1
|
Whitfield C, Zhang M, Winterwerber P, Wu Y, Ng DYW, Weil T. Functional DNA-Polymer Conjugates. Chem Rev 2021; 121:11030-11084. [PMID: 33739829 PMCID: PMC8461608 DOI: 10.1021/acs.chemrev.0c01074] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 02/07/2023]
Abstract
DNA nanotechnology has seen large developments over the last 30 years through the combination of solid phase synthesis and the discovery of DNA nanostructures. Solid phase synthesis has facilitated the availability of short DNA sequences and the expansion of the DNA toolbox to increase the chemical functionalities afforded on DNA, which in turn enabled the conception and synthesis of sophisticated and complex 2D and 3D nanostructures. In parallel, polymer science has developed several polymerization approaches to build di- and triblock copolymers bearing hydrophilic, hydrophobic, and amphiphilic properties. By bringing together these two emerging technologies, complementary properties of both materials have been explored; for example, the synthesis of amphiphilic DNA-polymer conjugates has enabled the production of several nanostructures, such as spherical and rod-like micelles. Through both the DNA and polymer parts, stimuli-responsiveness can be instilled. Nanostructures have consequently been developed with responsive structural changes to physical properties, such as pH and temperature, as well as short DNA through competitive complementary binding. These responsive changes have enabled the application of DNA-polymer conjugates in biomedical applications including drug delivery. This review discusses the progress of DNA-polymer conjugates, exploring the synthetic routes and state-of-the-art applications afforded through the combination of nucleic acids and synthetic polymers.
Collapse
Affiliation(s)
- Colette
J. Whitfield
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Meizhou Zhang
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan 430074, People’s Republic of China
| | - Pia Winterwerber
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuzhou Wu
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan 430074, People’s Republic of China
| | - David Y. W. Ng
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
2
|
Bertling J, Thom KA, Geenen S, Jeuken H, Presser L, Müller TJJ, Gilch P. Synthesis and Photophysics of Water-Soluble Psoralens with Red-Shifted Absorption. Photochem Photobiol 2021; 97:1534-1547. [PMID: 34181757 DOI: 10.1111/php.13480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Abstract
8-Methoxypsoralen (8-MOP) serves as a PUVA (psoralen + UV-A) agent in the treatment of certain skin diseases. Derivatives of 8-MOP with cationic aromatic substituents at the five positions were synthesized and characterized by steady-state, femtosecond and nanosecond spectroscopy as well as cyclic voltammetry. The aromatic substituents' positive charge increases the water solubility and the affinity toward intercalation into DNA. The aromatic substituents were supposed to lower the psoralen S1 energy and thereby suppress a photo-induced electron transfer (PET) with guanine-bearing DNA. Such a suppression of this PET is expected to increase the propensity of psoralens to photo-addition to DNA. For derivatives bearing methylpyridinium residues, femtosecond spectroscopy revealed an intramolecular PET occurring on the picosecond time scale. This PET precludes the population of the triplet state. As triplet states are the precursor state for the photo-addition to DNA, their intermolecular PET renders these derivatives ineffective in terms of PUVA. For two derivatives bearing trimethylphenylammonium moieties, such an intramolecular PET does not occur and the triplet state is populated. Surprisingly, these compounds also exhibit no PUVA activity. Based on these findings, implications for further optimization of PUVA agents are discussed.
Collapse
Affiliation(s)
- Janina Bertling
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Kristoffer A Thom
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sarah Geenen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Hannah Jeuken
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Lysander Presser
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Peter Gilch
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Diekmann J, Theves I, Thom KA, Gilch P. Tracing the Photoaddition of Pharmaceutical Psoralens to DNA. Molecules 2020; 25:E5242. [PMID: 33182821 PMCID: PMC7696755 DOI: 10.3390/molecules25225242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 01/14/2023] Open
Abstract
The psoralens 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP) and 5-methoxypsoralen (5-MOP) find clinical application in PUVA (psoralen + UVA) therapy. PUVA treats skin diseases like psoriasis and atopic eczema. Psoralens target the DNA of cells. Upon photo-excitation psoralens bind to the DNA base thymine. This photo-binding was studied using steady-state UV/Vis and IR spectroscopy as well as nanosecond transient UV/Vis absorption. The experiments show that the photo-addition of 8-MOP and TMP involve the psoralen triplet state and a biradical intermediate. 5-MOP forms a structurally different photo-product. Its formation could not be traced by the present spectroscopic technique.
Collapse
Affiliation(s)
| | | | | | - Peter Gilch
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; (J.D.); (I.T.); (K.A.T.)
| |
Collapse
|
4
|
Bifunctional cross-linking approaches for mass spectrometry-based investigation of nucleic acids and protein-nucleic acid assemblies. Methods 2018; 144:64-78. [PMID: 29753003 DOI: 10.1016/j.ymeth.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022] Open
Abstract
With the goal of expanding the very limited toolkit of cross-linking agents available for nucleic acids and their protein complexes, we evaluated the merits of a wide range of bifunctional agents that may be capable of reacting with the functional groups characteristic of these types of biopolymers. The survey specifically focused on the ability of test reagents to produce desirable inter-molecular conjugates, which could reveal the identity of interacting components and the position of mutual contacts, while also considering a series of practical criteria for their utilization as viable nucleic acid probes. The survey employed models consisting of DNA, RNA, and corresponding protein complexes to mimic as close as possible typical applications. Denaturing polyacrylamide gel electrophoresis (PAGE) and mass spectrometric (MS) analyses were implemented in concert to monitor the formation of the desired conjugates. In particular, the former was used as a rapid and inexpensive tool for the efficient evaluation of cross-linker activity under a broad range of experimental conditions. The latter was applied after preliminary rounds of reaction optimization to enable full-fledged product characterization and, more significantly, differentiation between mono-functional and intra- versus inter-molecular conjugates. This information provided the feedback necessary to further optimize reaction conditions and explain possible outcomes. Among the reagents tested in the study, platinum complexes and nitrogen mustards manifested the most favorable characteristics for practical cross-linking applications, whereas other compounds provided inferior yields, or produced rather unstable conjugates that did not survive the selected analytical conditions. The observed outcomes will help guide the selection of the most appropriate cross-linking reagent for a specific task, whereas the experimental conditions described here will provide an excellent starting point for approaching these types of applications. As a whole, the results of the survey clearly emphasize that finding a universal reagent, which may afford excellent performance with all types of nucleic acid substrates, will require extending the exploration beyond the traditional chemistries employed to modify the constitutive functional groups of these vital biopolymers.
Collapse
|
5
|
Barreto HM, Siqueira-Junior JP. Protective effect of furocoumarins against 254-nm ultraviolet in Staphylococcus aureus. Curr Microbiol 2005; 52:40-4. [PMID: 16320118 DOI: 10.1007/s00284-005-0078-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 07/16/2005] [Indexed: 10/25/2022]
Abstract
For Staphylococcus aureus, pretreatment with furocoumarins (FCs) protect cells against killing by far ultraviolet light (FUV; approximately 254 nm). This protective effect was evident in the repair-proficient, parental strain as well as in the repair-deficient variants in the following order of efficacy: 4,5'',8-trimethylpsoralen << 8-methoxypsoralen congruent with angelicin < 3-carbethoxypsoralen. The extent of protection was greater in the parental strain, indicating that despite the protective effect, a certain number of lethal lesions are nevertheless produced, which would be repaired with greater efficiency in such a strain than in the repair-deficient ones. This protective effect could be attribute to the inhibition of the formation of cyclobutyl pyrimidine dimers. Although the energy-transfer concept could explain the inhibition of pyrimidine dimer formation, and thus the protective effect of FC against FUV, we cannot rule out the possibility that the differences in degree of protection afforded by the FC employed here are related to a subtle and complex combination of effects.
Collapse
Affiliation(s)
- Humberto M Barreto
- Departamento de Biologia Molecular/CCEN, Universidade Federal da Paraíba, João Pessoa (PB) 58059-900, Brazil
| | | |
Collapse
|
6
|
Beylot B, Spassky A. Chemical probing shows that the intron-encoded endonuclease I-SceI distorts DNA through binding in monomeric form to its homing site. J Biol Chem 2001; 276:25243-53. [PMID: 11279183 DOI: 10.1074/jbc.m101200200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite its small size (27.6 kDa), the group I intron-encoded I-SceI endonuclease initiates intron homing by recognizing and specifically cleaving a large intronless DNA sequence. Here, we used gel shift assays and footprinting experiments to analyze the interaction between I-SceI and its target. I-SceI was found to bind to its substrate in monomeric form. Footprinting using DNase I, hydroxyl radical, phenanthroline copper complexes, UV/DH-MePyPs photosensitizer, and base-modifying reagents revealed the asymmetric nature of the interaction and provided a first glimpse into the architecture of the complex. The protein interacts in the minor and major grooves and distorts DNA at three distinct sites: one at the intron insertion site and the other two, respectively, downstream (-8, -9) and upstream (+9, +10) from this site. The protein appears to stabilize the DNA curved around it by bridging the minor groove on one face of the helix. The scissile phosphates would lie on the outside of the bend, facing in the same direction relative to the DNA helical axis, as expected for an endonuclease that generates 3' overhangs. An internally consistent model is proposed in which the protein would take advantage of the concerted flexibility of the DNA sequence to induce a synergistic binding/kinking process, resulting in the correct positioning of the enzyme active site.
Collapse
Affiliation(s)
- B Beylot
- Laboratoire de Physique et Chimie Biomoléculaires, Institut Curie, Rue des Saint-Pères, Paris, France
| | | |
Collapse
|
7
|
Adam W, Mielke K, Saha-Möller CR, Möller M, Stopper H, Hutterer R, Schneider FW, Ballmaier D, Epe B, Gasparro FF, Chen X, Kagan J. Photochemical and photobiological studies of a furonaphthopyranone as a benzo-spaced psoralen analog in cell-free and cellular DNA. Photochem Photobiol 1997; 66:46-54. [PMID: 9230704 DOI: 10.1111/j.1751-1097.1997.tb03137.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photobiological activities of the benzo-spaced psoralen analog furonaphthopyranone 3 have been investigated in cell-free and cellular DNA. The molecular geometry parameters of 3 suggest that it should not form interstrand crosslinks with DNA. With cell-free DNA no evidence for crosslinking but also not for monoadduct formation was obtained; rather, the unnatural furocoumarin 3 induces oxidative DNA modifications under near-UVA irradiation. The enzymatic assay of the photosensitized damage in cell-free PM2 DNA revealed the significant formation of lesions sensitive to formamidopyrimidine DNA glycosylase (Fpg protein). In the photooxidation of calf thymus DNA by the furonaphthopyranone 3, 0.29 +/- 0.02% 8-oxo-7,8-dihydroguanine (8-oxoGua) was observed. With 2'-deoxyguanosine (dGuo), the guanidine-releasing photooxidation products oxazolone and oxoimidazolidine were formed predominately, while 8-oxodGuo and 4-HO-8-oxodGuo were obtained in minor amounts. The lack of a significant D2O effect in the photooxidation of DNA and dGuo reveals that singlet oxygen (type II process) plays a minor role; control experiments with tert-butanol and mannitol confirm the absence of hydroxyl radicals as oxidizing species. The furonaphthopyranone 3 (Ered = -1.93 +/- 0.03V) should act in its singlet-excited state as electron acceptor for the photooxidation of dGuo (delta GET ca -6 kcal/mol), which corroborates photoinduced electron transfer (type I) as a major DNA-oxidizing mechanism. A comet assay in Chinese hamster ovary (CHO) AS52 cells demonstrated that the psoralen analog 3 damages cellular DNA upon near-UVA irradiation; however, no photosensitized mutagenicity was observed in CHO AS52 cell cultures.
Collapse
Affiliation(s)
- W Adam
- Institute of Organic Chemistry, University of Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rehn C, Pindur U. Model building and molecular mechanics calculations of mitoxantrone-deoxytetranucleotide complexes: Molecular foundations of DNA intercalation as cytostatic active principle. MONATSHEFTE FUR CHEMIE 1996. [DOI: 10.1007/bf00817255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Tanner JE, Alfieri C, Chatila TA, Diaz-Mitoma F. Induction of interleukin-6 after stimulation of human B-cell CD21 by Epstein-Barr virus glycoproteins gp350 and gp220. J Virol 1996; 70:570-5. [PMID: 8523572 PMCID: PMC189846 DOI: 10.1128/jvi.70.1.570-575.1996] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The cellular receptor for Epstein-Barr virus (EBV) is the type 2 complement receptor, CD21. At initial infection, EBV virion glycoproteins gp350 and gp220 bind to CD21. We report here that the cross-linking of CD21 by gp350/220 results in increased amounts of interleukin 6 (IL-6) RNA and IL-6 protein. This effect could be blocked with anti-gp350/220 and anti-CD21 monoclonal antibodies. Induction of IL-6 in B cells by EBV could be mimicked by treatment with the protein kinase C (PKC) activator phorbol 12,13-dibutyrate but not with the calcium ionophore ionomycin. IL-6 induction by EBV was inhibited with the PKC-specific inhibitor bisindolylmaleimide or the protein tyrosine kinase inhibitors methyl 2,5-dihydroxycinnamate and herbimycin A, indicating that the induction of IL-6 following CD21 cross-linking is mediated through PKC- and protein tyrosine kinase-dependent pathways.
Collapse
Affiliation(s)
- J E Tanner
- Laboratory of Virology, Children's Hospital of Eastern Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Anselmino C, Averbeck D, Cadet J. Photoreaction of 5-methoxypsoralen with thymidine and the thymine moiety of isolated and Saccharomyces cerevisiae DNA. Characterization and measurement of the two cis-syn furan-side monocycloadducts. Photochem Photobiol 1995; 62:997-1004. [PMID: 8570746 DOI: 10.1111/j.1751-1097.1995.tb02399.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The photoreaction of the furan-side moiety of 5-methoxypsoralen (5-MOP) with thymidine used as a DNA model compound was investigated in the dry state. Under these conditions, two main fluorescent photoadducts were formed and isolated by HPLC. The two modified nucleosides were characterized as the two cis-syn diastereoisomers of furan-side monoadducts of 5-MOP to thymidine on the basis of spectroscopic measurements including UV, fluorescence, 1H-NMR and circular dichroism analysis. The identification and quantification of the latter photoproducts within naked DNA exposed to photoexcited 5-MOP were achieved by enzymatic digestion completed by HPLC separation and fluorescence detection. Similarly, the two cis-syn furan-side monoadducts were found to be formed in the DNA of Saccharomyces cerevisiae cells after incubation with 5-MOP and subsequent exposure to 365 nm at an incident dose of 38.4 kJ m-2. Under these conditions, the rate of induction of two diastereoisomeric photoadducts was as low as one modification per 10(6) and 2 x 10(5) bases, respectively.
Collapse
Affiliation(s)
- C Anselmino
- CEA/Département de Recherche Fondamentale sur la Matière Condensée, SESAM/LAN, Grenoble, France
| | | | | |
Collapse
|
11
|
Amici LA, Gasparro FP. 5-Methoxypsoralen photoadduct formation: conversion of monoadducts to crosslinks. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 1995; 11:135-9. [PMID: 8850244 DOI: 10.1111/j.1600-0781.1995.tb00154.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
5-Methoxypsoralen is often substituted for 8-methoxypsoralen in the photochemotherapy of psoriasis even though the nature of the resulting photadducts in cellular DNA has not been determined. A recent molecular mechanics study with a model oligonucleotide predicted that intercalated 5-methoxypsoralen molecules would tend to favor the preferential formation of 3,4-monoadducts. Such a result would be contrary to the photoadduct patterns observed with other psoralens. In this study we show that 5-methoxypsoralen photoadducts formation is, in fact, very similar to that for other psoralens, i.e., the primary photoadduct is the 4',5'-monoadduct which can be quantitatively converted to crosslink.
Collapse
Affiliation(s)
- L A Amici
- Department of Dermatology, Yale University Photobiology Laboratory, New Haven, CT 06510, USA
| | | |
Collapse
|
12
|
Guillo LA, Blais J, Vigny P, Spassky A. Selective DNA thymine dimerization during UVA irradiation in the presence of a saturated pyridopsoralen. Photochem Photobiol 1995; 61:331-5. [PMID: 7740076 DOI: 10.1111/j.1751-1097.1995.tb08617.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It has been recently shown that UVA (320-400 nm) irradiation of DNA in the presence of pyridopsoralens induces the formation of thymine cyclobutane dimers in addition to monoadducts. In this work, we measured the potency of a saturated pyridopsoralen to photosensitize DNA, despite its inability to covalently attach to DNA. First, from spectroscopic fluorescence measurements, we have shown that both analogs, saturated and unsaturated pyridopsoralens, namely 4',5'-dihydro-7-methyl-pyrido[3,4-c]psoralen (DH-MePyPs) and 7-methylpyrido[3,4-c]psoralen, exhibit a similar global affinity for DNA. Secondly, we demonstrated, by footprinting experiments, that exposure of a DNA sequence to 365 nm UV radiation in the presence of DH-MePyPs results in selective cyclobutane thymine dimerization. Thymines located in the immediate proximity of the 5'-TA-3' step are exclusively affected and the frequency of this photoprocess depends on flanking sequences. We thus probe a selective thymine dimer photosensitizer. Results are discussed in terms of drug affinity and physical properties of the helix at the binding site.
Collapse
Affiliation(s)
- L A Guillo
- Laboratoire de Physique et Chimie Biomoléculaires, Institut Curie, Paris, France
| | | | | | | |
Collapse
|
13
|
Spielmann HP, Dwyer TJ, Sastry SS, Hearst JE, Wemmer DE. DNA structural reorganization upon conversion of a psoralen furan-side monoadduct to an interstrand cross-link: implications for DNA repair. Proc Natl Acad Sci U S A 1995; 92:2345-9. [PMID: 7892269 PMCID: PMC42480 DOI: 10.1073/pnas.92.6.2345] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have used 1H NMR spectroscopy to determine the structural changes induced in the DNA oligomer d(5'-GCGTACGC-3')2 upon conversion of the 4'-hydroxy-methyl-4,5',8-trimethylpsoralen-DNA furan-side monoadduct (MAf) to the interstrand cross-link (XL). The MAf is a photochemical intermediate on the path to interstrand XL and has the psoralen intercalated into the helix. The local DNA structure is distorted in both adducts, but it returns to normal within three base pairs. The formation of XL requires displacement of the psoralen toward the initially unmodified strand, accompanied by a change in the hybridization of the thymine C-5 and C-6 carbons and a change in the local helix twist. The MAf is intercalated in the helix. There is no significant bend in the helix axis of either the MAf or XL. There are significant changes in the local helix dynamics upon photoadduct formation that may be recognized by cellular DNA repair enzyme systems. We hypothesize that the repair enzymes target lesions by detecting the conformational flexibility of the sugar-phosphate backbone induced by DNA-damaging agents.
Collapse
Affiliation(s)
- H P Spielmann
- Structural Biology Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
| | | | | | | | | |
Collapse
|
14
|
Molecular mechanics and dynamics study of DNA-furocoumarins complexes: Effect of methylation of the angular derivatives on the intercalation geometry. J Comput Aided Mol Des 1993. [DOI: 10.1007/bf00125326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Demaret JP, Brunie S, Ballini JP, Cadet J, Vigny P. Molecular mechanics and dynamics of DNA-furocoumarin complexes: effect of the aromatization of the pyrone ring on the intercalation geometry. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1990; 6:207-20. [PMID: 2121935 DOI: 10.1016/1011-1344(90)85091-a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Results of molecular mechanics and dynamics calculations on intercalation complexes of DNA with various furocoumarins (psoralen, angelicin, 7-methylpyrido[3,4-c]psoralen and 7-methylpyrido[4,3-c]psoralen) and their corresponding aromatized derivatives are presented. These calculations were undertaken with the aim to elucidate the roles of the pyrone and pyridine moieties in the interactions which tend to orient the furocoumarins and pyridopsoralens between DNA base pairs. It appears that the intercalation geometries are very similar for the furocoumarins and related aromatized compounds. Therefore the oxygen and nitrogen atoms of the pyrone and pyridine moieties are not important in the orientation of the drug within the oligonucleotide.
Collapse
Affiliation(s)
- J P Demaret
- Laboratoire de Biochimie (CNRS UA 240), Ecole Polytechnique, Palaiseau, France
| | | | | | | | | |
Collapse
|
16
|
|