.
Collapse
|
23
|
De Vitis M, Berardinelli F, Sgura A. Telomere Length Maintenance in Cancer: At the Crossroad between Telomerase and Alternative Lengthening of Telomeres (ALT). Int J Mol Sci 2018; 19:ijms19020606. [PMID: 29463031 PMCID: PMC5855828 DOI: 10.3390/ijms19020606] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cells undergo continuous telomere shortening as a consequence of multiple rounds of replications. During tumorigenesis, cells have to acquire telomere DNA maintenance mechanisms (TMMs) in order to counteract telomere shortening, to preserve telomeres from DNA damage repair systems and to avoid telomere-mediated senescence and/or apoptosis. For this reason, telomere maintenance is an essential step in cancer progression. Most human tumors maintain their telomeres expressing telomerase, whereas a lower but significant proportion activates the alternative lengthening of telomeres (ALT) pathway. However, evidence about the coexistence of ALT and telomerase has been found both in vivo in the same cancer populations and in vitro in engineered cellular models, making the distinction between telomerase- and ALT-positive tumors elusive. Indeed, after the development of drugs able to target telomerase, the capability for some cancer cells to escape death, switching from telomerase to ALT, was highlighted. Unfortunately, to date, the mechanism underlying the possible switching or the coexistence of telomerase and ALT within the same cell or populations is not completely understood and different factors could be involved. In recent years, different studies have tried to shed light on the complex regulation network that controls the transition between the two TMMs, suggesting a role for embryonic cancer origin, epigenetic modifications, and specific genes activation—both in vivo and in vitro. In this review, we examine recent findings about the cancer-associated differential activation of the two known TMMs and the possible factors implicated in this process. Furthermore, some studies on cancers are also described that did not display any TMM.
Collapse
Affiliation(s)
- Marco De Vitis
- Department of Science, Roma Tre University, 00146 Rome, Italy.
| | | | - Antonella Sgura
- Department of Science, Roma Tre University, 00146 Rome, Italy.
| |
Collapse
|
24
|
Hewer E, Prebil N, Berezowska S, Gutt-Will M, Schucht P, Dettmer MS, Vassella E. Diagnostic implications of TERT promoter mutation status in diffuse gliomas in a routine clinical setting. Virchows Arch 2017; 471:641-649. [PMID: 28823044 DOI: 10.1007/s00428-017-2216-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/21/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022]
Abstract
IDH (isocitrate dehydrogenase) gene mutations are present in most diffuse low-grade gliomas and define the clinico-pathological core of the respective morphologically defined entities. Conversely, according to the 2016 WHO classification, the majority of glioblastomas belong to the IDH-wildtype category, which is defined by exclusion. TERT (telomerase reverse transcriptase gene) promoter mutations have been suggested as a molecular marker for primary glioblastomas. We analyzed molecular, histopathological, and clinical profiles of a series of 110 consecutive diffuse gliomas (WHO grades II-IV) diagnosed at our institution, in which TERT promoter mutation analysis had been performed as part of diagnostic work-up. A diagnostic algorithm based on IDH, TERT, ATRX, H3F3A, and 1p19q co-deletion status resulted in a consistent molecular classification with only 14 (13%) marker-negative tumors. TERT promoter mutations were present in 77% of IDH-wildtype tumors. The TERT/IDH-wildtype category was highly enriched for tumors with unconventional clinical or histological features. Molecular classes were associated with distinct rates of MGMT promoter methylation. We conclude that, in a routine diagnostic setting, TERT promoter mutations define a relatively homogeneous core group among IDH-wildtype diffuse gliomas that includes the majority of primary glioblastomas as well as their putative precursor lesions.
Collapse
Affiliation(s)
- Ekkehard Hewer
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland.
| | - Nadine Prebil
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland
| | - Sabina Berezowska
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland
| | - Marielena Gutt-Will
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Philippe Schucht
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Matthias S Dettmer
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland
| | - Erik Vassella
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland
| |
Collapse
|
25
|
Abstract
Length of the telomere (TL), a structure at the tip of chromosome that protects and ensures stability, is determined by multi-protein complexes such as telosome/shelterin and telomerase. Earlier studies from our laboratory show that longer TL has potential to be positive predictive biomarker of clinical outcome to anti-epidermal growth factor receptor (EGFR) monoclonal antibody therapy in patients with KRAS WT metastatic colorectal cancer. Although there is extensive literature suggesting the role of shelterin and telomerase, not much literature exists that describes the role of EGFR and KRAS pathway in regulating TL. This detailed review focuses on an insight into various components, including proteins, enzymes and transcription factors, interlinking between EGFR pathways and telomerase that regulate TL.
Collapse
|
26
|
Komori T. The 2016 WHO Classification of Tumours of the Central Nervous System: The Major Points of Revision. Neurol Med Chir (Tokyo) 2017; 57:301-311. [PMID: 28592714 PMCID: PMC5566703 DOI: 10.2176/nmc.ra.2017-0010] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The updated 2016 edition of the World Health Organization (WHO) Classification of Tumours of the Central Nervous System (CNS) uses molecular parameters and the histology to define the main tumor categories for the first time. This represents a shift from the traditional principle of using neuropathological diagnoses, which are primarily based on the microscopic features, to using molecularly-oriented diagnoses. Major restructuring was made with regard to diffuse gliomas, medulloblastomas and other embryonal tumors. New entities that are defined by both the histological and molecular features include glioblastoma, isocitrate dehydrogenase (IDH)-wildtype and glioblastoma, IDH-mutant; diffuse midline glioma, H3 K27M-mutant; RELA fusion-positive ependymoma; medulloblastoma, wingless (WNT)-activated and medulloblastoma, sonic hedgehog (SHH)-activated; and embryonal tumor with multilayered rosettes, C19MC-altered. In addition, some entities that are no longer diagnostically relevant—such as CNS-primitive neuroectodermal tumor—have been deleted from this updated edition. The WHO2016 certainly facilitates clinical and basic research to improve the diagnosis of brain tumors and patient care.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital
| |
Collapse
|
27
|
Purkait S, Miller CA, Kumar A, Sharma V, Pathak P, Jha P, Sharma MC, Suri V, Suri A, Sharma B, Fulton RS, Kale SS, Dahiya S, Sarkar C. ATRX in Diffuse Gliomas With its Mosaic/Heterogeneous Expression in a Subset. Brain Pathol 2017; 27:138-145. [PMID: 26833422 PMCID: PMC8029305 DOI: 10.1111/bpa.12364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/24/2016] [Indexed: 12/25/2022] Open
Abstract
This study aims (1) to evaluate ATRX expression in different grades and subtypes of gliomas and correlate with other hallmark genetic alterations, (2) to identify and characterize mosaic/heterogeneous staining in gliomas in terms of mutation status. One hundred seventy six cases of glioma were assessed for ATRX immunohistochemistry and subdivided into positive, negative and mosaic/heterogeneous staining patterns. Five cases with heterogeneous staining were further subjected to next generation sequencing. Higher frequency of ATRX immune-negativity was detected in grade II/III astrocytic, oligoastrocytic tumors and secondary glioblastomas (GBMs), while infrequent in primary GBMs and rare in oligodendrogliomas. Loss of expression was significantly associated with IDH1 and/or TP53 mutation, while mutually exclusive with 1p/19q codeletion. Mosaic/heterogeneous staining was detected exclusively in GBMs (21.2%). Two different types of mosaic staining were identified (1) Admixture of positive and negative nuclei or intermixed mosaic and (2) Separate fragments with positive and negative/intermixed mosaic staining. ATRX mutation was identified in 2/5 (40%) cases with mosaic staining while one case showed DAXX mutation. All these cases were characterized by distinctly separate immune-negative and positive/intermixed foci. Hence, it is suggested that cases with heterogeneous staining (especially those with distinctly negative fragments) should be subjected to mutation analysis.
Collapse
Affiliation(s)
- Suvendu Purkait
- Department of PathologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | | | - Anupam Kumar
- Department of PathologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - Vikas Sharma
- Department of PathologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - Pankaj Pathak
- Department of PathologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - Prerana Jha
- Department of PathologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - Mehar Chand Sharma
- Department of PathologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - Vaishali Suri
- Department of PathologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - Ashish Suri
- Department of NeurosurgeryAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - B.S. Sharma
- Department of NeurosurgeryAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - Robert S. Fulton
- McDonnell Genome Institute, Washington University School of MedicineSt. LouisMO
| | - Shashank Sharad Kale
- Department of NeurosurgeryAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - Sonika Dahiya
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMO
| | - Chitra Sarkar
- Department of PathologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| |
Collapse
|
28
|
Amorim JP, Santos G, Vinagre J, Soares P. The Role of ATRX in the Alternative Lengthening of Telomeres (ALT) Phenotype. Genes (Basel) 2016; 7:E66. [PMID: 27657132 PMCID: PMC5042396 DOI: 10.3390/genes7090066] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022] Open
Abstract
Telomeres are responsible for protecting chromosome ends in order to prevent the loss of coding DNA. Their maintenance is required for achieving immortality by neoplastic cells and can occur by upregulation of the telomerase enzyme or through a homologous recombination-associated process, the alternative lengthening of telomeres (ALT). The precise mechanisms that govern the activation of ALT or telomerase in tumor cells are not fully understood, although cellular origin may favor one of the other mechanisms that have been found thus far in mutual exclusivity. Specific mutational events influence ALT activation and maintenance: a unifying frequent feature of tumors that acquire this phenotype are the recurrent mutations of the Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) or Death-Domain Associated Protein (DAXX) genes. This review summarizes the established criteria about this phenotype: its prevalence, theoretical molecular mechanisms and relation with ATRX, DAXX and other proteins (directly or indirectly interacting and resulting in the ALT phenotype).
Collapse
Affiliation(s)
- João P Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal.
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto 4050-313, Portugal.
| | - Gustavo Santos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal.
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto 4050-313, Portugal.
| | - João Vinagre
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal.
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto 4050-313, Portugal.
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal.
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto 4050-313, Portugal.
- Departamento de Patologia e Oncologia, Faculdade de Medicina da Universidade do Porto, Porto 4200-139, Portugal.
| |
Collapse
|
29
|
Cardona AF, Rojas L, Wills B, Behaine J, Jiménez E, Hakim F, Useche N, Bermúdez S, Arrieta O, Mejía JA, Ramón JF, Carranza H, Vargas C, Otero J, González D, Rodríguez J, Ortiz LD, Cifuentes H, Balaña C. Genotyping low-grade gliomas among Hispanics. Neurooncol Pract 2016; 3:164-172. [PMID: 31386063 DOI: 10.1093/nop/npv061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 11/12/2022] Open
Abstract
Background Low-grade gliomas (LGGs) are classified by the World Health Organization as astrocytoma (DA), oligodendroglioma (OD), and mixed oligoastrocytoma (OA). TP53 mutation and 1p19q codeletion are the most-commonly documented molecular abnormalities. Isocitrate dehydrogenase (IDH) 1/2 mutations are frequent in LGGs; however, IDH-negative gliomas can also occur. Recent research suggests that ATRX plays a significant role in gliomagenesis. Methods We investigated p53 and Olig2 protein expression, and MGMT promoter methylation, 1p19q codeletion, IDH, and ATRX status in 63 Colombian patients with LGG. The overall survival (OS) rate was estimated and compared according to genotype. Results The most common histology was DA, followed by OD and OA. IDH1/2 mutations were found in 57.1% and MGMT+ (positive status of MGMT promoter methylation methyl-guanyl-methyl-transferase gene) in 65.1% of patients, while overexpression of p53 and Olig2 was present in 30.2% and 44.4%, respectively, and 1p19q codeletion in 34.9% of the patients. Overexpression of ATRX was analyzed in 25 patients, 16% tested positive and were also mutations in isocitrate dehydrogenase and negative 1p19q-codelition. The median follow-up was 15.8 months (95% CI, 7.6-42.0) and OS was 39.2 months (95% CI, 1.3-114). OS was positively and significantly affected by MGMT+, 1p19q codeletion, surgical intervention extent, and number of lobes involved. Multivariate analysis confirmed that MGMT methylation status and 1p19q codeletion affected OS. Conclusions This is the first study evaluating the molecular profile of Hispanic LGG patients. Findings confirmed the prognostic relevance of MGMT methylation and 1p19q codeletion, but do not support IDH1/2 mutation as a relevant marker. The latter may be explained by sample size and selection bias. ATRX alterations were limited to patients with DA and were mutations in isocitrate dehydrogenase and negative 1p19q-codelition.
Collapse
Affiliation(s)
- Andrés Felipe Cardona
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - Leonardo Rojas
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - Beatriz Wills
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - José Behaine
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - Enrique Jiménez
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - Fernando Hakim
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - Nicolás Useche
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - Sonia Bermúdez
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - Oscar Arrieta
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - Juan Armando Mejía
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - Juan Fernando Ramón
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - Hernán Carranza
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - Carlos Vargas
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - Jorge Otero
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - Diego González
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - July Rodríguez
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - León Darío Ortiz
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - Hernando Cifuentes
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| | - Carmen Balaña
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia (A.F.C., H.C., C.V., J.O.); Foundation for Clinical and Applied Cancer Research- FICMAC, Bogotá, Colombia (A.F.C., B.W., H.C., C.V., J.O., J.R.); Institute of Neuroscience, Universidad El Bosque, Bogotá, Colombia (A.F.C., J.B., E.J., F.H., N.U., S.B., D.G.); Internal Medicicine Depatment, Universidad del Bosque-Fundación Santa Fe de Bogotá, Bogotá, Colombia (B.W.); Clinical Oncology Department, Centro Javeriano de Oncología, Hospital Universitario San Ignacio, Bogotá, Colombia (L.R.); Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia (F.H., J.A.M., J.F.R., E.J.); Radiology Department, Division of Neuro-radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia (N.U., S.B.); Experimental Oncology Laboratory, Instituto Nacional de Cancerología (INCan), México City, México (O.A.); Clinical Oncology Department, Division of Neuro-Oncology, Clínica de Las Américas, Medellín, Colombia (L.D.O.); Neurosurgery Department, Clínica del Country, Bogotá, Colombia (H.C.); Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain (C.B.)
| |
Collapse
|
30
|
Chaurasia A, Park SH, Seo JW, Park CK. Immunohistochemical Analysis of ATRX, IDH1 and p53 in Glioblastoma and Their Correlations with Patient Survival. J Korean Med Sci 2016; 31:1208-14. [PMID: 27478330 PMCID: PMC4951549 DOI: 10.3346/jkms.2016.31.8.1208] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 05/12/2016] [Indexed: 01/29/2023] Open
Abstract
Glioblastoma (GBM) can be classified into molecular subgroups, on the basis of biomarker expression. Here, we classified our cohort of 163 adult GBMs into molecular subgroups according to the expression of proteins encoded by genes of alpha thalassemia/mental retardation syndrome X-linked (ATRX), isocitrate dehydrogenase (IDH) and TP53. We focused on the survival rate of molecular subgroups, depending on each and various combination of these biomarkers. ATRX, IDH1 and p53 protein expression were evaluated immunohistochemically and Kaplan-Meier analysis were carried out in each group. A total of 15.3% of enrolled GBMs demonstrated loss of ATRX expression (ATRX-), 10.4% expressed an aberrant IDH1 R132H protein (IDH1+), and 48.4% exhibited p53 overexpression (p53+). Survival differences were statistically significant when single protein expression or different combinations of expression of these proteins were analyzed. In conclusion, in the case of single protein expression, the patients with each IDH1+, or ATRX-, or p53- GBMs showed better survival than patients with counterparts protein expressed GBMs. In the case of double protein pairs, the patients with ATRX-/p53-, ATRX-/IDH1+, and IDH1+/p53- GBMs revealed better survival than the patients with GBMs with the remained pairs. In the case of triple protein combinations, the patients with ATRX-/p53-/IDH+ showed statistically significant survival gain than the patients with remained combination of proteins-expression status. Therefore, these three biomarkers, individually and as a combination, can stratify GBMs into prognostically relevant subgroups and have strong prognostic values in adult GBMs.
Collapse
Affiliation(s)
- Ajay Chaurasia
- Department of Pathology, Seoul National University, College of Medicine, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University, College of Medicine, Seoul, Korea
| | - Jeong-Wook Seo
- Department of Pathology, Seoul National University, College of Medicine, Seoul, Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University, College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
hTERT promoter methylation in meningiomas and central nervous hemangiopericytomas. J Neurooncol 2016; 130:79-87. [PMID: 27465278 DOI: 10.1007/s11060-016-2226-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/22/2016] [Indexed: 01/30/2023]
Abstract
In meningiomas, prognostic impact of mutations in the human telomerase reverse transcriptase (hTERT) promoter region was recently shown, while studies of promoter methylation and analyses of hemangiopericytomas are lacking. hTERT promoter methylation was analyzed in 78 meningioma and 38 meningeal hemangiopericytoma samples by methylation-specific polymerase chain reaction (MS-PCR) and compared with histopathological and clinical variables and with immunohistochemical hTERT expression. Promoter methylation was found in 62 samples (53 %) and tended to be higher in meningiomas (N = 19/41, 46 %) than in hemangiopericytomas (N = 8/33, 24 %, p = .057). In meningiomas, methylation was 16, 60 and 77 % in grade I, II and III tumors (p < .001) and higher in recurrent (N = 33/37, 89 %) than in primary diagnosed (N = 19/41, 46 %) tumors (OR 5.14, 95 % CI 1.34-19.71, p = .017). Univariate analyses showed shorter mean progression free and overall survival in methylated than in unmethylated individuals (26 vs. 100 months; p = .045 and 110 vs. 113 months; p = .025, respectively). Moreover, hTERT expression was found in 70 % (N = 53) and was more frequent in methylated than in unmethylated samples (78 vs. 52 %, OR 3.36, 95 % CI 1.20-9.40, p = .021). In hemangiopericytomas, methylation was similar in grade II (24 %) and III (25 %, p > .05) and in primary (24 %) and recurrent tumors (40 %, p > .05). hTERT expression was similar as compared to meningiomas (74 %, N = 28, p > .05) but was independent of promoter methylation (OR 4.26, 95 % CI 0.47-39.0, p = .199). In meningeal tumors, hTERT promoter methylation is more common than mutations and in meningiomas but not in hemangiopericytomas positively correlated with WHO grade and hTERT expression.
Collapse
|
32
|
Tanboon J, Williams EA, Louis DN. The Diagnostic Use of Immunohistochemical Surrogates for Signature Molecular Genetic Alterations in Gliomas. J Neuropathol Exp Neurol 2016; 75:4-18. [PMID: 26671986 DOI: 10.1093/jnen/nlv009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A number of key mutations that affect treatment and prognosis have been identified in human gliomas. Two major ways to identify these mutations in a tumor sample are direct interrogation of the mutated DNA itself and immunohistochemistry to assess the effects of the mutated genes on proteins. Immunohistochemistry is an affordable, robust, and widely available technology that has been in place for decades. For this reason, the use of immunohistochemical approaches to assess molecular genetic changes has become an essential component of state-of-the-art practice. In contrast, even though DNA sequencing technologies are undergoing rapid development, many medical centers do not have access to such methodologies and may be thwarted by the relatively high costs of sending out such tests to reference laboratories. This review summarizes the current experience using immunohistochemistry of glioma samples to identify mutations in IDH1, TP53, ATRX, histone H3 genes, BRAF, EGFR, MGMT, CIC, and FUBP1 as well as guidelines for prudent use of DNA sequencing as a supplemental method.
Collapse
|
33
|
Ebrahimi A, Skardelly M, Bonzheim I, Ott I, Mühleisen H, Eckert F, Tabatabai G, Schittenhelm J. ATRX immunostaining predicts IDH and H3F3A status in gliomas. Acta Neuropathol Commun 2016; 4:60. [PMID: 27311324 PMCID: PMC4910252 DOI: 10.1186/s40478-016-0331-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022] Open
Abstract
Gliomas are the most frequent intraaxial CNS neoplasms with a heterogeneous molecular background. Recent studies on diffuse gliomas have shown frequent alterations in the genes involved in chromatin remodelling pathways such as α-thalassemia/mental-retardation-syndrome-X-linked gene (ATRX). Yet, the reliability of ATRX in predicting isocitrate dehydrogenase (IDH) and H3 histone, family 3A (H3F3A) mutations in gliomas, is unclear.We analysed the ATRX expression status by immunohistochemistry, in a large series of 1064 gliomas and analysed the results in correlation to IDH, H3F3A and loss of heterozygosity (LOH) 1p/19q status in these tumors. We also investigated the prognostic potential of ATRX concerning the clinical outcome of patients with diffuse gliomas.According to our results, loss of nuclear ATRX expression was accompanied with an astrocytic tumor lineage and a younger age of onset. ATRX loss in astrocytomas was also strongly associated with IDH1/2 and H3F3A mutation (p < 0.0001). Among 196 glial tumors with nuclear ATRX loss, 173 (89 %) had an IDH1 or IDH2 mutation. Among the remaining 23 cases (11 %) with ATRX loss and IDH wild type status, 7 cases had a H3F3A G34R mutation (3 %) and 2 cases had a H3F3A K27M mutation (1 %). ATRX retention in IDH1/2 mutant tumors was strongly associated with LOH 1p/19q and oligodendroglioma histology (p < 0.0001). We also confirmed the significant prognostic role of ATRX. Diffuse gliomas with ATRX loss (n = 137, median 1413 days, 95 % CI: 1065-1860 days) revealed a significantly better clinical outcome compared with tumors with ATRX retention (n = 335, median: 609, 95 % CI: 539-760 days, HR = 1.81, p < 0.0001).In conclusion, ATRX is a potential marker for prediction of IDH/H3F3A mutations and substratification of diffuse gliomas into survival relevant tumor groups. Such classification is of great importance for further clinical decision making especially concerning the therapeutic options available for diffuse gliomas.
Collapse
|
34
|
Intratumoral diversity of telomere length in individual neuroblastoma tumors. Oncotarget 2016; 6:7493-503. [PMID: 25595889 PMCID: PMC4480695 DOI: 10.18632/oncotarget.2115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/17/2014] [Indexed: 12/21/2022] Open
Abstract
The purpose of the work was to investigate telomere length (TL) and mechanisms involved in TL maintenance in individual neuroblastoma (NB) tumors. Primary NB tumors from 102 patients, ninety Italian and twelve Spanish, diagnosed from 2000 to 2008 were studied. TL was investigated by quantitative fluorescence in situ hybridization (IQ-FISH) that allows to analyze individual cells in paraffin-embedded tissues. Fluorescence intensity of chromosome 2 centromere was used as internal control to normalize TL values to ploidy. Human telomerase reverse transcriptase (hTERT) expression was detected by immunofluorescence in 99/102 NB specimens. The main findings are the following: 1) two intratumoral subpopulations of cancer cells displaying telomeres of different length were identified in 32/102 tumors belonging to all stages. 2) hTERT expression was detected in 99/102 tumors, of which 31 displayed high expression and 68 low expression. Alternative lengthening of telomeres (ALT)-mechanism was present in 60/102 tumors, 20 of which showed high hTERT expression. Neither ALT-mechanism nor hTERT expression correlated with heterogeneous TL. 3) High hTERT expression and ALT positivity were associated with significantly reduced Overall Survival. 4) High hTERT expression predicted relapse irrespective of patient age. Intratumoral diversity in TL represents a novel feature in NB. In conclusion, diversity of TL in individual NB tumors was strongly associated with disease progression and death, suggesting that these findings are of translational relevance. The combination of high hTERT expression and ALT positivity may represent a novel biomarker of poor prognosis that deserves further investigation.
Collapse
|
35
|
Ikemura M, Shibahara J, Mukasa A, Takayanagi S, Aihara K, Saito N, Aburatani H, Fukayama M. Utility of ATRX immunohistochemistry in diagnosis of adult diffuse gliomas. Histopathology 2016; 69:260-7. [PMID: 26741321 DOI: 10.1111/his.12927] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022]
Abstract
AIMS We performed an immunohistochemical analysis of alpha-thalassaemia/mental retardation syndrome X-linked (ATRX) expression in adult diffuse gliomas, with reference to clinicopathological and genetic features, to determine the utility of this analysis in diagnostic practice. METHODS AND RESULTS A total of 193 adult diffuse gliomas underwent immunohistochemical analysis. In areas in which internal controls, neurones, glia and blood vessels were properly stained, the ATRX immunoreactivity of tumour cells was either almost totally absent or completely retained in all cases. There was perfect concordance between the immunohistochemical results and ATRX mutation status, which was known in 19 cases. ATRX loss was observed in 54.5, 30.8 and 0.0% of grades II/III astrocytomas, oligoastrocytomas and oligodendrogliomas, respectively, and 12.7% of glioblastomas. In grades II/III gliomas, most ATRX-loss cases (92.3%) had IDH1/2 mutations. ATRX loss was associated significantly with TP53 mutation and p53 overexpression (P < 0.001), but was never accompanied by 1p/19q co-deletion. IDH1/2 mutation in ATRX-loss tumours was less frequent in glioblastomas than in grades II/III gliomas (P < 0.001). Further, there was no significant association between ATRX loss and p53 overexpression in glioblastomas. ATRX-loss glioblastomas affected younger patients (P < 0.001) and occurred more frequently in locations other than the cerebral hemispheres (P = 0.006). Most grades II/III gliomas (93.3%) were categorized into three molecular subtypes based on the status of IDH1/2 mutation, ATRX immunohistochemistry and 1p/19q co-deletion. CONCLUSIONS Distinct histological and molecular characteristics of adult diffuse gliomas with and without ATRX immunoreactivity indicate the utility of ATRX immunohistochemistry in diagnostic practice.
Collapse
Affiliation(s)
- Masako Ikemura
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Junji Shibahara
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Koki Aihara
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Cahill DP, Louis DN, Cairncross JG. Molecular background of oligodendroglioma: 1p/19q, IDH, TERT, CIC and FUBP1. CNS Oncol 2015; 4:287-94. [PMID: 26545048 DOI: 10.2217/cns.15.32] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Oligodendroglioma is the quintessential molecularly-defined brain tumor. The characteristic whole-arm loss of the long arm of chromosome 1 and the short arm of chromosome 19 (1p/19q-codeletion) within the genome of these tumors facilitated the reproducible molecular identification of this subcategory of gliomas. More recently, recurrent molecular genetic alterations have been identified to occur concurrently with 1p/19q-codeletion, and definitively identify these tumors, including mutations in IDH1/2, CIC, FUBP1, and the TERT promoter, as well as the absence of ATRX and TP53 alterations. These findings provide a foundation for the consistent diagnosis of this tumor type, upon which a generation of clinical investigators have assembled a strong evidence base for the effective treatment of this disease with radiation and chemotherapy.
Collapse
Affiliation(s)
- Daniel P Cahill
- Department of Neurosurgery & Translational Neuro-Oncology Laboratory, Harvard Medical School, Boston, MA 02115, USA.,Massachusetts General Hospital Cancer Center, Harvard Medical School, 32 Fruit Street - Yawkey 9E, Boston, MA 02114, USA
| | - David N Louis
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 32 Fruit Street - Yawkey 9E, Boston, MA 02114, USA.,Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - John Gregory Cairncross
- Southern Alberta Cancer Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
37
|
Eid R, Demattei MV, Episkopou H, Augé-Gouillou C, Decottignies A, Grandin N, Charbonneau M. Genetic Inactivation of ATRX Leads to a Decrease in the Amount of Telomeric Cohesin and Level of Telomere Transcription in Human Glioma Cells. Mol Cell Biol 2015; 35:2818-30. [PMID: 26055325 PMCID: PMC4508314 DOI: 10.1128/mcb.01317-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/17/2015] [Accepted: 03/30/2015] [Indexed: 01/09/2023] Open
Abstract
Mutations in ATRX (alpha thalassemia/mental retardation syndrome X-linked), a chromatin-remodeling protein, are associated with the telomerase-independent ALT (alternative lengthening of telomeres) pathway of telomere maintenance in several types of cancer, including human gliomas. In telomerase-positive glioma cells, we found by immunofluorescence that ATRX localized not far from the chromosome ends but not exactly at the telomere termini. Chromatin immunoprecipitation (ChIP) experiments confirmed a subtelomeric localization for ATRX, yet short hairpin RNA (shRNA)-mediated genetic inactivation of ATRX failed to trigger the ALT pathway. Cohesin has been recently shown to be part of telomeric chromatin. Here, using ChIP, we showed that genetic inactivation of ATRX provoked diminution in the amount of cohesin in subtelomeric regions of telomerase-positive glioma cells. Inactivation of ATRX also led to diminution in the amount of TERRAs, noncoding RNAs resulting from transcription of telomeric DNA, as well as to a decrease in RNA polymerase II (RNAP II) levels at the telomeres. Our data suggest that ATRX might establish functional interactions with cohesin on telomeric chromatin in order to control TERRA levels and that one or the other or both of these events might be relevant to the triggering of the ALT pathway in cancer cells that exhibit genetic inactivation of ATRX.
Collapse
Affiliation(s)
- Rita Eid
- UMR CNRS 7292, Université François-Rabelais de Tours, Tours, France
| | | | - Harikleia Episkopou
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Catholic University of Louvain, Brussels, Belgium
| | - Corinne Augé-Gouillou
- Equipe Associée 6306, Instabilité Génétique et Cancer, Université François-Rabelais de Tours, Tours, France
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Catholic University of Louvain, Brussels, Belgium
| | - Nathalie Grandin
- UMR CNRS 7292, Université François-Rabelais de Tours, Tours, France
| | | |
Collapse
|
38
|
Hewer E, Vajtai I, Dettmer MS, Berezowska S, Vassella E. Combined ATRX/IDH1 immunohistochemistry predicts genotype of oligoastrocytomas. Histopathology 2015; 68:272-8. [PMID: 26016385 DOI: 10.1111/his.12743] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/24/2015] [Indexed: 11/29/2022]
Abstract
AIMS To assess whether in oligoastrocytomas ATRX deficiency, as a surrogate of the alternative lengthening of telomeres (ALT) pathway, has a role in predicting the presence or absence of loss of heterozygosity (LOH) of 1p and 19q, the genetic signature of oligodendroglial differentiation and a favourable prognostic marker. METHODS AND RESULTS A series of 54 oligoastrocytomas were investigated by immunohistochemistry as well as microsatellite analysis for LOH 1p19q. Genetic findings were correlated with morphological assessment. CONCLUSIONS ATRX deficiency was mutually exclusive with LOH. Conversely, ATRX-proficient tumours immunoreactive for R132H-mutant isocitrate dehydrogenase 1 (IDH1) showed a high rate (85%) of LOH. A more oligodendroglioma-like morphology was associated with a higher rate of LOH even in the morphologically ambiguous group of oligoastrocytomas. Our findings support the concept that oligoastrocytomas represent a morphological grey zone, rather than a group of truly 'mixed' or 'intermediate' tumours. More precise classification of diffuse gliomas may also improve grading of borderline cases. We propose an immunohistochemical algorithm for classification of morphologically ambiguous diffuse gliomas.
Collapse
Affiliation(s)
- Ekkehard Hewer
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Istvan Vajtai
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | | | - Erik Vassella
- Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
39
|
Reddel RR. Telomere maintenance mechanisms in cancer: clinical implications. Curr Pharm Des 2015; 20:6361-74. [PMID: 24975603 PMCID: PMC4262939 DOI: 10.2174/1381612820666140630101047] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 01/20/2023]
Abstract
The presence of immortal cell populations with an up-regulated telomere maintenance mechanism (TMM) is an almost universal characteristic of cancers, whereas normal somatic cells are unable to prevent proliferation-associated telomere shortening and have a limited proliferative potential. TMMs and related aspects of telomere structure and function therefore appear to be ideal targets for the development of anticancer therapeutics. Such treatments would be targeted to a specific cancer-related molecular abnormality, and also be broad-spectrum in that they would be expected to be potentially applicable to most cancers. However, the telomere biology of normal and malignant human cells is a relatively young research field with large numbers of unanswered questions, so the optimal design of TMM-targeted therapeutic approaches remains unclear. This review outlines the opportunities and challenges presented by telomeres and TMMs for clinical management of cancer.
Collapse
Affiliation(s)
- Roger R Reddel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, New South Wales 2145, Australia.
| |
Collapse
|
40
|
Molecular classification defines 4 prognostically distinct glioma groups irrespective of diagnosis and grade. J Neuropathol Exp Neurol 2015; 74:241-9. [PMID: 25668564 DOI: 10.1097/nen.0000000000000167] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
According to World Health Organization criteria, diffuse gliomas are divided into several histological subtypes, including astrocytomas, oligodendrogliomas, and oligoastrocytomas, and 4 malignancy grades (I-IV). Molecular alterations, such as the isocitrate dehydrogenase gene (IDH) mutation or 1p/19q loss, are found in these tumors but are not included in the current classification system. Recently, mutation of α thalassemia/mental retardation syndrome X-linked (ATRX) gene and its loss of expression have been reported in infiltrating gliomas. We evaluated ATRX protein expression in 272 gliomas and its association with molecular and clinical features. Loss of ATRX expression was more common in tumors with an astrocytic component (astrocytomas II/III, 46.4%; oligoastrocytomas, 47.5%) but was uncommon in oligodendrogliomas (7.3%) and glioblastomas (0.9%). In astrocytic tumors, loss of ATRX expression was significantly associated with longer overall survival. Remarkably, on the basis of IDH mutation, 1p/19q codeletion, and ATRX expression, our study defined 4 molecularly and prognostically different groups of gliomas, showing the relevance of ATRX expression as a new marker for refining the molecular classification of gliomas and for distinguishing clinically distinct prognostic subgroups of patients.
Collapse
|
41
|
Abstract
Recent advances in molecular diagnostics have led to better understanding of glioma tumorigenesis and biology. Numerous glioma biomarkers with diagnostic, prognostic, and predictive value have been identified. Although some of these markers are already part of the routine clinical management of glioma patients, data regarding others are limited and difficult to apply routinely. In addition, multiple methods for molecular subclassification have been proposed either together with or as an alternative to the current morphologic classification and grading scheme. This article reviews the literature regarding glioma biomarkers and offers a few practical suggestions.
Collapse
Affiliation(s)
- Melike Pekmezci
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, #M551, Box 0102, San Francisco, CA 94143, USA
| | - Arie Perry
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, #M551, Box 0102, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
42
|
Pal D, Sharma U, Khajuria R, Singh SK, Kakkar N, Prasad R. Augmented telomerase activity, reduced telomere length and the presence of alternative lengthening of telomere in renal cell carcinoma: plausible predictive and diagnostic markers. Gene 2015; 562:145-51. [PMID: 25769384 DOI: 10.1016/j.gene.2015.02.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/04/2015] [Accepted: 02/12/2015] [Indexed: 12/11/2022]
Abstract
In this study, we analyzed 100 cases of renal cell carcinoma (RCC) for telomerase activity, telomere length and alternative lengthening of telomeres (ALT) using the TRAP assay, TeloTTAGGG assay kit and immunohistochemical analysis of ALT associated promyelocytic leukemia (PML) bodies respectively. A significantly higher (P=0.000) telomerase activity was observed in 81 cases of RCC which was correlated with clinicopathological features of tumor for instance, stage (P=0.008) and grades (P=0.000) but not with the subtypes of RCC (P = 0.355). Notwithstanding, no correlation was found between telomerase activity and subtypes of RCC. Strikingly, the telomere length was found to be significantly shorter in RCC (P=0.000) to that of corresponding normal renal tissues and it is well correlated with grades (P=0.016) but not with stages (P=0.202) and subtypes (P=0.669) of RCC. In this study, telomere length was also negatively correlated with the age of patients (r(2)=0.528; P=0.000) which supports the notion that it could be used as a marker for biological aging. ALT associated PML bodies containing PML protein was found in telomerase negative cases of RCC. It suggests the presence of an ALT pathway mechanism to maintain the telomere length in telomerase negative RCC tissues which was associated with high stages of RCC, suggesting a prevalent mechanism for telomere maintenance in high stages. In conclusion, the telomerase activity and telomere length can be used as a diagnostic as well as a predictive marker in RCC. The prevalence of ALT mechanism in high stages of RCC is warranted for the development of anti-ALT inhibitors along with telomerase inhibitor against RCC as a therapeutic approach.
Collapse
Affiliation(s)
- Deeksha Pal
- Department of Biochemistry, PGIMER, Chandigarh, India
| | | | | | | | | | | |
Collapse
|
43
|
Liau JY, Tsai JH, Jeng YM, Lee JC, Hsu HH, Yang CY. Leiomyosarcoma with alternative lengthening of telomeres is associated with aggressive histologic features, loss of ATRX expression, and poor clinical outcome. Am J Surg Pathol 2015; 39:236-44. [PMID: 25229770 DOI: 10.1097/pas.0000000000000324] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leiomyosarcoma is an aggressive soft tissue sarcoma with poor patient survival. Recently, it was shown that 53% to 62% of leiomyosarcomas use the alternative lengthening of telomeres (ALT) as their telomere maintenance mechanism. The molecular basis of this mechanism has not been elucidated. Studies of pancreatic neuroendocrine tumor have suggested that the inactivation of either α-thalassemia/mental retardation syndrome X-linked (ATRX) or death domain-associated (DAXX) protein is associated with the ALT phenotype. In this study, we sought to determine the clinicopathologic features of leiomyosarcoma with the ALT phenotype and the possible relationship between this phenotype and ATRX/DAXX expression. Telomerase reverse transcriptase gene (TERT) promoter mutation analysis was also performed. Ninety-two leiomyosarcomas derived from the uterus, retroperitoneum/intra-abdomen, and various other sites were analyzed. Telomere-specific fluorescence in situ hybridization revealed that 59% (51/86) of leiomyosarcomas had the ALT phenotype. Loss of ATRX expression was observed in 33% of the tumors (30/92), and all but 2 ATRX-deficient tumors were ALT positive. Both the ALT phenotype and loss of ATRX expression were associated with epithelioid/pleomorphic cell morphology, tumor necrosis, and poor differentiation. None of the 92 cases lost DAXX expression. No TERT promoter mutation was detected (n=39). For survival analysis, poor differentiation, high FNCLCC grade, tumor size, and ALT phenotype were correlated with poor overall survival in univariate analysis. Tumor size and ALT phenotype remained independent prognostic factors in multivariate analysis. We concluded that the ALT phenotype in the leiomyosarcoma is associated with aggressive histologic features, loss of ATRX expression, and poor clinical outcome.
Collapse
Affiliation(s)
- Jau-Yu Liau
- Departments of *Pathology ‡Surgery, National Taiwan University Hospital †Graduate Institute of Pathology, National Taiwan University College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Low-grade gliomas (LGG) constitute grades I and II tumors of astrocytic and grade II tumors of oligodendroglial lineage. Although these tumors are typically slow growing, they may be associated with significant morbidity and mortality because of recurrence and malignant progression, even in the setting of optimal resection. LGG in pediatric and adult age groups are currently classified by morphologic criteria. Recent years have heralded a molecular revolution in understanding brain tumors, including LGG. Next-generation sequencing has definitively demonstrated that pediatric and adult LGG fundamentally differ in their underlying molecular characteristics, despite being histologically similar. Pediatric LGG show alterations in FGFR1 and BRAF in pilocytic astrocytomas and FGFR1 alterations in diffuse astrocytomas, each converging on the mitogen-activated protein kinase signaling pathway. Adult LGG are characterized by IDH1/2 mutations and ATRX mutations in astrocytic tumors and IDH1/2 mutations and 1p/19q codeletions in oligodendroglial tumors. TERT promoter mutations are also noted in LGG and are mainly associated with oligodendrogliomas. These findings have considerably refined approaches to classifying these tumors. Moreover, many of the molecular alterations identified in LGG directly impact on prognosis, tumor biology, and the development of novel therapies.
Collapse
|
45
|
Chang FTM, Chan FL, R McGhie JD, Udugama M, Mayne L, Collas P, Mann JR, Wong LH. CHK1-driven histone H3.3 serine 31 phosphorylation is important for chromatin maintenance and cell survival in human ALT cancer cells. Nucleic Acids Res 2015; 43:2603-14. [PMID: 25690891 PMCID: PMC4357709 DOI: 10.1093/nar/gkv104] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human ALT cancers show high mutation rates in ATRX and DAXX. Although it is well known that the absence of ATRX/DAXX disrupts H3.3 deposition at heterochromatin, its impact on H3.3 deposition and post-translational modification in the global genome remains unclear. Here, we explore the dynamics of phosphorylated H3.3 serine 31 (H3.3S31ph) in human ALT cancer cells. While H3.3S31ph is found only at pericentric satellite DNA repeats during mitosis in most somatic human cells, a high level of H3.3S31ph is detected on the entire chromosome in ALT cells, attributable to an elevated CHK1 activity in these cells. Drug inhibition of CHK1 activity during mitosis and expression of mutant H3.3S31A in these ALT cells result in a decrease in H3.3S31ph levels accompanied with increased levels of phosphorylated H2AX serine 139 on chromosome arms and at the telomeres. Furthermore, the inhibition of CHK1 activity in these cells also reduces cell viability. Our findings suggest a novel role of CHK1 as an H3.3S31 kinase, and that CHK1-mediated H3.3S31ph plays an important role in the maintenance of chromatin integrity and cell survival in ALT cancer cells.
Collapse
Affiliation(s)
- Fiona T M Chang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - F Lyn Chan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - James D R McGhie
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Maheshi Udugama
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Lynne Mayne
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Philippe Collas
- Institute of Basic Medical Sciences, and Norwegian Center for Stem Cell Research, Faculty of Medicine, University of Oslo, Oslo 0317, Norway
| | - Jeffrey R Mann
- Stem Cell Epigenetics Laboratory, Murdoch Childrens Research Institute, Flemington Road, Parkville, Victoria 3052, Australia
| | - Lee H Wong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
46
|
Brat DJ, Cagle PT, Dillon DA, Hattab EM, McLendon RE, Miller MA, Buckner JC. Template for Reporting Results of Biomarker Testing of Specimens From Patients With Tumors of the Central Nervous System. Arch Pathol Lab Med 2015; 139:1087-93. [DOI: 10.5858/arpa.2014-0588-cp] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel J. Brat
- From the Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia (Dr Brat); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Cagle); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Dillon); the Department of Pathology, Indiana University Medical Center, Indianapolis
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The current World Health Organization (WHO) classification of tumors of the central nervous system (CNS) is essentially a lineage-oriented classification based on a presumable developmental tree of CNS. A four-tiered WHO grading scheme has been successfully applied to a spectrum of diffusely infiltrative astrocytomas, but it is not fully applicable to other gliomas, including oligodendrogliomas and ependymomas. Recent genetic studies have revealed that the major categories of gliomas, such as circumscribe astrocytomas, infiltrating astrocytomas/oligodendrogliomas, and glioblastoma, roughly correspond to major genetic alterations, including isocitrate dehydrogenases (IDHs) 1/2 mutations, TP53 mutations, co-deletion of chromosome arms 1p/19q, and BRAF mutation/fusion. These genetic alterations are clinically significant in terms of the response to treatment(s) and/or the prognosis. It is, thus, rational that future classification of gliomas should be based on genotypes, rather than phenotypes, although the genetic features of each tumor are not sufficiently understood at present to draw a complete map of the gliomas, and genetic testing is not yet available worldwide, particularly in Asian and African countries. This review summarizes the current concepts of the WHO classification, as well as the current understanding of the major genetic alterations in glioma and the potential use of these alterations as diagnostic criteria.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital
| |
Collapse
|
48
|
Kato Y. Specific monoclonal antibodies against IDH1/2 mutations as diagnostic tools for gliomas. Brain Tumor Pathol 2014; 32:3-11. [DOI: 10.1007/s10014-014-0202-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022]
|
49
|
Filipescu D, Müller S, Almouzni G. Histone H3 Variants and Their Chaperones During Development and Disease: Contributing to Epigenetic Control. Annu Rev Cell Dev Biol 2014; 30:615-46. [DOI: 10.1146/annurev-cellbio-100913-013311] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Filipescu
- Institut Curie, Centre de Recherche, Paris, F-75248 France; , ,
| | | | | |
Collapse
|
50
|
Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol 2014; 128:551-9. [PMID: 25143301 DOI: 10.1007/s00401-014-1326-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
Abstract
Astrocytoma and oligodendroglioma are histologically and genetically well-defined entities. The majority of astrocytomas harbor concurrent TP53 and ATRX mutations, while most oligodendrogliomas carry the 1p/19q co-deletion. Both entities share high frequencies of IDH mutations. In contrast, oligoastrocytomas (OA) appear less clearly defined and, therefore, there is an ongoing debate whether these tumors indeed constitute an entity or whether they represent a mixed bag containing both astrocytomas and oligodendrogliomas. We investigated 43 OA diagnosed in different institutions employing histology, immunohistochemistry and in situ hybridization addressing surrogates for the molecular genetic markers IDH1R132H, TP53, ATRX and 1p/19q loss. In all but one OA the combination of nuclear p53 accumulation and ATRX loss was mutually exclusive with 1p/19q co-deletion. In 31/43 OA, only alterations typical for oligodendroglioma were observed, while in 11/43 OA, only indicators for mutations typical for astrocytomas were detected. A single case exhibited a distinct pattern, nuclear expression of p53, ATRX loss, IDH1 mutation and partial 1p/19q loss. However, this was the only patient undergoing radiotherapy prior to surgery, possibly contributing to the acquisition of this uncommon combination. In OA with oligodendroglioma typical alterations, the portions corresponding to astrocytic part were determined as reactive, while in OA with astrocytoma typical alterations the portions corresponding to oligodendroglial differentiation were neoplastic. These data provide strong evidence against the existence of an independent OA entity.
Collapse
|