1
|
Wang C, Chen W, Xu Y, Fu S, Fu J, Huang X, Xiao J, Liu T, Jiang X. Laminaria japonica Polysaccharides Improves the Growth Performance and Faecal Digestive Enzyme Activity of Weaned Piglets. Vet Sci 2023; 11:11. [PMID: 38250917 PMCID: PMC10821088 DOI: 10.3390/vetsci11010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
The aim of this experiment was to investigate the effect of Laminaria japonica polysaccharide (LJP) supplementation at levels of 100, 200, or 400 mg/kg on the growth performance, faecal digestive enzyme activity, and serum biochemistry and amino acids of weaned piglets. One hundred and twenty weaned piglets (Barkshire × Licha Black, 21 days old, 6.13 ± 0.16 kg) were randomly divided into four groups with five replicates of six piglets in each group based on body weight. Piglets were fed with different levels (0, 100, 200, and 400 mg/kg) of LJP for a 21-day trial. On day 21, faecal and blood samples were collected from one piglet per pen. The results showed that the supplementation of the 200 and 400 mg/kg LJP significantly increased average daily gain (ADG) and average daily feed intake (ADFI) compared to the control group (p = 0.007; p = 0.002), and dietary LJP linearly increased ADG and ADFI (p = 0.002; p < 0.001). In addition, the supplementation of the 200 and 400 mg/kg LJP significantly increased faecal amylase activity (p < 0.001) compared to the control group, and dietary LJP linearly increased faecal amylase and lipase activities (p = 0.001; p = 0.037). Moreover, dietary LJP at 400 mg/kg increased serum histidine content compared to the other groups (p = 0.002), and dietary LJP linearly increased the contents of serum histidine and asparagine in piglets (p < 0.001; p = 0.046). In conclusion, supplementation of 200 and 400 mg/kg LJP could enhance growth performance and faecal digestive enzyme activity and modulate the serum amino acid content of weaned piglets, potentially contributing to the health of weaned piglets.
Collapse
Affiliation(s)
- Chengwei Wang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.X.); (S.F.); (J.F.)
| | - Wenning Chen
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Yun Xu
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.X.); (S.F.); (J.F.)
| | - Shaomeng Fu
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.X.); (S.F.); (J.F.)
| | - Jiamin Fu
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Y.X.); (S.F.); (J.F.)
| | - Xiaohong Huang
- Jiangxi Biotech Vocational College, Nanchang 330200, China;
| | - Junfeng Xiao
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou 363000, China;
| | - Tao Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA;
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
2
|
Lu X, Huang L, Chen J, Ou Y, Wu J, Bodjrenou DM, Hu J, Zhang Y, Farag MA, Guo Z, Xiao J, Zheng B. Marine glycoproteins: a mine of their structures, functions and potential applications. Crit Rev Food Sci Nutr 2023; 64:9191-9209. [PMID: 37165485 DOI: 10.1080/10408398.2023.2209183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Many bioactive compounds are reported from marine organisms, which are significantly different from those found in terrestrial organisms regarding their chemical structures and pharmacological activities. Marine glycoproteins (MGs) have aroused increasing attention as a good nutrient source owing to their potential applications in medicine, cosmetics and food. However, there is a lack of a comprehensive study on MGs to help readers understand the current state of research on marine-derived glycoproteins. The current review compiles the recent progress made on the structures and functions of MGs with future perspectives to maximize their value and applications via bibliometric analysis methods for the first time. The current research on MGs appears mostly limited to the laboratory, with no large-scale production of marine glycoproteins developed. The sugar chains are bound to proteins through covalent bonds that can readily be cleaved leading to difficultly in their separation and purification. Health effects attributed to MGs include treatment of inflammatory diseases, as well as anti-oxidant, immune modulation, anti-tumor, hypolipidemic, hypoglycemic, anti-bacterial and anti-freeze activities. This review can not only deepen the understanding of the functions of MGs, but also lay an important foundation for the further development and utilization of marine resources.
Collapse
Affiliation(s)
- Xiaodan Lu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luyao Huang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaqi Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yujia Ou
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingru Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - David Mahoudjro Bodjrenou
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Zebin Guo
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo, Ourense, Spain
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
4
|
Luan F, Zou J, Rao Z, Ji Y, Lei Z, Peng L, Yang Y, He X, Zeng N. Polysaccharides from Laminaria japonica: an insight into the current research on structural features and biological properties. Food Funct 2021; 12:4254-4283. [PMID: 33904556 DOI: 10.1039/d1fo00311a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Laminaria japonica, one of the most widespread seafood consumed in China and many other nations, has been traditionally utilized as an effective therapeutically active substance for treating weight loss, phlegm elimination, and detumescence for more than 2000 years. Numerous studies have found that the polysaccharides play an indispensable role in the nutritional and medicinal value of L. japonica. Water extraction and alcohol precipitation method is the most used method. Approximately 56 LJPs were successfully isolated and purified from L. japonica, whereas only few of them were well characterized. Modern pharmacological studies have shown that L. japonica polysaccharides (LJPs) have high-order structural features and multiple biological activities, including anti-tumor, anti-thrombotic, anti-atherosclerosis, hypolipidemic, hypoglycemic, antioxidant, anti-inflammatory, renoprotective, and immunomodulatory. In addition, the structural characteristics of LJPs are closely related to their biological activity. In this review, the extraction and purification methods, structural characteristics, biological activities, clinical settings, toxicities, and structure-activity relationships of LJPs are comprehensively summarized. The structural characteristics and biological activities as well as the underlying molecular mechanisms of LJPs were also outlined. Furthermore, the clinical settings and structure-activity functions of LJPs were highlighted. Some research perspectives and challenges in the study of LJPs were also proposed.
Collapse
Affiliation(s)
- Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Senthilkumar D, Jayanthi S. Partial characterization and anticancer activities of purified glycoprotein extracted from green seaweed Codium decorticatum. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
6
|
Kim IH, Yoo KY, Park JH, Yan BC, Ahn JH, Lee JC, Kwon HM, Kim JD, Kim YM, You SG, Kang IJ, Won MH. Comparison of neuroprotective effects of extract and fractions from Agarum clathratum against experimentally induced transient cerebral ischemic damage. PHARMACEUTICAL BIOLOGY 2014; 52:335-43. [PMID: 24171789 DOI: 10.3109/13880209.2013.837074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
UNLABELLED CONTEXTS: Agarum clathratum (Laminariaceae), a typical brown algae, has been identified by National Plant Quarantine Service in Korea. The extract of A. clathratum has antioxidant activities. OBJECTIVE We investigated the neuroprotective effects of crude-extract, ethyl acetate (EA)-, n-butanol (BU)-, dichloromethane (DCM)- and n-hexane (Hx)-fractions from A. clathratum on ischemic damage in the gerbil hippocampal CA1 region (CA1) after 5 min of transient cerebral ischemia. MATERIALS AND METHODS Agarum clathratum was collected in Kangwon province (South Korea) and treated with 95% ethanol. The ethanol extract was suspended in distilled water and subjected to a series of partitions with EA, BU, DCM and Hx. Each of extract and fraction was orally administered with 50 mg/kg once a day for one week before ischemia--reperfusion (I-R). RESULT In the crude-extract-, EA- and BU-fraction-treated ischemia groups, we found strong neuroprotection in the CA1--about 80-89% of CA1 pyramidal neurons survived. However, in the DCM- and Hx-fraction-treated ischemia groups, we did not find any significant neuroprotection. In addition, we observed changes in astrocytes and microglia in the ischemic CA1. In the crude-extract, EA- and BU-fraction-treated ischemia groups, the distribution pattern and activity of the glial cells were similar to that found in the sham group. DISCUSSION Repeated supplements of crude-extract, EA- and BU-fractions of A. clathratum could protect neurons from I-R injury in the hippocampal CA1 induced by transient cerebral ischemia via decrease of glial activation.
Collapse
Affiliation(s)
- In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University , Chuncheon , South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lee SH, Lee JH, Oh EY, Kim GY, Choi BT, Kim C, Choi YH. Ethanol extract of Cnidium officinale exhibits anti-inflammatory effects in BV2 microglial cells by suppressing NF-κB nuclear translocation and the activation of the PI3K/Akt signaling pathway. Int J Mol Med 2013; 32:876-82. [PMID: 23864034 DOI: 10.3892/ijmm.2013.1447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/09/2013] [Indexed: 11/05/2022] Open
Abstract
Chronic microglial activation endangers neuronal survival through the release of various toxic pro-inflammatory molecules; thus, negative regulators of microglial activation have been identified as potential therapeutic candidates for several neurological diseases. In this study, we investigated the inhibitory effects of an ethanol extract of Cnidium officinale rhizomes (EECO), which has been used as a herbal drug in Oriental medicine, on the production of lipopolysaccharide (LPS)-induced pro-inflammatory mediators, such as nitric oxide (NO) and prostaglandin E₂ (PGE₂), as well as that of pro-inflammatory cytokines in BV2 microglia cells. EECO significantly inhibited the excess production of NO and PGE₂ in LPS-stimulated BV2 microglia cells. It also attenuated the expression of inducible NO synthase, cyclooxygenase-2, as well as that of pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α. Moreover, EECO exhibited anti-inflammatory properties by suppressing nuclear factor-κB (NF-κB) translocation and the activation of the phosphoinositide 3-kinase/Akt pathway in LPS-stimulated BV2 cells. These results indicate that EECO exerts anti-inflammatory effects in LPS-stimulated BV2 microglial cells by inhibiting pro-inflammatory mediators and cytokine production by blocking the NF-κB pathway. These findings suggest that EECO has substantial therapeutic potential for the treatment of neurodegenerative diseases accompanied by microglial activation.
Collapse
Affiliation(s)
- Shin Hwa Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Kang YM, Eom SH, Kim YM. Protective effect of phlorotannins from Eisenia bicyclis against lipopolysaccharide-stimulated inflammation in HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:395-401. [PMID: 23454824 DOI: 10.1016/j.etap.2013.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
In this study, four bioactive phloroglucinol derivates including phloroglucinol (1), eckol (2), dioxinodehydroeckol (3), and dieckol (4) were isolated from Eisenia bicyclis and characterized by nuclear magnetic resonance (NMR) spectroscopic methods. Moreover, the anti-inflammatory activity of these compounds was investigated on human hepatoma cell line HepG2 cells stimulated by lipopolysaccharide (LPS). It was demonstrated that LPS can induce the production of pro-inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) as well as the expression of inflammatory mediators as cyclooxygenase-2 (COX-2), and inducible nitric oxide synthases (iNOS) from HepG2 cells. Among isolated compounds, compound (1) exhibited significant inhibition on LPS-stimulated inflammatory responses in HepG2 cells without any cytotoxicity. Herein, compound (1) suppresses the production of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α and the expression of COX-2 and iNOS. Thus, these results indicated that phlorotannins isolated from E. bicyclis, especially compound (1), can be used as a beneficial source for preventing and treating inflammation response.
Collapse
Affiliation(s)
- Young-Mi Kang
- Marinebioprocess Co., Ltd., Busan 619-912, Republic of Korea
| | | | | |
Collapse
|