1
|
Pouteau S, Carré I, Gaudin V, Ferret V, Lefebvre D, Wilson M. Diversification of photoperiodic response patterns in a collection of early-flowering mutants of Arabidopsis. PLANT PHYSIOLOGY 2008; 148:1465-73. [PMID: 18799658 PMCID: PMC2577249 DOI: 10.1104/pp.108.127639] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 09/09/2008] [Indexed: 05/20/2023]
Abstract
Many plant species exhibit seasonal variation of flowering time in response to daylength. Arabidopsis (Arabidopsis thaliana) flowers earlier under long days (LDs) than under short days (SDs). This quantitative response to photoperiod is characterized by two parameters, the critical photoperiod (Pc), below which there is a delay in flowering, and the ceiling photoperiod (Pce), below which there is no further delay. Thus Pc and Pce define the thresholds beyond which maximum LD and SD responses are observed, respectively. We studied the quantitative response to photoperiod in 49 mutants selected for early flowering in SDs. Nine of these mutants exhibited normal Pce and Pc, showing that their precocious phenotype was not linked to abnormal measurement of daylength. However, we observed broad diversification in the patterns of quantitative responses in the other mutants. To identify factors involved in abnormal measurement of daylength, we analyzed the association of these various patterns with morphogenetic and rhythmic defects. A high proportion of mutants with altered Pce exhibited abnormal hypocotyl elongation in the dark and altered circadian periods of leaf movements. This suggested that the circadian clock and negative regulators of photomorphogenesis may contribute to the specification of SD responses. In contrast, altered Pc correlated with abnormal hypocotyl elongation in the light and reduced photosynthetic light-input requirements for bolting. This indicated that LD responses may be specified by positive elements of light signal transduction pathways and by regulators of resource allocation. Furthermore, the frequency of circadian defects in mutants with normal photoperiodic responses suggested that the circadian clock may regulate the number of leaves independently of its effect on daylength perception.
Collapse
Affiliation(s)
- Sylvie Pouteau
- UR Biologie Cellulaire, INRA, F78026 Versailles, France.
| | | | | | | | | | | |
Collapse
|
2
|
Martin J, Storgaard M, Andersen CH, Nielsen KK. Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS -like homolog. PLANT MOLECULAR BIOLOGY 2004; 56:159-69. [PMID: 15604735 DOI: 10.1007/s11103-004-2647-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photoperiod and vernalization are the two key environmental factors of the floral induction of perennial ryegrass (Lolium perenne L.). Transition from vegetative to reproductive growth will only occur after an extended vernalization period, followed by an increase in day length and temperature. Here we report on the isolation and characterization of a L. perenne gene (LpCO ) that is homologous to CONSTANS , and which is tightly coupled to the floral inductive long day signal. Like other monocot CO-like proteins, the LpCO contains a zinc finger domain with a non-conserved B-Box2. Although the B-Box2 has been demonstrated to be essential for the function of the Arabidopsis CO (AtCO), LpCO is able to complement the Arabidopsis co-2 mutant, and ectopic expression in Arabidopsis wild type leads to early flowering. The LpCO transcript exhibits diurnal oscillations and is expressed at higher levels during long days.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/radiation effects
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Exons
- Flowers/genetics
- Flowers/growth & development
- Flowers/radiation effects
- Gene Expression Regulation, Developmental/radiation effects
- Gene Expression Regulation, Plant/radiation effects
- Genes, Plant/genetics
- Introns
- Lolium/genetics
- Lolium/growth & development
- Lolium/radiation effects
- Molecular Sequence Data
- Mutation
- Photoperiod
- Phylogeny
- Plant Proteins/genetics
- Plants, Genetically Modified
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Jérome Martin
- Plant Research Department, Risø National Laboratory, Frederiksborgvej 399, P.O. Box 49, Roskilde, 4000, Denmark.
| | | | | | | |
Collapse
|
3
|
Oguchi T, Sage-Ono K, Kamada H, Ono M. Genomic structure of a novel Arabidopsis clock-controlled gene, AtC401, which encodes a pentatricopeptide repeat protein. Gene 2004; 330:29-37. [PMID: 15087121 DOI: 10.1016/j.gene.2003.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 10/16/2003] [Accepted: 11/14/2003] [Indexed: 10/26/2022]
Abstract
We isolated and characterized AtC401, a novel Arabidopsis clock-controlled gene that encodes a protein containing the pentatricopeptide repeat (PPR) motif. AtC401 was isolated as an Arabidopsis homolog of Pharbitis nil C401 (PnC401), a gene that encodes a leaf protein closely related to the photoperiodic induction of flowering and displays a circadian rhythm at the transcriptional level. The AtC401 gene spans 5.6 kb and contains 12 exons. Comparisons of the sequences and genomic organization of AtC401 and PnC401 revealed that each has two exons near the 3'-end, which encode a highly conserved domain consisting of 12 repeats of the PPR motif. Phylogenetic analysis of at least 450 Arabidopsis proteins containing PPR motifs revealed that AtC401 and related proteins form a distinct group. Moreover, the position of the intron between the two exons that encode the PPR domain has been conserved exactly in other C401-like genes. Using a reporter assay, we found a fragment (-174 to +73) of AtC401 that was sufficient to regulate circadian rhythmic expression. These results suggest that the conserved domain of AtC401 has a function similar to that of PnC401, and that the expression of C401 genes according to a circadian rhythm is important for protein function.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Base Sequence
- Circadian Rhythm/physiology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Exons
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Introns
- Luciferases/genetics
- Luciferases/metabolism
- Luminescent Measurements
- Molecular Sequence Data
- Phylogeny
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Repetitive Sequences, Amino Acid/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription Initiation Site
Collapse
Affiliation(s)
- Taichi Oguchi
- Gene Research Center, Institute of Biological Sciences, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8572, Japan.
| | | | | | | |
Collapse
|
4
|
Oguchi T, Sage-Ono K, Kamada H, Ono M. Characterization of Transcriptional Oscillation of an Arabidopsis Homolog of PnC401 Related to Photoperiodic Induction of Flowering in Pharbitis nil. ACTA ACUST UNITED AC 2004; 45:232-5. [PMID: 14988494 DOI: 10.1093/pcp/pch018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AtC401 is an Arabidopsis homolog of PnC401 that is related to photoperiodic induction of flowering in Pharbitis nil. These genes show free-running rhythms. To study the free-running rhythm of AtC401, we fused a firefly luciferase reporter to the AtC401 promoter and transformed it into Arabidopsis plants. The observed bioluminescence oscillated under continuous light and continuous dark only with sucrose supplementation. The free-running period of bioluminescence was temperature-compensated between 22 degrees C and 30 degrees C. Light-pulse experiments under continuous darkness produced a phase-response curve typical of circadian rhythms. We conclude that rhythmic expression of AtC401 is controlled by a circadian oscillator.
Collapse
Affiliation(s)
- Taichi Oguchi
- Gene Research Center, Institute of Biological Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan.
| | | | | | | |
Collapse
|
5
|
Suzuki M, Yamaguchi S, Iida T, Hashimoto I, Teranishi H, Mizoguchi M, Yano F, Todoroki Y, Watanabe N, Yokoyama M. Endogenous alpha-ketol linolenic acid levels in short day-induced cotyledons are closely related to flower induction in Pharbitis nil. PLANT & CELL PHYSIOLOGY 2003; 44:35-43. [PMID: 12552145 DOI: 10.1093/pcp/pcg007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alpha-ketol linolenic acid [KODA, 9,10-ketol-octadecadienoic acid, that is 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid] is a signal compound found in Lemna paucicostata after exposure to stress, such as drought, heat or osmotic stress. KODA reacts with catecholamines to generate products that strongly induce flowering, although KODA itself is inactive [Yokoyama et al. (2000) Plant Cell Physiol. 41: 110; Yamaguchi et al. (2001) Plant Cell Physiol. 42: 1201]. We examined the role of KODA in the flower-induction process of Pharbitis nil (violet). KODA was identified for the first time in seedlings of P. nil grown under a flower-inductive condition (16-h dark exposure), by means of LC-SIM and LC-MS/MS. In addition, the changes in endogenous KODA levels (evaluated after esterification of KODA with 9-anthryldiazomethane) during the flower-inductive phase in short day-induced cotyledons were closely related to flower induction. The KODA concentration sharply increased in seedlings during the last 2 h of a 16-h dark period, while the KODA level showed no significant elevation under continuous light. The increase of KODA level occurred in cotyledonal blades, but not in other parts (petiole, hypocotyls and shoot tip). When the 16-h dark period was interrupted with a 10-min light exposure at the 8th h, flower induction was blocked and KODA level also failed to increase. The degree of elevation of KODA concentration in response to 16-h dark exposure was the highest when the cotyledons had just unfolded, and gradually decreased in seedlings grown under continuous light for longer periods, reaching the basal level at the 3rd day after unfolding. Flower-inducing ability also decreased in a similar manner. These results suggest that KODA may be involved in flower induction in P. nil.
Collapse
Affiliation(s)
- Masayuki Suzuki
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
He YW, Loh CS. Induction of early bolting in Arabidopsis thaliana by triacontanol, cerium and lanthanum is correlated with increased endogenous concentration of isopentenyl adenosine (iPAdos). JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:505-512. [PMID: 11847249 DOI: 10.1093/jexbot/53.368.505] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of triacontanol (TRIA), applied singly or in combination with cerium nitrate and lanthanum nitrate, on bolting of Arabidopsis thaliana were studied. Triacontanol (0.1 to 0.6 microM) added to the culture medium induced early bolting. TRIA (0.3 microM) applied with low concentrations of cerium and lanthanum caused a synergistic stimulation of bolting. In medium containing 0.3 microM TRIA, 0.1 microM cerium nitrate and 0.1 mM lanthanum nitrate, 82% of the plants bolted 20 d after seed sowing compared to only 8.6% in basal medium and 47.8% in medium with TRIA only. The changes in the endogenous concentrations of total cytokinins of the isopentenyl adenine (IP) subfamily in the leaf and root tissues were correlated with TRIA-induced early bolting. The combined treatment of TRIA (0.3 microM), cerium nitrate (0.1 microM) and lanthanum nitrate (0.1 mM) resulted in a significant increase in the endogenous concentrations of total cytokinins of the IP subfamily in the root and leaf tissues compared to plants growing in the basal medium and medium with TRIA. The exogenous application of six natural cytokinins to the plants revealed that only isopentenyl adenosine (iPAdos) was as effective as TRIA on floral bud formation. iPAdos was also found to have similar effects as TRIA on root growth and reproductive growth. These results suggest a correlation between the early bolting induced by TRIA, cerium and lanthanum and the production of higher concentrations of endogenous iPAdos.
Collapse
Affiliation(s)
- Ya-Wen He
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543
| | | |
Collapse
|
7
|
Ye Z, Rodriguez R, Tran A, Hoang H, Brown S, Vellanoweth RL. The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 158:115-127. [PMID: 10996251 DOI: 10.1016/s0168-9452(00)00316-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Leaf senescence in many plant species is associated with increased oxidative damage to cellular macromolecules by reactive oxygen species (ROS). Since ROS levels and their damage products in many plants are known to increase during senescence, it is possible that these changes are due to a decline in the levels of certain antioxidant enzymes. Using specific assays, we find that the developmental transition to bolting and flowering is associated with up to a 5-fold decline in ascorbate peroxidase activity and an increase in chloroplastid superoxide dismutase. As expected, these changes are associated with a measured increase in lipid peroxidation products. By HPLC separation of the products, we identified the different positional isomers and find that stereospecific lipid peroxidation occurs after the bolting transition. The product distribution suggests that enzyme-mediated lipid peroxidation, via a lipoxygenase, is responsible for the observed increase. Surprisingly, though consistent with the known induction of antioxidant defenses by hydrogen peroxide, the activity of APX rebounds with further development (reproduction and seed setting) and this increase (up to 5-fold) is associated with declines in lipid peroxidation and with the onset of visible senescence symptoms. Thus, in Arabidopsis, ROS increases are associated with the developmental transition to flowering, perhaps due to programmed declines in APX activity, and apparently lead to the oxidative activation of lipoxygenase and subsequent lipid peroxidation. The reactivation of APX at later stages appears to help reduce the lipid peroxidation rate, although the senescence program continues unabated.
Collapse
Affiliation(s)
- Z Ye
- Department of Chemistry and Biochemistry, California State University Los Angeles, 90032-8202, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
8
|
Walczysko P, Wagner E, Albrechtová JT. Use of co-loaded Fluo-3 and Fura Red fluorescent indicators for studying the cytosolic Ca(2+)concentrations distribution in living plant tissue. Cell Calcium 2000; 28:23-32. [PMID: 10942701 DOI: 10.1054/ceca.2000.0132] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A method for visualisation of cytosolic [Ca(2+)] distribution was applied to living plant tissue. A mixture of the fluorescent probes Fluo-3 and Fura Red was used. The emitted fluorescence was scanned simultaneously in two channels with a laser-scanning confocal microscope and rationing was performed. The homogeneity of the Fluo-3/Fura Red concentration ratio throughout the tissue after AM-ester loading was proven. In vitro calibration permitted conversion of Fluo-3/Fura Red fluorescence ratios to [Ca(2+)] values. Apparent K(D)of 286 nM, R(min)of 0.43 and R(max)of 18 were calculated. The in vivo determination of extreme ratio values was performed by permeabilizing the plasmalemma for Ca(2+)with a ionophore and manipulating the extracellular [Ca(2+)]. The resultant R(minv)of 1.33 and R(maxv)of 2.69 for vegetative apices, and R(mini)of 1.26 and R(maxi)of 3.45 for apices induced to flowering, suggested incomplete equalization of extra- and intracellular Ca(2+)levels in these experiments. In Chenopodium rubrum, the cytosolic [Ca(2+)] patterns of apical tissue obtained using Fluo-3 and Fura Red were significantly different between vegetative apices and apices after photoperiodic flower induction. This methodological approach may also be helpful for studying cytosolic [Ca(2+)] distribution in other living plant tissues.
Collapse
Affiliation(s)
- P Walczysko
- Institute of Biology II, University of Freiburg, Freiburg, Germany.
| | | | | |
Collapse
|
9
|
Colasanti J, Yuan Z, Sundaresan V. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 1998; 93:593-603. [PMID: 9604934 DOI: 10.1016/s0092-8674(00)81188-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Flowering in plants is a consequence of the transition of the shoot apex from vegetative to reproductive growth in response to environmental and internal signals. The indeterminate1 gene (id1) controls the transition to flowering in maize. We show by cloning the id1 gene that it encodes a protein with zinc finger motifs, suggesting that the id1 gene product functions as a transcriptional regulator of the floral transition. id1 mRNA expression studies and analyses of transposon-induced chimeric plants indicate that id1 acts non-cell-autonomously to regulate the production of a transmissible signal in the leaf that elicits the transformation of the shoot apex to reproductive development. These results provide molecular and genetic data consistent with the florigen hypothesis derived from classical plant physiology studies.
Collapse
Affiliation(s)
- J Colasanti
- University of California, Berkeley, Plant Gene Expression Center, Albany 94710, USA
| | | | | |
Collapse
|
10
|
Sage-Ono K, Ono M, Harada H, Kamada H. Accumulation of a clock-regulated transcript during flower-inductive darkness in pharbitis nil. PLANT PHYSIOLOGY 1998; 116:1479-85. [PMID: 9536066 PMCID: PMC35056 DOI: 10.1104/pp.116.4.1479] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/1997] [Accepted: 01/14/1998] [Indexed: 05/21/2023]
Abstract
To clarify the molecular basis of the photoperiodic induction of flowering in the short-day plant Pharbitis nil cv Violet, we examined changes in the level of mRNA in cotyledons during the flower-inductive photoperiod using the technique of differential display by the polymerase chain reaction. A transcript that accumulated during the inductive dark period was identified and a cDNA corresponding to the transcript, designated PnC401 (P. nil C401), was isolated. RNA-blot hybridization verified that levels of PnC401 mRNA fluctuated with a circadian rhythm, with maxima between 12 and 16 h after the beginning of the dark period) and minima of approximately 0. This oscillation continued even during an extended dark period but was damped under continuous light. Accumulation of PnC401 mRNA was reduced by a brief exposure to red light at the 8th h of the dark period (night-break treatment) or by exposure to far-red light at the end of the light period (end-of-day far-red treatment). These results suggest that fluctuations in levels of PnC401 mRNA are regulated by phytochrome(s) and a circadian clock and that they are associated with photoperiodic events that include induction of flowering.
Collapse
|
11
|
Zheng CC, Porat R, Lu P, O'Neill SD. PNZIP is a novel mesophyll-specific cDNA that is regulated by phytochrome and the circadian rhythm and encodes a protein with a leucine zipper motif. PLANT PHYSIOLOGY 1998; 116:27-35. [PMID: 9449833 PMCID: PMC35166 DOI: 10.1104/pp.116.1.27] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/1997] [Accepted: 09/28/1997] [Indexed: 05/19/2023]
Abstract
We isolated and characterized a novel light-regulated cDNA from the short-day plant Pharbitis nil that encodes a protein with a leucine (Leu) zipper motif, designated PNZIP (Pharbitis nil Leu zipper). The PNZIP cDNA is not similar to any other gene with a known function in the database, but it shares high sequence homology with an Arabidopsis expressed sequence tag and to two other sequences of unknown function from the cyanobacterium Synechocystis spp. and the red alga Porphyra purpurea, which together define a new family of evolutionarily conserved Leu zipper proteins. PNZIP is a single-copy gene that is expressed specifically in leaf photosynthetically active mesophyll cells but not in other nonphotosynthetic tissues such as the epidermis, trichomes, and vascular tissues. When plants were exposed to continuous darkness, PNZIP exhibited a rhythmic pattern of mRNA accumulation with a circadian periodicity of approximately 24 h, suggesting that its expression is under the control of an endogenous clock. However, the expression of PNZIP was unusual in that darkness rather than light promoted its mRNA accumulation. Accumulation of PNZIP mRNA during the dark is also regulated by phytochrome, since a brief exposure to red light in the middle of the night reduced its mRNA levels. Moreover, a far-red-light treatment at the end of day also reduced PNZIP mRNA accumulation during the dark, and that effect could be inhibited by a subsequent exposure to red light, showing the photoreversible response attributable to control through the phytochrome system.
Collapse
Affiliation(s)
- C C Zheng
- Division of Biological Sciences, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
12
|
Pouteau S, Nicholls D, Tooke F, Coen E, Battey N. The induction and maintenance of flowering in Impatiens. Development 1997; 124:3343-51. [PMID: 9310329 DOI: 10.1242/dev.124.17.3343] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms that establish the floral meristem are now becoming clearer, but the way in which flowering is maintained is less well understood. Impatiens balsamina provides a unique opportunity to address this question because reversion to vegetative growth can be obtained in a predictable way by transferring plants from inductive to non-inductive conditions. Following increasing amounts of induction, reversion takes place at progressively later stages of flower development. Partial flower induction and defoliation experiments show that a floral signal is produced in the cotyledon in response to inductive conditions and that this signal progressively diminishes after transfer to non-inductive conditions, during reversion. Therefore reversion in Impatiens is most likely due to the failure of leaves to become permanent sources of inductive signal in addition to the lack of meristem commitment to flowering. Analysis of the expression of the Impatiens homologues of the meristem identity genes floricaula and squamosa indicates that a change in floricaula transcription is not associated with the establishment or maintenance of the floral meristem in this species. Squamosa transcription is associated with floral development and petal initiation, and is maintained in existing petal or petaloid primordia even after the meristem has reverted. However, it is not expressed in the reverted meristem, in which leaves are initiated in whorled phyllotaxis and without axillary meristems, both characteristics usually associated with the floral meristem. These observations show that squamosa expression is not needed for the maintenance of these floral characters. The requirement for the production of the floral signal in the leaf during the process of flower development may reflect an additional function separate to that of squamosa activation; alternatively the signal may be required to ensure continued transcriptional activation in the meristem.
Collapse
Affiliation(s)
- S Pouteau
- Plant Science Laboratories, The University of Reading, Whiteknights, UK
| | | | | | | | | |
Collapse
|
13
|
Abstract
The significance of the circadian clock for living organisms is not fully understood. Recent findings demonstrate circadian control of transcription of quite a number of genes with individual maxima throughout the entire day. Evidence in favor of circadian-clock-controlled translation has also been documented. In this article, we want to promote the idea that in plants the clock functions as a regulator which coordinates critical cellular processes, such as cell division, nitrate reduction, or synthesis of chlorophyll-protein complexes, in such a way that the generation of dangerous, oxidative radicals or exposure to harmful light is minimized. This has been achieved by plant organisms either by confining gene expression to the dark phase or by a tight coordination of different tiers of gene expression during the light phase. This leads to the consequence for the researcher that the time of experimentation needs to be carefully considered and documented. It also follows that one might lose important findings if only a particular portion of the day is investigated.
Collapse
Affiliation(s)
- J Beator
- Institut für Botanik, Universität Hannover, Germany
| | | |
Collapse
|
14
|
Coupland G. Regulation of flowering time: Arabidopsis as a model system to study genes that promote or delay flowering. Philos Trans R Soc Lond B Biol Sci 1995; 350:27-34. [PMID: 8577847 DOI: 10.1098/rstb.1995.0133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The time that plants flower is often tightly regulated and adapted to the locations in which they grow. The basis of this regulation has been analysed using genetic and physiological approaches since the early decades of this century. The study of flowering time in the model plant species Arabidopsis thaliana has allowed many genes involved in regulating flowering time to be identified as mutations, and for the genetic interactions between these mutations to have been studied. Furthermore, two genes required to promote flowering of Arabidopsis have recently been isolated, and their sequences have provided some insight into the identity of proteins involved in regulating flowering time.
Collapse
|
15
|
Haughn GW, Schultz EA, Martinez-Zapater JM. The regulation of flowering in Arabidopsis thaliana: meristems, morphogenesis, and mutants. ACTA ACUST UNITED AC 1995. [DOI: 10.1139/b95-105] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the last decade, the study of mutants defective in floral development has contributed significantly to our understanding of floral evocation and morphogenesis. Genes in Arabidopsis thaliana and Antirrhinum majus that play key roles in (i) the transition from the vegetative to reproductive phase, (ii) the activation of floral development in specific shoots, and (iii) the unique arrangement of floral organs have been identified genetically and in many cases cloned. Many of the genes appear to encode transcription factors that act to select specific developmental programs of division and differentiation for groups of primordial cells. Other genes may be involved in detecting environmental conditions and transducing the signal to the developing meristems. Key questions remaining include how the regulatory proteins are produced in specific temporal and spatial patterns, interact with each other and initiate specific morphological programs. Although current research on floral morphogenesis has been limited to only a few species there is growing evidence that the basic processes are common to all flowering plants.Thus the information and tools currently being generated should be useful for studying a wide variety of flowering species. It seems reasonable to predict that within the next decade, we should have a fairly complete understanding of the basic mechanisms underlying floral morphogenesis and its evolution among the angiosperms. Key words: Arabidopsis thaliana, floral morphogenesis, molecular genetics.
Collapse
|
16
|
Zheng CC, Bui AQ, O'Neill SD. Abundance of an mRNA encoding a high mobility group DNA-binding protein is regulated by light and an endogenous rhythm. PLANT MOLECULAR BIOLOGY 1993; 23:813-823. [PMID: 8251634 DOI: 10.1007/bf00021536] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A cDNA clone encoding an HMG1 protein from Pharbitis nil was characterized with regard to its sequence, genomic organization and regulation in response to photoperiodic treatments that control floral induction. The HMG1 cDNA contains an open reading frame of 432 nucleotides encoding a 144 amino acid protein of approximately 16 kDa. The predicted polypeptide has the characteristic conserved motifs of the HMG1 and HMG2 class of proteins including an N-terminal basic region, one of two HMG-box domains, and a polyacidic carboxy terminus. Within the HMG-box region, Pharbitis HMG1 deduced amino acid sequence shares 47%, 67% and 69% identity with its animal, maize, and soybean counterparts, respectively. Southern blot hybridization analysis suggests that HMG1 is a member of a multigene family. Analysis of mRNA abundance indicates that the HMG1 gene is expressed to higher levels in dark-grown tissue, such as roots, and at lower levels in light-grown tissue, such as cotyledons and stems. Following the transition to darkness, the levels of HMG1 mRNA in cotyledons were initially stable, however, after a lag time of 8 h or more, HMG1 mRNA increased in abundance to a peak level at 20 h. A second peak in mRNA levels was observed about 24 h later, indicating that the expression of the HMG1 gene is regulated by an endogenous circadian rhythm. Abundance of the HMG1 mRNA during a dark period was dramatically affected by brief light exposure (night break), a treatment which inhibits floral induction. These data indicate that the expression of HMG1 is regulated by both an endogenous rhythm and the light/dark cycle and are consistent with a role for HMG1 in maintaining patterns of circadian-regulated gene expression activated upon the transition from light to darkness.
Collapse
Affiliation(s)
- C C Zheng
- Division of Biological Sciences, University of California at Davis 95616
| | | | | |
Collapse
|