1
|
Li S, Xiao L, Xiao L, Tan H. Coordination polymer nanoprobe integrated carbon dot and phenol red for turn-on fluorescence detection of urease activity. Mikrochim Acta 2023; 190:79. [PMID: 36719487 DOI: 10.1007/s00604-023-05644-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
The potential of coordination polymers (CPs) as a host of integrating multiple guest species to construct a fluorescence resonance energy transfer (FRET) nanoprobe was demonstrated. The ZnCPs built from zinc(II) and adenine was employed as a model of CPs to integrate carbon dot (CD) and phenol red (PR) for producing the FRET nanoprobe (CD/PR@ZnCPs). Benefiting from the confinement effect of ZnCPs, the integrated CD and PR can be brought in close proximity to favor the occurrence of FRET process from CD to PR, which leads to the quenching of CD fluorescence. However, the FRET process was disrupted upon the red-shift of PR absorption from 428 to 562 nm in alkaline medium, and consequently switches on the fluorescence of CD/PR@ZnCPs. Based on this finding, by utilizing urease to hydrolyze urea and mediate medium pH, a turn-on fluorescent method was established for the detection of urease activity. This fluorescent method has a linear response that covers 5 to 150 U/L urease with a detection limit of 0.74 U/L and exhibits an excellent selectivity over other enzymes. The successful determination of urease in saliva samples demonstrates the applicability of the fluorescent nanoprobe in complex biological matrix.
Collapse
Affiliation(s)
- Shenghua Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research On Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Lingyu Xiao
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Longqian Xiao
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research On Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
| | - Hongliang Tan
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research On Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
2
|
Smartphone-assisted point-of-care colorimetric biosensor for the detection of urea via pH-mediated AgNPs growth. Anal Chim Acta 2021; 1170:338630. [PMID: 34090590 DOI: 10.1016/j.aca.2021.338630] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022]
Abstract
Smartphone-assisted point-of-care (POC) bioassay has brought a giant leap in personal healthcare system and environmental monitoring advancements. In this study, we developed a rapid and reliable colorimetric urea biosensor assisted by a smartphone. We employed hydrolysis of urea into NH3 by urease, which activates the reduction power of tannic acid, to generate silver nanoparticles for a dramatic colorimetric response. The proposed urea biosensor was validated in a solution to provide high selectivity against various interferents in human urine. It had high sensitivity, with a limit of detection as low as 0.0036 mM, and a high reliability of 99% ± 2.9% via the standard addition method. The urea biosensor was successfully implanted on a paper to facilitate smartphone-assisted POC readout with a limit of detection of 0.58 mM and wide detection range of 500 mM, whereby direct diagnosis of human urine without dilution was realized. Our smartphone-assisted POC colorimetric urea biosensor will pave the way for daily monitoring systems of renal and hepatic dysfunction diseases.
Collapse
|
3
|
Liu M, Chen G, Qin Y, Li J, Hu L, Gu W, Zhu C. Proton-Regulated Catalytic Activity of Nanozymes for Dual-Modal Bioassay of Urease Activity. Anal Chem 2021; 93:9897-9903. [PMID: 34240847 DOI: 10.1021/acs.analchem.1c01999] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benefiting from the merits of high stability and superior activity, nanozymes are recognized as promising alternatives to natural enzymes. Despite the great leaps in the field of therapy and colorimetric sensing, the development of highly sensitive nanozyme-involved photoelectrochemical (PEC) biosensors is still in its infancy. Specifically, the investigation of multifunctional nanozymes facilitating different catalytic reactions remains largely unexplored due to the difficulty in synergistically amplifying the PEC signals. In this work, mesoporous trimetallic AuPtPd nanospheres were synthesized with both efficient oxidase and peroxidase-like activities, which can synergistically catalyze the oxidation of 4-chloro-1-naphthol to produce benzo-4-chlorohexadienone precipitation on the surface of photoactive materials, and thus lead to the decreased photocurrent as well as increased charge-transfer resistance. Inspired by the proton-dependent catalytic activity of nanozymes, a self-regulated dual-modal PEC and electrochemical bioassay of urease activity was innovatively established by in situ regulating the activity of AuPtPd nanozymes through urease-mediated proton-consuming enzymatic reactions, which can remarkably improve the accuracy of the assay. Meanwhile, the determination of urease activity in spiked human saliva samples was successfully realized, indicating the reliability of the biosensor and its application prospects in clinical diagnosis.
Collapse
Affiliation(s)
- Mingwang Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guojuan Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jinli Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
4
|
Roberts B, Howes K. Non‐specific reactivity of sera in ELISAs for detecting antibodies to bacterial, viral and mycoplasmal pathogens of poultry. FOOD AGR IMMUNOL 2008. [DOI: 10.1080/09540109209354759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
5
|
Bradbury JM, McCarthy JD, Metwali A. Microimmunofluorescence for the serological diagnosis of avian mycoplasma infections. Avian Pathol 2007; 19:213-22. [DOI: 10.1080/03079459008418674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Adair B, Burns K, McNulty M, Todd D. A study of ELISA systems incorporating pooled viral andMycoplasmaantigen preparations for antibody screening of chicken sera. Avian Pathol 2007; 19:263-78. [DOI: 10.1080/03079459008418679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Glew MD, Browning GF, Markham PF, Walker ID. pMGA phenotypic variation in Mycoplasma gallisepticum occurs in vivo and is mediated by trinucleotide repeat length variation. Infect Immun 2000; 68:6027-33. [PMID: 10992515 PMCID: PMC101567 DOI: 10.1128/iai.68.10.6027-6033.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chickens were infected with a pathogenic strain of Mycoplasma gallisepticum, and the expression of pMGA, the major surface protein, was inferred by examination of colonies from ex vivo cells. Within 2 days postinfection, 40% of cells had ceased the expression of the original pMGA surface protein (pMGA1.1), and by day 6, the majority of recovered cells were in this category. The switch in pMGA phenotype which had occurred in vivo was reversible, since most colonies produced from ex vivo progenitors exhibited frequent pMGA1. 1(+) sectors. After prolonged in vivo habitation, increasing proportions of recovered cells gave rise to variant pMGA colonies which had switched from the expression of pMGA1.1 to another gene, pMGA1.2, concomitant with the acquisition of a (GAA)(12) motif 5' to its promoter. Collectively, the results suggest that changes in M. gallisepticum pMGA gene expression in vivo are normal, common, and possibly obligate events for successful colonization of the host. Surprisingly, the initial cessation of pMGA1.1 expression occurred in the absence of detectable pMGA antibodies and seemed to precede the adaptive immune response.
Collapse
Affiliation(s)
- M D Glew
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia 3052
| | | | | | | |
Collapse
|
8
|
Stipkovits L, Czifra G, Sundquist B. Indirect ELISA for the detection of a specific antibody response againstMycoplasma gallisepticum. Avian Pathol 1993; 22:481-94. [DOI: 10.1080/03079459308418937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Avakian AP, Kleven SH. The humoral immune response of chickens to Mycoplasma gallisepticum and Mycoplasma synoviae studied by immunoblotting. Vet Microbiol 1990; 24:155-69. [PMID: 2146797 DOI: 10.1016/0378-1135(90)90063-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The humoral immune response over time of White Leghorn chickens experimentally infected with Mycoplasma gallisepticum or M. synoviae by an aerosol inoculation or a contact exposure were compared by immunoblotting. The response of chickens infected with M. gallisepticum were similar with respect to proteins recognized and intensity of response, regardless of mode of infection. On the other hand, chickens infected by aerosolization of M. synoviae responded to more proteins and with greater intensity than did M. synoviae contact-exposed birds. Chickens infected with M. gallisepticum responded with antibodies to over 20 proteins, while chickens infected with M. synoviae responded with antibodies to 12 proteins. Field sera from chickens naturally infected on commercial poultry farms with M. gallisepticum or M. synoviae were analyzed by immunoblotting and were found to react with a number of mycoplasma proteins. However, no correlation was seen when comparing intensity of immunoblot staining and hemagglutination-inhibition titer of the field sera. The experimental antisera were used to identify species-specific proteins of M. gallisepticum and M. synoviae. Six immunogenic species-specific proteins of M. gallisepticum with relative molecular masses of 82 (p82), 65-63 (p64), 56 (p56), 35 (p35), 26 (p26), and 24 (p24) kilodaltons (kDa) were identified. Two species-specific proteins of M. synoviae with relative molecular masses of 53 (p53) and 22 (p22) kDa were identified. Additionally, a highly immunogenic 41 (p41) kDa protein of M. synoviae was identified. Species-specific proteins identified in these mycoplasmas and the 41 kDa protein of M. synoviae were purified by preparative SDS-PAGE in amounts sufficient for further characterization and for use in serodiagnostic tests.
Collapse
Affiliation(s)
- A P Avakian
- Department of Avian Medicine, College of Veterinary Medicine, University of Georgia, Athens 30606
| | | |
Collapse
|
10
|
Jordan FTW, Yavari C, Knight DL. Some observations on the indirect Elisa for antibodies toMycoplasma iowaeserovar i in sera from turkeys considered to be free from Mycoplasma infections. Avian Pathol 1987; 16:307-18. [DOI: 10.1080/03079458708436377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|