1
|
Bezerra JAB, Limeira CH, Maranhão ACPDM, Antunes JMADP, de Azevedo SS. Global seroprevalence and factors associated with seropositivity for feline immunodeficiency virus (FIV) in cats: A systematic review and meta-analysis. Prev Vet Med 2024; 231:106315. [PMID: 39146687 DOI: 10.1016/j.prevetmed.2024.106315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
The feline immunodeficiency virus (FIV) is a retrovirus of the Lentivirus genus, distributed worldwide, that causes persistent infection with a significant impact on the cats' health. Due to the importance of this infection in feline medicine, this pioneering study aimed to obtain an integrated estimate of the global seroprevalence of FIV in cats and to characterize the factors associated with this infection. Four electronic databases were screened for observational studies with FIV seroprevalence in cats published globally for this systematic review and meta-analysis. The initial search method returned 873 studies, of which 113 met all predefined criteria and were therefore included in this review. Meta-analysis with general data was performed, and a combined global seropositivity of 9.43 % (95 % CI: 8.24 % - 10.78 %) was found. Seropositivity was 14.34 % (95 % CI = 10.92 % - 18.61 %) in Asia, 11.90 % (95 % CI = 9.82 % - 14.34 %) in Oceania, 10.90 % (95 % CI = 5.71 % - 19.82 %) in Central America, 9.43 % (95 % CI = 6.95 % - 12.66 %) in South America, 9 % (95 % CI = 0 - 80 %) in Africa, 8.98 % (95 % CI = 7.31 % - 10.98 %) in Europe, and 5.93 % (95 % CI = 4.33 % - 8.07 %) in North America. Meta-analysis of factors associated with seropositivity demonstrated that FIV seroprevalence was higher in male (Prevalence ratio [PR] = 2.53, 95 % CI = 2.16 - 2.95), adult (PR = 2.83, 95 % CI = 2.24 - 3.56), unowned status (PR = 1.47, 95 % CI = 1.07 - 2.03), sick status (PR = 2.46, 95 % CI = 1.97 - 3.06), and cats with outdoor access (PR = 4.38, 95 % CI = 2.26 - 8.47). The results demonstrated that FIV is globally distributed and has a high seroprevalence in some geographical areas. Information compiled from this research is relevant to understanding the worldwide epidemiology of FIV. It presents the potential to contribute to the planning of strategies focused on controlling and reducing cases in cat populations.
Collapse
Affiliation(s)
- José Artur Brilhante Bezerra
- Academic Unit of Veterinary Medicine (UAMV), Federal University of Campina Grande (UFCG), Patos 58708-110, Brazil.
| | - Clécio Henrique Limeira
- Academic Unit of Veterinary Medicine (UAMV), Federal University of Campina Grande (UFCG), Patos 58708-110, Brazil.
| | | | | | - Sérgio Santos de Azevedo
- Academic Unit of Veterinary Medicine (UAMV), Federal University of Campina Grande (UFCG), Patos 58708-110, Brazil.
| |
Collapse
|
2
|
Carlton C, Norris JM, Hall E, Ward MP, Blank S, Gilmore S, Dabydeen A, Tran V, Westman ME. Clinicopathological and Epidemiological Findings in Pet Cats Naturally Infected with Feline Immunodeficiency Virus (FIV) in Australia. Viruses 2022; 14:2177. [PMID: 36298731 PMCID: PMC9608632 DOI: 10.3390/v14102177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Feline immunodeficiency virus (FIV) infection in experimentally infected domestic cats produces characteristic clinical manifestations including hematological changes, neurological disease, neoplasia (most notably lymphoma) and lymphopenia-mediated immunodeficiency predisposing cats to a range of secondary infections. Conflicting reports exist, however, with regard to disease associations and survival time in naturally FIV-infected cats. The purpose of this retrospective case−control study was to investigate the effect of natural FIV infection on hematological, blood biochemical and urinalysis parameters and survival time in three cohorts of pet cats in Australia. Cohorts 1 and 2 were recruited from a large veterinary hospital in Melbourne, Victoria (n = 525 and 282), while a third cohort consisted of cats recruited from around Australia as part of a FIV field vaccine efficacy trial (n = 425). FIV-infected cats in cohorts 1, 2 and 3 were found to have 15/37 (41%), 13/39 (33%) and 2/13 (15%) clinicopathological parameters significantly different to FIV-uninfected cats, respectively. Two changes in FIV-infected cats in cohort 1, hypochromia (low hemoglobin) and hyperglobulinemia, were outside the supplied reference intervals and should serve as diagnostic triggers for FIV testing. Kaplan−Meier survival analysis of cats in cohorts 1 and 2 combined did not find any difference between FIV-infected and FIV-uninfected cats, however a confounding factor was a large euthanasia rate within the first 12 months in both groups. Three significant (p < 0.05) spatial clusters of FIV infection were identified in Melbourne. A possible relationship between FIV infection status and socioeconomic disadvantage was discovered, based on three government indices of socioeconomic status (p < 0.001). Until longitudinal field studies are performed in Australia to further investigate the long-term effects of natural FIV infection, Australian veterinarians should consider FIV to be an important infection of pet cats, and recommend measures to prevent FIV infection.
Collapse
Affiliation(s)
- Caroline Carlton
- Lort Smith Anim al Hospital, 24 Villiers Street, North Melbourne, VIC 3051, Australia
| | - Jacqueline M. Norris
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- The Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2006, Australia
| | - Evelyn Hall
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael P. Ward
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stephanie Blank
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shelby Gilmore
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anjuli Dabydeen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Vivian Tran
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark E. Westman
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Westman ME, Coggins SJ, van Dorsselaer M, Norris JM, Squires RA, Thompson M, Malik R. Feline immunodeficiency virus (FIV) infection in domestic pet cats in Australia and New Zealand: Guidelines for diagnosis, prevention and management. Aust Vet J 2022; 100:345-359. [PMID: 35578381 PMCID: PMC9546031 DOI: 10.1111/avj.13166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 01/25/2023]
Abstract
Despite the passage of over 30 years since its discovery, the importance of feline immunodeficiency virus (FIV) on the health and longevity of infected domestic cats is hotly debated amongst feline experts. Notwithstanding the absence of good quality information, Australian and New Zealand (NZ) veterinarians should aim to minimise the exposure of cats to FIV. The most reliable way to achieve this goal is to recommend that all pet cats are kept exclusively indoors, or with secure outdoor access (e.g., cat enclosures, secure gardens), with FIV testing of any in‐contact cats. All animal holding facilities should aim to individually house adult cats to limit the spread of FIV infection in groups of animals that are stressed and do not have established social hierarchies. Point‐of‐care (PoC) FIV antibody tests are available in Australia and NZ that can distinguish FIV‐infected and uninfected FIV‐vaccinated cats (Witness™ and Anigen Rapid™). Although testing of whole blood, serum or plasma remains the gold standard for FIV diagnosis, PoC testing using saliva may offer a welfare‐friendly alternative in the future. PCR testing to detect FIV infection is not recommended as a screening procedure since a negative PCR result does not rule out FIV infection and is only recommended in specific scenarios. Australia and NZ are two of three countries where a dual subtype FIV vaccine (Fel‐O‐Vax® FIV) is available and offers a further avenue for disease prevention. Since FIV vaccination only has a reported field effectiveness of 56% in Australia, and possibly lower in NZ, FIV‐vaccinated cats should undergo annual FIV testing prior to annual FIV re‐vaccination using a suitable PoC kit to check infection has not occurred in the preceding year. With FIV‐infected cats, clinicians should strive to be even more thorough than usual at detecting early signs of disease. The most effective way to enhance the quality of life and life expectancy of FIV‐infected cats is to optimise basic husbandry and to treat any concurrent conditions early in the disease course. Currently, no available drugs are registered for the treatment of FIV infection. Critically, the euthanasia of healthy FIV‐infected cats, and sick FIV‐infected cats without appropriate clinical investigations, should not occur.
Collapse
Affiliation(s)
- M E Westman
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - S J Coggins
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | | | - J M Norris
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,The Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - R A Squires
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - M Thompson
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - R Malik
- Centre for Veterinary Education, The University of Sydney, Sydney, New South Wales, Australia.,School of Veterinary and Animal Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|
4
|
Westman ME, Malik R, Norris JM. Diagnosing feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) infection: an update for clinicians. Aust Vet J 2019; 97:47-55. [DOI: 10.1111/avj.12781] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 11/29/2022]
Affiliation(s)
- ME Westman
- Sydney School of Veterinary Science; The University of Sydney; NSW Australia
| | - R Malik
- Centre for Veterinary Education; The University of Sydney; NSW Australia
| | - JM Norris
- Sydney School of Veterinary Science; The University of Sydney; NSW Australia
| |
Collapse
|
5
|
Day MJ, Horzinek MC, Schultz RD, Squires RA. WSAVA Guidelines for the vaccination of dogs and cats. J Small Anim Pract 2016; 57:E1-E45. [PMID: 26780857 PMCID: PMC7166872 DOI: 10.1111/jsap.2_12431] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/05/2015] [Accepted: 10/30/2015] [Indexed: 01/12/2023]
Affiliation(s)
- M J Day
- University of Bristol, United Kingdom
| | - M C Horzinek
- (Formerly) University of Utrecht, the Netherlands
| | - R D Schultz
- University of Wisconsin-Madison, Wisconsin, USA
| | - R A Squires
- James Cook University, Queensland, Australia
| | | |
Collapse
|
6
|
Westman M, Malik R, Hall E, Harris M, Norris J. The protective rate of the feline immunodeficiency virus vaccine: An Australian field study. Vaccine 2016; 34:4752-4758. [DOI: 10.1016/j.vaccine.2016.06.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/15/2016] [Accepted: 06/18/2016] [Indexed: 10/21/2022]
|
7
|
Westman ME, Malik R, Hall E, Sheehy PA, Norris JM. Determining the feline immunodeficiency virus (FIV) status of FIV-vaccinated cats using point-of-care antibody kits. Comp Immunol Microbiol Infect Dis 2015; 42:43-52. [PMID: 26459979 DOI: 10.1016/j.cimid.2015.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 11/18/2022]
Abstract
This study challenges the commonly held view that the feline immunodeficiency virus (FIV) infection status of FIV-vaccinated cats cannot be determined using point-of-care antibody test kits due to indistinguishable antibody production in FIV-vaccinated and naturally FIV-infected cats. The performance of three commercially available point-of-care antibody test kits was compared in a mixed population of FIV-vaccinated (n=119) and FIV-unvaccinated (n=239) cats in Australia. FIV infection status was assigned by considering the results of all antibody kits in concert with results from a commercially available PCR assay (FIV RealPCR™). Two lateral flow immunochromatography test kits (Witness FeLV/FIV; Anigen Rapid FIV/FeLV) had excellent overall sensitivity (100%; 100%) and specificity (98%; 100%) and could discern the true FIV infection status of cats, irrespective of FIV vaccination history. The lateral flow ELISA test kit (SNAP FIV/FeLV Combo) could not determine if antibodies detected were due to previous FIV vaccination, natural FIV infection, or both. The sensitivity and specificity of FIV RealPCR™ for detection of viral and proviral nucleic acid was 92% and 99%, respectively. These results will potentially change the way veterinary practitioners screen for FIV in jurisdictions where FIV vaccination is practiced, especially in shelter scenarios where the feasibility of mass screening is impacted by the cost of testing.
Collapse
Affiliation(s)
- Mark E Westman
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia.
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, NSW 2006, Australia
| | - Evelyn Hall
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia
| | - Paul A Sheehy
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia
| | - Jacqueline M Norris
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
8
|
|
9
|
Taniwaki SA, Figueiredo AS, Araujo JP. Virus-host interaction in feline immunodeficiency virus (FIV) infection. Comp Immunol Microbiol Infect Dis 2013; 36:549-57. [PMID: 23910598 PMCID: PMC7112627 DOI: 10.1016/j.cimid.2013.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 12/17/2022]
Abstract
Feline immunodeficiency virus (FIV) infection has been the focus of several studies because this virus exhibits genetic and pathogenic characteristics that are similar to those of the human immunodeficiency virus (HIV). FIV causes acquired immunodeficiency syndrome (AIDS) in cats, nevertheless, a large fraction of infected cats remain asymptomatic throughout life despite of persistent chronic infection. This slow disease progression may be due to the presence of factors that are involved in the natural resistance to infection and the immune response that is mounted by the animals, as well as due to the adaptation of the virus to the host. Therefore, the study of virus-host interaction is essential to the understanding of the different patterns of disease course and the virus persistence in the host, and to help with the development of effective vaccines and perhaps the cure of FIV and HIV infections.
Collapse
Affiliation(s)
- Sueli Akemi Taniwaki
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, São Paulo, Brazil.
| | | | | |
Collapse
|
10
|
Roche S, El Garch H, Brunet S, Poulet H, Iwaz J, Ecochard R, Vanhems P. Diversity of trends of viremia and T-cell markers in experimental acute feline immunodeficiency virus infection. PLoS One 2013; 8:e56135. [PMID: 23409138 PMCID: PMC3567045 DOI: 10.1371/journal.pone.0056135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/05/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The early events of human immunodeficiency virus infection seem critical for progression toward disease and antiretroviral therapy initiation. We wanted to clarify some still unknown prognostic relationships between inoculum size and changes in various immunological and virological markers. Feline immunodeficiency virus infection could be a helpful model. METHODS Viremia and T-cell markers (number of CD4, CD8, CD8β(low)CD62L(neg) T-cells, CD4/CD8 ratio, and percentage of CD8β(low)CD62L(neg) cells among CD8 T-cells) were measured over 12 weeks in 102 cats infected with different feline immunodeficiency virus strains and doses. Viremia and T-cell markers trajectory groups were determined and the dose-response relationships between inoculum titres and trajectory groups investigated. RESULTS Cats given the same inoculum showed different patterns of changes in viremia and T-cell markers. A statistically significant positive dose-response relationship was observed between inoculum titre and i) viremia trajectory-groups (r = 0.80, p<0.01), ii) CD8β(low)CD62L(neg) cell-fraction trajectory-groups (r = 0.56, p<0.01). Significant correlations were also found between viremia and the CD4/CD8 ratio and between seven out of ten T-cell markers. CONCLUSIONS In cats, the infectious dose determines early kinetics of viremia and initial CD8+ T-cell activation. An expansion of the CD8β(low)CD62L(neg) T-cells might be an early predictor of progression toward disease. The same might be expected in humans but needs confirmation.
Collapse
Affiliation(s)
- Sylvain Roche
- Service de Biostatistique, Hospices Civils de Lyon, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Feline immunodeficiency virus in South America. Viruses 2012; 4:383-396. [PMID: 22590677 PMCID: PMC3347033 DOI: 10.3390/v4030383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 12/16/2022] Open
Abstract
The rapid emergence of AIDS in humans during the period between 1980 and 2000 has led to extensive efforts to understand more fully similar etiologic agents of chronic and progressive acquired immunodeficiency disease in several mammalian species. Lentiviruses that have gene sequence homology with human immunodeficiency virus (HIV) have been found in different species (including sheep, goats, horses, cattle, cats, and several Old World monkey species). Lentiviruses, comprising a genus of the Retroviridae family, cause persistent infection that can lead to varying degrees of morbidity and mortality depending on the virus and the host species involved. Feline immunodeficiency virus (FIV) causes an immune system disease in domestic cats (Felis catus) involving depletion of the CD4+ population of T lymphocytes, increased susceptibility to opportunistic infections, and sometimes death. Viruses related to domestic cat FIV occur also in a variety of nondomestic felids. This is a brief overview of the current state of knowledge of this large and ancient group of viruses (FIVs) in South America.
Collapse
|
12
|
Isolation and partial characterization of Brazilian samples of feline immunodeficiency virus. Virus Res 2011; 160:59-65. [PMID: 21619902 DOI: 10.1016/j.virusres.2011.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 11/21/2022]
Abstract
Feline immunodeficiency virus (FIV) causes a slow progressive degeneration of the immune system which eventually leads to a disease comparable to acquired immune deficiency syndrome (AIDS) in humans. FIV has extensive sequence variation, a typical feature of lentiviruses. Sequence analysis showed that diversity was not evenly distributed throughout the genome, but was greatest in the envelope gene, env. The virus enters host cells via a sequential interaction, initiated by the envelope glycoprotein (env) binding the primary receptor molecule CD134 and followed by a subsequent interaction with chemokine co-receptor CXCR4. The purpose of this study was to isolate and characterize isolates of FIV from an open shelter in São Paulo, Brazil. The separated PBMC from 11 positive cats were co-cultured with MYA-1 cells. Full-length viral env glycoprotein genes were amplified and determined. Chimeric feline × human CD134 receptors were used to investigate the receptor utilization of 17 clones from Brazilian isolates of FIV. Analyses of the sequence present of molecular clones showed that all clones grouped within subtype B. In contrast to the virulent primary isolate FIV-GL8, expression of the first cysteine-rich domain (CRD1) of feline CD134 in the context of human CD134 was sufficient for optimal receptor function for all Brazilian FIV isolates tested.
Collapse
|
13
|
Pistello M, Conti F, Vannucci L, Freer G. Novel approaches to vaccination against the feline immunodeficiency virus. Vet Immunol Immunopathol 2010; 134:48-53. [PMID: 19896725 DOI: 10.1016/j.vetimm.2009.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Inadequate antigen presentation and/or suboptimal immunogenicity are considered major causes in the failure of human immunodeficiency vaccine to adequately protect against wild-type virus. Several approaches have been attempted to circumvent these hurdles. Here we reviewed some recent vaccinal strategies tested against the feline immunodeficiency virus and focused on: (i) improving antigen presentation by taking advantage of the exquisite ability of dendritic cells to process and present immunogens to the immune system; (ii) boosting immune responses with vaccinal antigens presented in a truly native conformation by the natural target cells of infection. Significance of the studies, possible correlates of protection involved, and implications for developing anti-human immunodeficiency virus vaccines are discussed.
Collapse
Affiliation(s)
- Mauro Pistello
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy.
| | | | | | | |
Collapse
|
14
|
Env-expressing autologous T lymphocytes induce neutralizing antibody and afford marked protection against feline immunodeficiency virus. J Virol 2010; 84:3845-56. [PMID: 20130057 DOI: 10.1128/jvi.02638-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope (Env) glycoproteins of HIV and other lentiviruses possess neutralization and other protective epitopes, yet all attempts to induce protective immunity using Env as the only immunogen have either failed or afforded minimal levels of protection. In a novel prime-boost approach, specific-pathogen-free cats were primed with a plasmid expressing Env of feline immunodeficiency virus (FIV) and feline granulocyte-macrophage colony-stimulating factor and then boosted with their own T lymphocytes transduced ex vivo to produce the same Env and interleukin 15 (3 x 10(6) to 10 x 10(6) viable cells/cat). After the boost, the vaccinees developed elevated immune responses, including virus-neutralizing antibodies (NA). Challenge with an ex vivo preparation of FIV readily infected all eight control cats (four mock vaccinated and four naïve) and produced a marked decline in the proportion of peripheral CD4 T cells. In contrast, five of seven vaccinees showed little or no traces of infection, and the remaining two had reduced viral loads and underwent no changes in proportions of CD4 T cells. Interestingly, the viral loads of the vaccinees were inversely correlated to the titers of NA. The findings support the concept that Env is a valuable immunogen but needs to be administered in a way that permits the expression of its full protective potential.
Collapse
|
15
|
Samman A, Logan N, McMonagle EL, Ishida T, Mochizuki M, Willett BJ, Hosie MJ. Neutralization of feline immunodeficiency virus by antibodies targeting the V5 loop of Env. J Gen Virol 2009; 91:242-9. [PMID: 19776242 DOI: 10.1099/vir.0.015404-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neutralizing antibodies (NAbs) play a vital role in vaccine-induced protection against infection with feline immunodeficiency virus (FIV). However, little is known about the appropriate presentation of neutralization epitopes in order to induce NAbs effectively; the majority of the antibodies that are induced are directed against non-neutralizing epitopes. Here, we demonstrate that a subtype B strain of FIV, designated NG4, escapes autologous NAbs, but may be rendered neutralization-sensitive following the insertion of two amino acids, KT, at positions 556-557 in the fifth hypervariable (V5) loop of the envelope glycoprotein. Consistent with the contribution of this motif to virus neutralization, an additional three subtype B strains retaining both residues at the same position were also neutralized by the NG4 serum, and serum from an unrelated cat (TOT1) targeted the same sequence in V5. Moreover, when the V5 loop of subtype B isolate KNG2, an isolate that was moderately resistant to neutralization by NG4 serum, was mutated to incorporate the KT motif, the virus was rendered sensitive to neutralization. These data suggest that, even in a polyclonal serum derived from FIV-infected cats following natural infection, the primary determinant of virus-neutralizing activity may be represented by a single, dominant epitope in V5.
Collapse
Affiliation(s)
- Ayman Samman
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Hosie MJ, Addie D, Belák S, Boucraut-Baralon C, Egberink H, Frymus T, Gruffydd-Jones T, Hartmann K, Lloret A, Lutz H, Marsilio F, Pennisi MG, Radford AD, Thiry E, Truyen U, Horzinek MC. Feline immunodeficiency. ABCD guidelines on prevention and management. J Feline Med Surg 2009; 11:575-84. [PMID: 19481037 PMCID: PMC7129779 DOI: 10.1016/j.jfms.2009.05.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Overview Feline immunodeficiency virus (FIV) is a retrovirus closely related to human immunodeficiency virus. Most felids are susceptible to FIV, but humans are not. Feline immunodeficiency virus is endemic in domestic cat populations worldwide. The virus loses infectivity quickly outside the host and is susceptible to all disinfectants. Infection Feline immunodeficiency virus is transmitted via bites. The risk of transmission is low in households with socially well-adapted cats. Transmission from mother to kittens may occur, especially if the queen is undergoing an acute infection. Cats with FIV are persistently infected in spite of their ability to mount antibody and cell-mediated immune responses. Disease signs Infected cats generally remain free of clinical signs for several years, and some cats never develop disease, depending on the infecting isolate. Most clinical signs are the consequence of immunodeficiency and secondary infection. Typical manifestations are chronic gingivostomatitis, chronic rhinitis, lymphadenopathy, weight loss and immune-mediated glomerulonephritis. Diagnosis Positive in-practice ELISA results obtained in a low-prevalence or low-risk population should always be confirmed by a laboratory. Western blot is the ‘gold standard’ laboratory test for FIV serology. PCR-based assays vary in performance. Disease management Cats should never be euthanased solely on the basis of an FIV-positive test result. Cats infected with FIV may live as long as uninfected cats, with appropriate management. Asymptomatic FIV-infected cats should be neutered to avoid fighting and virus transmission. Infected cats should receive regular veterinary health checks. They can be housed in the same ward as other patients, but should be kept in individual cages. Vaccination recommendations At present, there is no FIV vaccine commercially available in Europe. Potential benefits and risks of vaccinating FIV-infected cats should be assessed on an individual cat basis. Needles and surgical instruments used on FIV-positive cats may transmit the virus to other cats, so strict hygiene is essential.
Collapse
|
17
|
Iwata D, Holloway SA. Molecular subtyping of feline immunodeficiency virus from cats in Melbourne. Aust Vet J 2008; 86:385-9. [PMID: 18826508 DOI: 10.1111/j.1751-0813.2008.00336.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To determine the subtypes of feline immunodeficiency virus (FIV) present in the domestic cat population in Melbourne. METHODS Blood samples were collected from 42 cats that had serum antibodies against FIV. DNA was extracted and subjected to polymerase chain reaction (PCR) to amplify variable regions of the envelope (env) and group specific antigen (gag) genes of FIV. PCR products were directly sequenced or sequenced after cloning when direct sequencing yielded ambiguous results. Phylogenetic analysis was performed and comparisons made with representative sequences of different subtypes. RESULTS The variable region of the env gene was successfully amplified by PCR from 41 of the 42 cats. All 41 were found to cluster with subtype A env sequences. The variable region of the gag gene was successfully amplified by PCR from all 42 cats. Forty-one were found to cluster with subtype A gag genes and one was found to cluster with subtype B sequences, suggesting that it may be derived from a recombinant env A/gag B virus. CONCLUSIONS Subtype A is the predominant FIV type in Melbourne, although a subtype A/B recombinant was identified in the population of FIV positive cats. These results of env gene analysis were similar to those in a previous Australian study, suggesting that subtype A predominates in Australia. The results of the gag gene analysis show the importance of analysing multiple areas of the FIV genome when assigning FIV subtypes. Comparison with other major urban centres may provide useful information about the phylogenic diversity of FIV in Australia.
Collapse
Affiliation(s)
- D Iwata
- The University of Melbourne Veterinary Clinic and Hospital, Werribee, Vic, Australia
| | | |
Collapse
|
18
|
Willett BJ, McMonagle EL, Logan N, Samman A, Hosie MJ. A single site for N-linked glycosylation in the envelope glycoprotein of feline immunodeficiency virus modulates the virus-receptor interaction. Retrovirology 2008; 5:77. [PMID: 18721458 PMCID: PMC2563026 DOI: 10.1186/1742-4690-5-77] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/22/2008] [Indexed: 11/10/2022] Open
Abstract
Feline immunodeficiency virus (FIV) targets helper T cells by attachment of the envelope glycoprotein (Env) to CD134, a subsequent interaction with CXCR4 then facilitating the process of viral entry. As the CXCR4 binding site is not exposed until CD134-binding has occurred then the virus is protected from neutralising antibodies targeting the CXCR4-binding site on Env. Prototypic FIV vaccines based on the FL4 strain of FIV contain a cell culture-adapted strain of FIV Petaluma, a CD134-independent strain of FIV that interacts directly with CXCR4. In addition to a characteristic increase in charge in the V3 loop homologue of FIVFL4, we identified two mutations in potential sites for N-linked glycosylation in the region of FIV Env analogous to the V1–V2 region of HIV and SIV Env, T271I and N342Y. When these mutations were introduced into the primary GL8 and CPG41 strains of FIV, the T271I mutation was found to alter the nature of the virus-CD134 interaction; primary viruses carrying the T271I mutation no longer required determinants in cysteine-rich domain (CRD) 2 of CD134 for viral entry. The T271I mutation did not confer CD134-independent infection upon GL8 or CPG41, nor did it increase the affinity of the CXCR4 interaction, suggesting that the principal effect was targeted at reducing the complexity of the Env-CD134 interaction.
Collapse
Affiliation(s)
- Brian J Willett
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Evaluation of feline monocyte-derived dendritic cells loaded with internally inactivated virus as a vaccine against feline immunodeficiency virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:452-9. [PMID: 18216184 DOI: 10.1128/cvi.00421-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dendritic cells are the only antigen-presenting cells that can present exogenous antigens to both helper and cytolytic T cells and prime Th1-type or Th2-type cellular immune responses. Given their unique immune functions, dendritic cells are considered attractive "live adjuvants" for vaccination and immunotherapy against cancer and infectious diseases. The present study was carried out to assess whether the reinjection of autologous monocyte-derived dendritic cells loaded with an aldithriol-2-inactivated primary isolate of feline immune deficiency virus (FIV) was able to elicit protective immune responses against the homologous virus in naive cats. Vaccine efficacy was assessed by monitoring immune responses and, finally, by challenge with the homologous virus of vaccinated, mock-vaccinated, and healthy cats. The outcome of challenge was followed by measuring cellular and antibody responses and viral and proviral loads and quantitating FIV by isolation and a count of CD4(+)/CD8(+) T cells in blood. Vaccinated animals exhibited clearly evident FIV-specific peripheral blood mononuclear cell proliferation and antibody titers in response to immunization; however, they became infected with the challenge virus at rates comparable to those of control animals.
Collapse
|
21
|
Lecollinet S, Richardson J. Vaccination against the feline immunodeficiency virus: the road not taken. Comp Immunol Microbiol Infect Dis 2007; 31:167-90. [PMID: 17706778 DOI: 10.1016/j.cimid.2007.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 11/28/2022]
Abstract
Natural infection of domestic cats by the feline immunodeficiency virus (FIV) causes acquired immunodeficiency syndrome (AIDS). FIV is genetically related to human immunodeficiency virus (HIV), and the clinical and biological features of infections caused by feline and human viruses in their respective hosts are highly analogous. Although the obstacles to vaccinating against FIV and HIV would seem to be of comparable difficulty, a licensed vaccine against feline AIDS is already in widespread use in several countries. While this seemingly major advance in prevention of AIDS would appear to be highly instructive for HIV vaccine development, its message has not been heeded by investigators in the HIV field. This review endeavours to relate what has been learned about vaccination against feline AIDS, and to suggest what this may mean for HIV vaccine development.
Collapse
Affiliation(s)
- Sylvie Lecollinet
- UMR 1161 Virologie INRA-AFSSA-ENVA, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| | | |
Collapse
|
22
|
|
23
|
Giannecchini S, Pistello M, Isola P, Matteucci D, Mazzetti P, Freer G, Bendinelli M. Role of Env in resistance of feline immunodeficiency virus (FIV)-infected cats to superinfection by a second FIV strain as determined by using a chimeric virus. J Virol 2007; 81:10474-85. [PMID: 17634241 PMCID: PMC2045460 DOI: 10.1128/jvi.01064-07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A more or less pronounced resistance to superinfection by a second strain of the infecting virus has been observed in many lentivirus-infected hosts. We used a chimeric feline immunodeficiency virus (FIV), designated FIVchi, containing a large part of the env gene of a clade B virus (strain M2) and all the rest of the genome of a clade A virus (a p34TF10 molecular clone of the Petaluma strain modified to grow in lymphoid cells), to gain insights into such resistance. FIVchi was infectious and moderately pathogenic for cats and in vitro exhibited the neutralization specificity of the env donor. The experiments performed were bidirectional, in that cats preinfected with either parental virus were challenged with FIVchi and vice versa. The preinfected animals were partially or completely protected relative to what was observed in naïve control animals, most likely due, at least in part, to the circumstance that in all the preinfecting/challenge virus combinations examined, the first and the second virus shared significant viral components. Based on the proportions of complete protection observed, the role of a strongly matched viral envelope appeared to be modest and possibly dependent on the time interval between the first and the second infection. Furthermore, complete protection and the presence of measurable neutralizing antibodies capable of blocking the second virus in vitro were not associated.
Collapse
Affiliation(s)
- Simone Giannecchini
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Via San Zeno, 37 I-56127 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Zwijnenberg R, Yamamoto JK. Letter to the editor. Aust Vet J 2007; 85:210-1. [PMID: 17547630 DOI: 10.1111/j.1751-0813.2007.176_2.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|