1
|
Lv Y, Li Y, Liu X, Xu K. Photochemistry and proteomics of ginger (Zingiber officinale Roscoe) under drought and shading. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:188-196. [PMID: 32224390 DOI: 10.1016/j.plaphy.2020.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 05/20/2023]
Abstract
Drought has become an increasingly serious ecological problem that limits crop production. However, little is known about the response of ginger (Zingiber officinale Roscoe) to drought and shading, especially with respect to photosynthetic electron transport. Here, differential proteomics was used to study the response of ginger to four experimental treatments: control, drought, 50% shading, and the combination of 50% shading and drought. Proteomic analysis suggested that ginger increased cyclic electron flow under drought stress by enhancing the expression of proteins related to photosystem I and cytochrome b6f. Shading significantly increased the expression of proteins related to the light harvesting complex, even under drought stress. In addition, shading increased the expression of proteins related to the oxygen evolution complex, plastocyanin, and ferredoxin-NADP+ reductase (FNR), thereby enhancing the efficiency of photosynthetic electron utilization. The shading and drought combination treatment appeared to enhance ginger's drought tolerance by reducing the expression of FNR and enhancing cyclic electron flow. Photosynthetic and fluorescence parameters showed that drought stress caused non-stomatal limitation of photosynthesis in ginger leaves. Drought stress also significantly reduced the quantum efficiency of photosystem II (Fv/Fm), the non-cyclic electron transfer efficiency of photosystem II (ϕPSII), and photochemical quenching (qP), while simultaneously increasing nonphotochemical quenching (NPQ). The addition of shading improved photosynthetic efficiency under drought. These results provide important baseline information on the photosynthetic mechanisms by which ginger responds to drought and shading. In addition, they provide a theoretical basis for the study of shade cultivation during the arid season.
Collapse
Affiliation(s)
- Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Yanyan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohui Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
2
|
Samen UM, Eikmanns BJ, Reinscheid DJ. The transcriptional regulator RovS controls the attachment of Streptococcus agalactiae to human epithelial cells and the expression of virulence genes. Infect Immun 2006; 74:5625-35. [PMID: 16988238 PMCID: PMC1594887 DOI: 10.1128/iai.00667-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae is part of the normal flora of the human gastrointestinal tract and also the leading cause of bacterial infections in human newborns and immunocompromised adults. The colonization and infection of different regions within the human host require a regulatory network in S. agalactiae that senses environmental stimuli and controls the formation of specific virulence factors. In the present study, we characterized an Rgg-like transcriptional regulator, designated RovS (regulator of virulence in Streptococcus agalactiae). Deletion of the rovS gene in the genome of S. agalactiae resulted in strain 6313 DeltarovS, which exhibited an increased attachment to immobilized fibrinogen and a significant increase in adherence to the eukaryotic lung epithelial cell line A549. Quantification of expression levels of known and putative S. agalactiae virulence genes by real-time PCR revealed that RovS influences the expression of fbsA, gbs0230, sodA, rogB, and the cyl operon. The altered gene expression in mutant 6313 DeltarovS was restored by plasmid-mediated expression of rovS, confirming the RovS deficiency as the cause for the observed changes in virulence gene expression in S. agalactiae. DNA electrophoretic mobility shift assays showed that RovS specifically binds to the promoter regions of fbsA, gbs0230, sodA, and the cyl operon, indicating that RovS directly regulates their expression. Deletion and mutation studies in the promoter region of fbsA, encoding the main fibrinogen receptor in S. agalactiae, identified a RovS DNA motif. Similar motifs were also found in the promoter regions of gbs0230, sodA, and the cyl operon, and alignments allowed us to propose a consensus sequence for the DNA-binding site of RovS.
Collapse
Affiliation(s)
- Ulrike M Samen
- Department of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany.
| | | | | |
Collapse
|
3
|
Hillmann F, Fischer RJ, Bahl H. The rubrerythrin-like protein Hsp21 of Clostridium acetobutylicum is a general stress protein. Arch Microbiol 2006; 185:270-6. [PMID: 16463182 DOI: 10.1007/s00203-006-0091-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 01/18/2006] [Accepted: 01/20/2006] [Indexed: 10/25/2022]
Abstract
The small heat shock protein Hsp21 of Clostridium acetobutylicum was recently identified as a rubrerythrin-like protein with a rubredoxin-like FeS(4) domain at the N-terminus and a ferritin-like diiron domain at the C-terminus. Here, we report that the two identical tandem genes rbr3A and rbr3B, which encode the heat shock protein Hsp21, show the transcription pattern of general stress genes. Northern blot analysis indicated that the transcription of the rbr3AB operon is induced by various environmental stress conditions: in addition to heat and oxidative stress, an increase of the pH of the growth medium from 4.5 to 6.2, addition of the salt NaCl (400 mM) or of the solvent butanol (3.5% v/v), and lowering the incubation temperature from 37 to 25 degrees C resulted in transiently increased transcript levels. The promoter region deduced from the 5' end of the mRNA has only limited similarity to the consensus promoter sequence of Gram-positive bacteria. A conserved inverted repeat between this promoter and the initiation codon is proposed to have a regulatory role. Although C. acetobutylicum is regarded as a strictly anaerobic bacterium, live/dead staining demonstrated that it can survive exposure to air or H(2)O(2) and other stressors to various extents.
Collapse
Affiliation(s)
- Falk Hillmann
- Division of Microbiology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18051, Rostock, Germany
| | | | | |
Collapse
|
4
|
Schreiner ME, Riedel C, Holátko J, Pátek M, Eikmanns BJ. Pyruvate:quinone oxidoreductase in Corynebacterium glutamicum: molecular analysis of the pqo gene, significance of the enzyme, and phylogenetic aspects. J Bacteriol 2006; 188:1341-50. [PMID: 16452416 PMCID: PMC1367228 DOI: 10.1128/jb.188.4.1341-1350.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 10/17/2005] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum recently has been shown to possess pyruvate:quinone oxidoreductase (PQO), catalyzing the oxidative decarboxylation of pyruvate to acetate and CO2 with a quinone as the electron acceptor. Here, we analyze the expression of the C. glutamicum pqo gene, investigate the relevance of the PQO enzyme for growth and amino acid production, and perform phylogenetic studies. Expression analyses revealed that transcription of pqo is initiated 45 bp upstream of the translational start site and that it is organized in an operon together with genes encoding a putative metal-activated pyridoxal enzyme and a putative activator protein. Inactivation of the chromosomal pqo gene led to the absence of PQO activity; however, growth and amino acid production were not affected under either condition tested. Introduction of plasmid-bound pqo into a pyruvate dehydrogenase complex-negative C. glutamicum strain partially relieved the growth phenotype of this mutant, indicating that high PQO activity can compensate for the function of the pyruvate dehydrogenase complex. To investigate the distribution of PQO enzymes in prokaryotes and to clarify the relationship between PQO, pyruvate oxidase (POX), and acetohydroxy acid synthase enzymes, we compiled and analyzed the phylogeny of respective proteins deposited in public databases. The analyses revealed a wide distribution of PQOs among prokaryotes, corroborated the hypothesis of a common ancestry of the three enzymes, and led us to propose that the POX enzymes of Lactobacillales were derived from a PQO.
Collapse
Affiliation(s)
- Mark E Schreiner
- Department of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
5
|
Schreiner ME, Fiur D, Holátko J, Pátek M, Eikmanns BJ. E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects. J Bacteriol 2005; 187:6005-18. [PMID: 16109942 PMCID: PMC1196148 DOI: 10.1128/jb.187.17.6005-6018.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1p enzyme is an essential part of the pyruvate dehydrogenase complex (PDHC) and catalyzes the oxidative decarboxylation of pyruvate with concomitant acetylation of the E2p enzyme within the complex. We analyzed the Corynebacterium glutamicum aceE gene, encoding the E1p enzyme, and constructed and characterized an E1p-deficient mutant. Sequence analysis of the C. glutamicum aceE gene and adjacent regions revealed that aceE is not flanked by genes encoding other enzymes of the PDHC. Transcriptional analysis revealed that aceE from C. glutamicum is monocistronic and that its transcription is initiated 121 nucleotides upstream of the translational start site. Inactivation of the chromosomal aceE gene led to the inability to grow on glucose and to the absence of PDHC and E1p activities, indicating that only a single E1p enzyme is present in C. glutamicum and that the PDHC is essential for the growth of this organism on carbohydrate substrates. Surprisingly, the E1p enzyme of C. glutamicum showed up to 51% identity to homodimeric E1p proteins from gram-negative bacteria but no similarity to E1 alpha- or beta-subunits of heterotetrameric E1p enzymes which are generally assumed to be typical for gram-positives. To investigate the distribution of E1p enzymes in bacteria, we compiled and analyzed the phylogeny of 46 homodimeric E1p proteins and of 58 alpha-subunits of heterotetrameric E1p proteins deposited in public databases. The results revealed that the distribution of homodimeric and heterotetrameric E1p subunits in bacteria is not in accordance with the rRNA-based phylogeny of bacteria and is more heterogeneous than previously assumed.
Collapse
Affiliation(s)
- Mark E Schreiner
- Department of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
6
|
Hoffrogge R, Mikschofsky H, Piechulla B. Surface plasmon resonance spectroscopy (SPR) interaction studies of the circadian-controlled tomato LHCa4*1 (CAB 11) protein with its promoter. Chronobiol Int 2003; 20:543-58. [PMID: 12916712 DOI: 10.1081/cbi-120022410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Feedback regulation is an important biochemical mechanism which is also able to direct the circadian timing at the transcriptional level. Independent investigations highlighted a conserved ca. 10 nucleotide motif present in many circadian regulated Lhc genes. Two of such nucleotide motifs exist within 119 nucleotides of the Lhca4*1 promoter from tomato. This promoter fragment was used as a bait in a yeast one hybrid screen and interestingly a clone encoding with sequence identity to the LHCa4*1 protein was isolated as an interaction partner. The LHCa4*1 protein was heterologous expressed and binding to the 119bp promoter fragment was demonstrated by surface plasmon resonance spectroscopy (SPR, Biacore). This result allows to postulate an autoregulatory feedback loop involved in expression of the Lhca4*1 gene.
Collapse
Affiliation(s)
- Raimund Hoffrogge
- Department of Biological Sciences, Division of Biochemistry, University of Rostock, Rostock, Germany
| | | | | |
Collapse
|
7
|
Thormann K, Feustel L, Lorenz K, Nakotte S, Dürre P. Control of butanol formation in Clostridium acetobutylicum by transcriptional activation. J Bacteriol 2002; 184:1966-73. [PMID: 11889105 PMCID: PMC134926 DOI: 10.1128/jb.184.7.1966-1973.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sol operon of Clostridium acetobutylicum is the essential transcription unit for formation of the solvents butanol and acetone. The recent proposal that transcriptional regulation of this operon is controlled by the repressor Orf5/SolR (R. V. Nair, E. M. Green, D. E. Watson, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol. 181:319-330, 1999) was found to be incorrect. Instead, regulation depends on activation, most probably by the multivalent transcription factor Spo0A. The operon is transcribed from a single promoter. A second signal identified in primer extension studies results from mRNA processing and can be observed only in the natural host, not in a heterologous host. The first structural gene in the operon (adhE, encoding a bifunctional butyraldehyde/butanol dehydrogenase) is translated into two different proteins, the mature AdhE enzyme and the separate butanol dehydrogenase domain. The promoter of the sol operon is preceded by three imperfect repeats and a putative Spo0A-binding motif, which partially overlaps with repeat 3 (R3). Reporter gene analysis performed with the lacZ gene of Thermoanaerobacterium thermosulfurigenes and targeted mutations of the regulatory region revealed that the putative Spo0A-binding motif, R3, and R1 are essential for control. The data obtained also indicate that an additional activator protein is involved.
Collapse
Affiliation(s)
- Kai Thormann
- Mikrobiologie und Biotechnologie, Universität Ulm, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
8
|
Eppard M, Rhiel E. Investigations on gene copy number, introns and chromosomal arrangement of genes encoding the fucoxanthin chlorophyll a/c-binding proteins of the centric diatom Cyclotella cryptica. Protist 2000; 151:27-39. [PMID: 10896131 DOI: 10.1078/1434-4610-00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene arrangement, existence of introns and the number of gene copies of genes (fcps) encoding fucoxanthin chlorophyll a/c-binding proteins (Fcps) of the centric diatom Cyclotella cryptica were investigated by polymerase chain reaction (PCR), Southern blotting and denaturing gradient gel electrophoresis (DGGE) experiments. PCR-mediated amplification of the fcp genes using chromosomal DNA as template demonstrated the absence of introns within the amplified regions. Clustering of genes could not be demonstrated in these experiments. Digestion of chromosomal DNA of Cy. cryptica followed by Southern blotting and hybridization with specific fcp probes revealed minimum and maximum values of 12 and 20, respectively, for the gene copies. In addition, the DGGE technique confirmed and strengthened the results obtained from Southern blotting experiments as amplification of gene fragments from genomic DNA with different sets of specific primers revealed values of 21 and 23, for the minimum and maximum gene copy number, respectively.
Collapse
Affiliation(s)
- M Eppard
- AG Geomikrobiologie, ICBM, Carl-von-Ossietzky-Universität Oldenburg, Germany
| | | |
Collapse
|
9
|
Abstract
Photosynthesis is one of the important processes that enable life on earth. To optimize photosynthesis reactions during a solar day, most of them are timed to be active during the light phase. This includes the components of the thylakoid membranes in chloroplasts. Prominent representatives are the proteins of the light-harvesting complex (LHC). The synthesis of both the Lhc mRNA and the LHC protein occurs during the day and is regulated by the circadian clock, exhibiting the following pattern: increasing levels after sunrise, reaching a maximum around noon, and decreasing levels in the afternoon. To elucidate the involved control elements and regulatory circuits, the following strategies were applied: (1) analysis of promoters of Lhc genes, (2) analysis of DNA binding proteins, and (3) screening and investigation of mutants. The most promising elements found so far that may be involved in mediating the circadian rhythmicity of Lhc mRNA oscillations are a myb-like transcription factor CCA1 (Wang et al. 1997) and the corresponding DNA binding sequence (Piechulla et al. 1998).
Collapse
Affiliation(s)
- B Piechulla
- University of Rostock, Department of Molecular Physiology of Plants and Microorganisms, Rostock, Germany
| |
Collapse
|
10
|
Ward MJ, Lew H, Treuner-Lange A, Zusman DR. Regulation of motility behavior in Myxococcus xanthus may require an extracytoplasmic-function sigma factor. J Bacteriol 1998; 180:5668-75. [PMID: 9791117 PMCID: PMC107626 DOI: 10.1128/jb.180.21.5668-5675.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/1998] [Accepted: 08/28/1998] [Indexed: 11/20/2022] Open
Abstract
Using interaction trap technology, we identified a putative extracytoplasmic-function (ECF) sigma factor (RpoE1) in Myxococcus xanthus, a bacterium which has a complex life cycle that includes fruiting body formation. The first domain of the response regulator protein FrzZ, a component of the Frz signal transduction system, was used as bait. Although the RpoE1 protein displayed no interactions with control proteins presented as bait, a weak interaction with a second M. xanthus response regulator (AsgA) was observed. While the specificity of the FrzZ-RpoE1 interaction therefore remains speculative, cloning and sequencing of the region surrounding rpoE1 localized it to a position downstream of the frzZ gene. A potential promoter site for binding of an ECF sigma factor was identified upstream of rpoE1, suggesting the gene may be autoregulated. However, primer extension studies suggested that transcription of rpoE1 occurs under both vegetative and developmental conditions from a sigma70-like promoter. Dot blot analysis of RNA preparations confirmed the low-level, constitutive expression of rpoE1 during both stages of the life cycle. Analysis of an insertion mutant also indicated a role for RpoE1 under both vegetative and developmental conditions, since swarming was reduced on nutrient-rich agar and developmental aggregation was effected under starvation conditions, especially at high cell densities. An insertion mutation introduced into the gene directly downstream of rpoE1 (orf5) did not result in either swarming or developmental aggregation defects, even though the gene is transcribed as part of the same operon. Therefore, we propose that this new ECF sigma factor could play a role in the transcriptional regulation of genes involved in motility behavior during both stages of the complex M. xanthus life cycle.
Collapse
Affiliation(s)
- M J Ward
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | | | | | |
Collapse
|
11
|
Winter L, Stöcker S, Merforth N, Mühlbach HP, Piechulla B. Circadian oscillations of Lhc mRNAs in a photoautotrophic cell culture of Lycopersicon peruvianum. PHOTOSYNTHESIS RESEARCH 1996; 47:77-84. [PMID: 24301709 DOI: 10.1007/bf00017755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/1995] [Accepted: 11/06/1995] [Indexed: 06/02/2023]
Abstract
Fourteen genes encoding proteins of the light harvesting complex (Lhc) are expressed in a photoautotrophic cell culture from the wild species of tomato (Lycopersicon peruvianum). For two genes, Lhca2 (cab7) and Lhcb2(*)1 (cab4), a rhythmic oscillation of the transcript accumulation is observed under light/dark and constant dark conditions indicating that gene expression is controlled by a circadian clock in the tomato cell culture. The circadian expression of the Lhc genes remains present after application of 2,2'-dipyridyl. However, the amplitude of Lhc mRNA oscillations and the photosynthetic capacity (Fmax/Fo) decrease significantly. The transcript accumulations of psbA, rbcS and rbcL are less or not at all affected by 2,2'-dipyridyl.
Collapse
Affiliation(s)
- L Winter
- Institut für Biochemie der Pflanze, Untere Karspüle 2, 37073, Göttingen, Germany
| | | | | | | | | |
Collapse
|
12
|
Watillon B, Kettmann R, Boxus P, Burny A. Developmental and circadian pattern of rubisco activase mRNA accumulation in apple plants. PLANT MOLECULAR BIOLOGY 1993; 23:501-9. [PMID: 8219085 DOI: 10.1007/bf00019298] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An apple cDNA encoding the precursor of ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) activase has been characterized. Using this cDNA as a probe, leaf-specific and light-regulated accumulation of corresponding transcripts was detected. Rubisco activase transcripts also turned out to accumulate at growing levels during apple leaf development, to reach a maximum in fully expanded leaves. In contrast, chlorophyll a/b-binding protein (Cab) and rubisco large subunit mRNA levels reach a maximum earlier in the course of leaf development. Moreover, the accumulation of rubisco activase messengers appeared to follow an oscillating circadian rhythm qualitatively similar to that observed for Cab mRNA levels.
Collapse
Affiliation(s)
- B Watillon
- Unité de Biologie Moléculaire et Physiologie Animale, Faculté des Sciences Agronomiques de Gembloux, Belgium
| | | | | | | |
Collapse
|
13
|
Bhaya D, Grossman AR. Characterization of gene clusters encoding the fucoxanthin chlorophyll proteins of the diatom Phaeodactylum tricornutum. Nucleic Acids Res 1993; 21:4458-66. [PMID: 8233779 PMCID: PMC311176 DOI: 10.1093/nar/21.19.4458] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We are studying the multigene family encoding the fucoxanthin-chlorophyll binding proteins (fcp genes) that constitute the major component of the photosystem II-associated light harvesting complex in diatoms and brown algae. The characteristics of clusters of fcp genes on the genome of the diatom Phaeodactylum tricornutum are described. Sequence analysis of two genomic clones, PT5 and PT4, has demonstrated the presence of four fcp genes (fcpA, fcpB, fcpC, fcpD) on the former and two fcp genes (fcpE, fcpF) on the latter. The proteins encoded by the six characterized fcp genes range in similarity from 86% to 99%. The genes within each cluster are separated by short intergenic sequences (between 0.5 to 1.1 kb). None of these genes contain introns and all appear to be transcribed with short 5' transcribed, untranslated leader sequences; the transcription initiation sites were mapped 26 to 48 bases upstream of the ATG translation start site. Small conserved motifs are found among all of the genes just upstream of both the translation and the transcription start sites. The codon bias is similar in all of the fcp genes, with a predominance of pyrimidines in the third positions of codons of the four codon families. The two fcp genes that are most similar are fcpC and fcpD, and might represent a recent gene duplication. Southern analyses using fcp cDNAs as hybridization probes suggest that there may be additional sequences on the P. tricornutum genome that resemble the characterized fcp sequences.
Collapse
Affiliation(s)
- D Bhaya
- Department of Plant Biology, Carnegiie Institution of Washington, Stanford, CA 94305
| | | |
Collapse
|
14
|
Piechulla B. 'Circadian clock' directs the expression of plant genes. PLANT MOLECULAR BIOLOGY 1993; 22:533-542. [PMID: 8329689 DOI: 10.1007/bf00015982] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- B Piechulla
- Institut für Biochemie der Pflanze, Göttingen, Germany
| |
Collapse
|
15
|
Kellmann JW, Merforth N, Wiese M, Pichersky E, Piechulla B. Concerted circadian oscillations in transcript levels of nineteen Lha/b (cab) genes in Lycopersicon esculentum (tomato). MOLECULAR & GENERAL GENETICS : MGG 1993; 237:439-48. [PMID: 7683370 DOI: 10.1007/bf00279449] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Steady-state mRNA levels of nineteen members of the Lha/b (cab) gene family of Lycopersicon esculentum, encoding nine different types of light-harvesting complex (LHC) polypeptides, were determined by primer extension analysis. Each Lha/b gene is expressed and individual mRNAs accumulate to distinct levels. The relative contribution of each Lha/b mRNA to the total Lha/b mRNA levels is very similar in different green organs (leaves, stems, fruits, sepals) and after light treatment of etiolated seedlings. Detailed analysis of Lha/b mRNA accumulation in leaves under light/dark conditions, continuous darkness and continuous light revealed diurnal and circadian oscillations of Lha/b mRNAs for all genes. Only minor instances of divergence from a general expression pattern are apparent. Together these results indicate a concerted expression of all genes, suggesting that similar or identical molecular mechanisms and signal transduction chain control the expression of all Lha/b genes.
Collapse
Affiliation(s)
- J W Kellmann
- Institut für Biochemie der Pflanze, Göttingen, FRG
| | | | | | | | | |
Collapse
|
16
|
Gerischer U, Dürre P. mRNA analysis of the adc gene region of Clostridium acetobutylicum during the shift to solventogenesis. J Bacteriol 1992; 174:426-33. [PMID: 1370288 PMCID: PMC205733 DOI: 10.1128/jb.174.2.426-433.1992] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using primer extension analysis, we located the transcription start point of the acetoacetate decarboxylase (adc) gene of Clostridium acetobutylicum 90 nucleotides upstream from the initiation codon with A as the first transcribed nucleotide. From this site the promoter structure TTTACT(18 bp)TATAAT was identified; it shows high homology to the consensus sequences of gram-positive bacteria and Escherichia coli. Northern blot experiments revealed a length of 850 bases for the transcript of the adc gene. It thus represents a monocistronic operon. Transcription of adc was induced by conditions necessary for the onset of solvent formation. Induction occurred long before the respective fermentation product (acetone) could be detected in the medium. Transcription of the operon containing the genes for acetoacetyl coenzyme A:acetate/butyrate:coenzyme A transferase (designated ctf) downstream of the adc gene but divergently transcribed is also induced by conditions necessary for the onset of solvent formation. The length of the respective RNA transcript, 4.1 kb, indicates additional coding capacity, since the genes for the two subunits of the coenzyme A transferase cover only approximately 1.5 kb. No distinct transcripts for the other open reading frames of the adc gene region, ORF1 and ORF2, could be detected. Computer analysis indicated that ORF1, which showed significant similarity to the alpha-amylase gene of Bacillus subtilis (U. Gerischer and P. Dürre, J. Bacteriol. 172:6907-6918, 1990), probably is indeed a coding region. ORF2, however, does not seem to have a coding function.
Collapse
Affiliation(s)
- U Gerischer
- Institut für Mikrobiologie, Universität Göttingen, Germany
| | | |
Collapse
|
17
|
Hoffman NE, Ko K, Milkowski D, Pichersky E. Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. PLANT MOLECULAR BIOLOGY 1991; 17:1189-201. [PMID: 1657246 DOI: 10.1007/bf00028735] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report here the isolation and nucleotide sequence of tomato cDNA and genomic clones encoding a ubiquitin extension protein homologous to the yeast gene ubi3. Sites similar to upstream activating sites commonly found in the promoters of yeast ribosomal genes were observed in the tomato promoter. The tomato ubi3 promoter also contained elements found in the rbcS promoter from pea. The transcription initiation site was determined to occur 66 bp upstream of the initiating Met. RFLP mapping revealed that the gene was located on chromosome 1, 23 cM from marker TG301. A ubi3 gene-specific probe hybridized to a single 800 nt transcript. Expression was reduced in heat-shocked plants and plants kept in the dark. Expression was highest in young leaves and immature green fruit and lowest in mature leaves and petals. We isolated the original cDNA clone using an antibody prepared against chloroplast polypeptides. Immunological studies did not detect ubiquitin or ubiquitin extension proteins in the chloroplast. However, higher-molecular-weight chloroplast proteins were detected with ubiquitin antisera suggesting that ubiquitin conjugates are transported into the chloroplast.
Collapse
Affiliation(s)
- N E Hoffman
- Department of Plant Biology, Carnegie Institute of Washington, Stanford, CA 94305
| | | | | | | |
Collapse
|
18
|
Piechulla B, Kellmann JW, Pichersky E, Schwartz E, Förster HH. Determination of steady-state mRNA levels of individual chlorophyll a/b binding protein genes of the tomato cab gene family. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:413-22. [PMID: 1766438 DOI: 10.1007/bf00280298] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The steady-state levels of mRNA produced by 14 genes encoding members of the tomato chlorophyll a/b binding protein family were quantified. All genes were found to be expressed in leaf tissue, but the mRNAs accumulated to significantly different levels. The transcripts of cab 1A, cab 1B, cab 3A and cab 3B, encoding the Type I LHC proteins of photosystem II, are abundant, while low levels were measured for mRNAs encoding the Type II LHC II and the LHC I proteins. Sequences from the 5' upstream regions (-400 to translational start) of some cab genes were determined in this study, and a total of 16 tomato cab gene promoters for which sequences are now available were analyzed. Significant sequence conservation was found for those genes which are tandemly linked on the chromosome. However, the level of sequence conservation is different for the different cab subfamilies, e.g. 85% similarity between cab 1A and cab 1D vs. 45% sequence similarity between cab 3A and cab 3C upstream sequences. Characteristic GATA repeats with a conserved spacing were found in 5' upstream sequences of cab 1A-D, cab 3A-C, cab 11 and cab 12. The consensus sequence CCTTATCAT, which is believed to mediate light responsiveness, was found at different locations in the upstream sequences of cab 6B, cab 7, cab 8, cab 9, cab 10A, cab 10B and cab 11. In 11 out of 15 genes the transcription initiation site was found to center on the triplet TCA.
Collapse
Affiliation(s)
- B Piechulla
- Institut für Biochemie der Pflanze, Göttingen, FRG
| | | | | | | | | |
Collapse
|
19
|
Jasper F, Quednau B, Kortenjann M, Johanningmeier U. Control of cab gene expression in synchronized Chlamydomonas reinhardtii cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1991; 11:139-50. [PMID: 1770403 DOI: 10.1016/1011-1344(91)80256-h] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In light-dark synchronized Chlamydomonas reinhardtii cultures transcripts of at least two members of the cab gene family coding for chlorophyll a/b binding proteins are highly abundant in the light, but almost undetectable in the dark. "Run-on" transcription assays in isolated nuclei were used to show that the rapid increase in cab mRNA levels during the light phase is primarily due to regulation at the transcriptional level. Functionally unrelated inhibitors such as dipyridyl and cycloheximide as well as anaerobic conditions block chlorophyll synthesis, presumably by interfering with the conversion of magnesium protoporphyrin monomethyl ester to protochlorophyllide. Under these conditions, cab mRNA does not accumulate and nuclei isolated from inhibitor-treated cells do not support cab gene transcription. Inhibitors such as dioxoheptanoic acid and diphenyl ether herbicides block earlier steps within the chlorophyll synthesis pathway without substantial effects on cab mRNA accumulation and transcription. A possible control of transcription by intermediates of the chlorophyll biosynthesis pathway is discussed.
Collapse
Affiliation(s)
- F Jasper
- Ruhr-Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, F.R.G
| | | | | | | |
Collapse
|