1
|
Slominski RM, Chen JY, Raman C, Slominski AT. Photo-neuro-immuno-endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system. Proc Natl Acad Sci U S A 2024; 121:e2308374121. [PMID: 38489380 PMCID: PMC10998607 DOI: 10.1073/pnas.2308374121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Ultraviolet radiation (UVR) is primarily recognized for its detrimental effects such as cancerogenesis, skin aging, eye damage, and autoimmune disorders. With exception of ultraviolet B (UVB) requirement in the production of vitamin D3, the positive role of UVR in modulation of homeostasis is underappreciated. Skin exposure to UVR triggers local responses secondary to the induction of chemical, hormonal, immune, and neural signals that are defined by the chromophores and extent of UVR penetration into skin compartments. These responses are not random and are coordinated by the cutaneous neuro-immuno-endocrine system, which counteracts the action of external stressors and accommodates local homeostasis to the changing environment. The UVR induces electrical, chemical, and biological signals to be sent to the brain, endocrine and immune systems, as well as other central organs, which in concert regulate body homeostasis. To achieve its central homeostatic goal, the UVR-induced signals are precisely computed locally with transmission through nerves or humoral signals release into the circulation to activate and/or modulate coordinating central centers or organs. Such modulatory effects will be dependent on UVA and UVB wavelengths. This leads to immunosuppression, the activation of brain and endocrine coordinating centers, and the modification of different organ functions. Therefore, it is imperative to understand the underlying mechanisms of UVR electromagnetic energy penetration deep into the body, with its impact on the brain and internal organs. Photo-neuro-immuno-endocrinology can offer novel therapeutic approaches in addiction and mood disorders; autoimmune, neurodegenerative, and chronic pain-generating disorders; or pathologies involving endocrine, cardiovascular, gastrointestinal, or reproductive systems.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Departments of Genetics, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Jake Y. Chen
- Department of Biomedical Informatics and Data Science, the University of Alabama at Birmingham, Birmingham, AL35294
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
| | - Chander Raman
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
| | - Andrzej T. Slominski
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology, the University of Alabama at Birmingham, Birmingham, AL35294
- Veteran Administration Medical Center, Birmingham, AL35294
| |
Collapse
|
2
|
Li Y, Yoon B, Dey A, Nguyen VQ, Park JH. Recent progress in nitric oxide-generating nanomedicine for cancer therapy. J Control Release 2022; 352:179-198. [PMID: 36228954 DOI: 10.1016/j.jconrel.2022.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Nitric oxide (NO) is an endogenous, multipotent biological signaling molecule that participates in several physiological processes. Recently, exogenous supplementation of tumor tissues with NO has emerged as a potential anticancer therapy. In particular, it induces synergistic effects with other conventional therapies (such as chemo-, radio-, and photodynamic therapies) by regulating the activity of P-glycoprotein, acting as a vascular relaxant to relieve tumor hypoxia, and participating in the metabolism of reactive oxygen species. However, NO is highly reactive, and its half-life is relatively short after generation. Meanwhile, NO-induced anticancer activity is dose-dependent. Therefore, the targeted delivery of NO to the tumor is required for better therapeutic effects. In the past decade, NO-generating nanomedicines (NONs), which enable sustained and specific NO release in tumor tissues, have been developed for enhanced cancer therapy. This review describes the recent efforts and preclinical achievements in the development of NON-based cancer therapies. The chemical structures employed in the fabrication of NONs are summarized, and the strategies involved in NON-based cancer therapies are elaborated.
Collapse
Affiliation(s)
- Yuce Li
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Been Yoon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Anup Dey
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Quy Nguyen
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Switzer CH, Fukuto JM. The antioxidant and oxidant properties of hydropersulfides (RSSH) and polysulfide species. Redox Biol 2022; 57:102486. [PMID: 36201912 PMCID: PMC9535303 DOI: 10.1016/j.redox.2022.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 10/31/2022] Open
Abstract
It has become apparent that hydrogen sulfide (H2S), hydropersulfides (RSSH) and other polysulfide species are all intimately linked biochemically. Indeed, at least some of the biological activity attributed to hydrogen sulfide (H2S) may actually be due to its conversion to RSSH and derived polysulfur species (and vice-versa). The unique chemistry associated with the hydropersulfide functional group (-SSH) predicts that it possesses possible protective properties that can help a cell contend with oxidative and/or electrophilic stress. However, since RSSH and polysulfides possess chemical properties akin to disulfides (RSSR), they can also be sources of oxidative/electrophilic stress/signaling as well. Herein are discussed the unique chemistry, possible biochemistry and the physiological implications of RSSH (and polysulfides), especially as it pertains to their putative cellular protection properties against a variety of stresses and/or as possible stressors/signaling agents themselves.
Collapse
Affiliation(s)
- Christopher H Switzer
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jon M Fukuto
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA.
| |
Collapse
|
4
|
Hydropersulfides (RSSH) and Nitric Oxide (NO) Signaling: Possible Effects on S-Nitrosothiols (RS-NO). Antioxidants (Basel) 2022; 11:antiox11010169. [PMID: 35052673 PMCID: PMC8773330 DOI: 10.3390/antiox11010169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 01/05/2023] Open
Abstract
S-Nitrosothiol (RS-NO) formation in proteins and peptides have been implicated as factors in the etiology of many diseases and as possible regulators of thiol protein function. They have also been proposed as possible storage forms of nitric oxide (NO). However, despite their proposed functions/roles, there appears to be little consensus regarding the physiological mechanisms of RS-NO formation and degradation. Hydropersulfides (RSSH) have recently been discovered as endogenously generated species with unique reactivity. One important reaction of RSSH is with RS-NO, which leads to the degradation of RS-NO as well as the release of NO. Thus, it can be speculated that RSSH can be a factor in the regulation of steady-state RS-NO levels, and therefore may be important in RS-NO (patho)physiology. Moreover, RSSH-mediated NO release from RS-NO may be a possible mechanism allowing RS-NO to serve as a storage form of NO.
Collapse
|
5
|
Mechanistic insight into photoactivation of small inorganic molecules from the biomedical applications perspectives. BIOMEDICAL APPLICATIONS OF INORGANIC PHOTOCHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Chauhan A, Gretz N. Role of Visible Light on Skin Melanocytes: A Systematic Review. Photochem Photobiol 2021; 97:911-915. [PMID: 33987856 DOI: 10.1111/php.13454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/10/2021] [Indexed: 01/09/2023]
Abstract
In the last few years, the focus of phototherapy has shifted toward the visible (400-700 nm) part of the electromagnetic spectrum of light. Lately, it has been demonstrated that visible light (VL) can have both beneficial and detrimental effects, especially on the skin. Previously and until now, the most harmful effects on the skin are associated with ultraviolet radiation (UVR). After exposure to natural light, the most evident and immediate change is observed on skin pigmentation. Various wavelengths within the visible spectrum have been reported to alter skin pigmentation. However, the underlying mechanisms are incompletely understood so far. The article aims to shed light on the progress made in the photobiology field (photobiomodulation, PBM) to study the role of visible light on skin melanocytes.
Collapse
Affiliation(s)
- Aparna Chauhan
- Medical faculty of Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical faculty of Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
7
|
Ieda N, Nakagawa H. Development of Photoredox-reaction-driven NO-releasing Reagents and Application for Photomanipulation of Vasodilation. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Pelegrino MT, Paganotti A, Seabra AB, Weller RB. Photochemistry of nitric oxide and S-nitrosothiols in human skin. Histochem Cell Biol 2020; 153:431-441. [PMID: 32162135 PMCID: PMC7300104 DOI: 10.1007/s00418-020-01858-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) is related to a wide range of physiological processes such as vasodilation, macrophages cytotoxicity and wound healing. The human skin contains NO precursors (NOx). Those are mainly composed of nitrite (NO2-), nitrate (NO3-), and S-nitrosothiols (RSNOs) which forms a large NO store. These NOx stores in human skin can mobilize NO to blood stream upon ultraviolet (UV) light exposure. The main purpose of this study was to evaluate the most effective UV light wavelength to generate NO and compare it to each NO precursor in aqueous solution. In addition, the UV light might change the RSNO content on human skin. First, we irradiated pure aqueous solutions of NO2- and NO3- and mixtures of NO2- and glutathione and NO3- and S-nitrosoglutathione (GSNO) to identify the NO release profile from those species alone. In sequence, we evaluated the NO generation profile on human skin slices. Human skin was acquired from redundant plastic surgical samples and the NO and RSNO measurements were performed using a selective NO electrochemical sensor. The data showed that UV light could trigger the NO generation in skin with a peak at 280-285 nm (UVB range). We also observed a significant RSNO formation in irradiated human skin, with a peak at 320 nm (UV region) and at 700 nm (visible region). Pre-treatment of the human skin slice using NO2- and thiol (RSHs) scavengers confirmed the important role of these molecules in RSNO formation. These findings have important implications for clinical trials with potential for new therapies.
Collapse
Affiliation(s)
- Milena T Pelegrino
- Center for Natural and Human Sciences, Universidade Federal Do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil
| | - André Paganotti
- Laboratory of Materials and Mechanical Manufacture, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal Do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil
| | - Richard B Weller
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
9
|
Free radical-releasing systems for targeting biofilms. J Control Release 2020; 322:248-273. [PMID: 32243972 DOI: 10.1016/j.jconrel.2020.03.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/05/2023]
Abstract
The recent rise in antibiotic drug resistance and biofilm formation by microorganisms has driven scientists from different fields to develop newer strategies to target microorganisms responsible for infectious diseases. There is a growing interest in free radicals as therapeutic agents for antimicrobial applications. However, limitations such as short half-life has hindered their usage. Currently, several research groups are exploring various biomaterials that can prolong the half-life, increase storage duration and control the release of the therapeutic ranges of free radicals required for different applications, including biofilm eradication. This review paper initially provides a background to, and theoretical knowledge on, free radicals; and then proceeds to review studies that have employed various free radical-incorporated drug delivery systems as an approach to target biofilm formation and eradication. Some of the free radical releasing systems highlighted include polymers, nanoparticles and hydrogels, with a focus on biofilm eradication, where they impact significantly. The various challenges associated with their application are also discussed. Further, the review identifies future research and strategies that can potentiate the application of free radical-incorporated drug delivery systems for inhibiting biofilm formation and eradicating formed biofilms.
Collapse
|
10
|
Slominski AT, Brożyna AA, Zmijewski MA, Janjetovic Z, Kim TK, Slominski RM, Tuckey RC, Mason RS, Jetten AM, Guroji P, Reichrath J, Elmets C, Athar M. The Role of Classical and Novel Forms of Vitamin D in the Pathogenesis and Progression of Nonmelanoma Skin Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:257-283. [PMID: 32918223 PMCID: PMC7490773 DOI: 10.1007/978-3-030-46227-7_13] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonmelanoma skin cancers including basal and squamous cell carcinomas (SCC and BCC) represent a significant clinical problem due to their relatively high incidence, imposing an economic burden to healthcare systems around the world. It is accepted that ultraviolet radiation (UVR: λ = 290-400 nm) plays a crucial role in the initiation and promotion of BCC and SCC with UVB (λ = 290-320 nm) having a central role in this process. On the other hand, UVB is required for vitamin D3 (D3) production in the skin, which supplies >90% of the body's requirement for this prohormone. Prolonged exposure to UVB can also generate tachysterol and lumisterol. Vitamin D3 itself and its canonical (1,25(OH)2D3) and noncanonical (CYP11A1-intitated) D3 hydroxyderivatives show photoprotective functions in the skin. These include regulation of keratinocyte proliferation and differentiation, induction of anti-oxidative responses, inhibition of DNA damage and induction of DNA repair mechanisms, and anti-inflammatory activities. Studies in animals have demonstrated that D3 hydroxyderivatives can attenuate UVB or chemically induced epidermal cancerogenesis and inhibit growth of SCC and BCC. Genomic and non-genomic mechanisms of action have been suggested. In addition, vitamin D3 itself inhibits hedgehog signaling pathways which have been implicated in many cancers. Silencing of the vitamin D receptor leads to increased propensity to develop UVB or chemically induced epidermal cancers. Other targets for vitamin D compounds include 1,25D3-MARRS, retinoic orphan receptors α and γ, aryl hydrocarbon receptor, and Wnt signaling. Most recently, photoprotective effects of lumisterol hydroxyderivatives have been identified. Clinical trials demonstrated a beneficial role of vitamin D compounds in the treatment of actinic keratosis. In summary, recent advances in vitamin D biology and pharmacology open new exciting opportunities in chemoprevention and treatment of skin cancers.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA.
- VA Medical Center, Birmingham, AL, USA.
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | | | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Radomir M Slominski
- Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Rebecca S Mason
- Physiology & Bosch Institute, School of Medical Sciences, Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Purushotham Guroji
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jörg Reichrath
- Center for Clinical and Experimental Photodermatology and Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Pelegrino MT, Weller RB, Paganotti A, Seabra AB. Delivering nitric oxide into human skin from encapsulated S-nitrosoglutathione under UV light: An in vitro and ex vivo study. Nitric Oxide 2020; 94:108-113. [DOI: 10.1016/j.niox.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 01/19/2023]
|
12
|
S-Nitrosoglutathione exhibits greater stability than S-nitroso-N-acetylpenicillamine under common laboratory conditions: A comparative stability study. Nitric Oxide 2019; 92:18-25. [PMID: 31398487 DOI: 10.1016/j.niox.2019.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/20/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
S-Nitrosothiols (RSNOs) such as S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylpenicillamine (SNAP) are susceptible to decomposition by stimuli including heat, light, and trace metal ions. Using stepwise isothermal thermogravimetric analysis (TGA), we observed that NO-forming homolytic cleavage of the S-N bond occurs at 134.7 ± 0.8 °C in GSNO and 132.8 ± 0.9 °C in SNAP, contrasting with the value of 150 °C that has been previously reported for both RSNOs. Using mass spectrometry (MS), nuclear magnetic resonance (NMR), and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), we analyzed the decomposition products from TGA experiments. The organic product of GSNO decomposition was glutathione disulfide, while SNAP decomposed to form N-acetylpenicillamine disulfide as well as other products, including tri- and tetrasulfides. In addition, we assessed the relative solution stabilities of GSNO and SNAP under common laboratory conditions, which include variable temperature, pH, and light exposure with rigorous exclusion of trace metal ions by chelation. GSNO exhibited greater stability than SNAP over a 7-day period except in one instance. Both RSNOs demonstrated an inverse relationship between solution stability and temperature, with refrigeration considerably extending shelf life. A decrease in pH from 7.4 to 5.0 also enhanced the stability of both RSNOs. A further decrease in pH from 5.0 to 3.0 resulted in decreased stability for both RSNOs, and is notably the only occasion in which SNAP proved more stable than GSNO. After 1 h of exposure to overhead fluorescent lighting, both RSNOs displayed high susceptibility to light-induced decomposition. After 7 h, GSNO and SNAP decomposed 19.3 ± 0.5% and 30 ± 2%, respectively.
Collapse
|
13
|
Serrage H, Heiskanen V, Palin WM, Cooper PR, Milward MR, Hadis M, Hamblin MR. Under the spotlight: mechanisms of photobiomodulation concentrating on blue and green light. Photochem Photobiol Sci 2019; 18:1877-1909. [PMID: 31183484 PMCID: PMC6685747 DOI: 10.1039/c9pp00089e] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/30/2019] [Indexed: 12/31/2022]
Abstract
Photobiomodulation (PBM) describes the application of light at wavelengths ranging from 400-1100 nm to promote tissue healing, reduce inflammation and promote analgesia. Traditionally, red and near-infra red (NIR) light have been used therapeutically, however recent studies indicate that other wavelengths within the visible spectrum could prove beneficial including blue and green light. This review aims to evaluate the literature surrounding the potential therapeutic effects of PBM with particular emphasis on the effects of blue and green light. In particular focus is on the possible primary and secondary molecular mechanisms of PBM and also evaluation of the potential effective parameters for application both in vitro and in vivo. Studies have reported that PBM affects an array of molecular targets, including chromophores such as signalling molecules containing flavins and porphyrins as well as components of the electron transport chain. However, secondary mechanisms tend to converge on pathways induced by increases in reactive oxygen species (ROS) production. Systematic evaluation of the literature indicated 72% of publications reported beneficial effects of blue light and 75% reported therapeutic effects of green light. However, of the publications evaluating the effects of green light, reporting of treatment parameters was uneven with 41% failing to report irradiance (mW cm-2) and 44% failing to report radiant exposure (J cm-2). This review highlights the potential of PBM to exert broad effects on a range of different chromophores within the body, dependent upon the wavelength of light applied. Emphasis still remains on the need to report exposure and treatment parameters, as this will enable direct comparison between different studies and hence enable the determination of the full potential of PBM.
Collapse
Affiliation(s)
- Hannah Serrage
- College of Medical and Dental Sciences, University of Birmingham, UK.
| | | | | | | | | | | | | |
Collapse
|
14
|
McCabe MM, Hala P, Rojas-Pena A, Lautner-Csorba O, Major TC, Ren H, Bartlett RH, Brisbois EJ, Meyerhoff ME. Enhancing analytical accuracy of intravascular electrochemical oxygen sensors via nitric oxide release using S-nitroso-N-acetyl-penicillamine (SNAP) impregnated catheter tubing. Talanta 2019; 205:120077. [PMID: 31450395 DOI: 10.1016/j.talanta.2019.06.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022]
Abstract
Implantable medical devices are an integral part of primary/critical care. However, these devices carry a high risk for blood clots, caused by platelet aggregation on a foreign body surface. This study focuses on the development of a simplified approach to create nitric oxide (NO) releasing intravascular electrochemical oxygen (O2) sensors with increased biocompatibility and analytical accuracy. The implantable sensors are prepared by embedding S-nitroso-N-acetylpenacillamine (SNAP) as the NO donor molecule in the walls of the catheter type sensors. The SNAP-impregnated catheters were prepared by swelling silicone rubber tubing in a tetrahydrofuran solution containing SNAP. Control and SNAP-impregnated catheters were used to fabricate the Clark-style amperometric PO2 sensors. The SNAP-impregnated sensors release NO under physiological conditions for 18 d as measured by chemiluminescence. The analytical response of the SNAP-impregnated sensors was evaluated in vitro and in vivo. Rabbit and swine models (with sensors placed in both veins and arteries) were used to evaluate the effects on thrombus formation and analytical in vivo PO2 sensing performance. The SNAP-impregnated PO2 sensors were found to more accurately measure PO2 levels in blood continuously (over 7 and 20 h animal experiments) with significantly reduced thrombus formation (as compared to controls) on their surfaces.
Collapse
Affiliation(s)
- M M McCabe
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - P Hala
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA; Department of Cardiology, Na Homolce Hospital, Prague, Czech Republic; Department of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Rojas-Pena
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - O Lautner-Csorba
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - T C Major
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - H Ren
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - R H Bartlett
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - E J Brisbois
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA.
| | - M E Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
de Souza GFP, Denadai JP, Picheth GF, de Oliveira MG. Long-term decomposition of aqueous S-nitrosoglutathione and S-nitroso-N-acetylcysteine: Influence of concentration, temperature, pH and light. Nitric Oxide 2019; 84:30-37. [PMID: 30630056 DOI: 10.1016/j.niox.2019.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/17/2018] [Accepted: 01/04/2019] [Indexed: 02/03/2023]
Abstract
Primary S-nitrosothiols (RSNOs) have received significant attention for their ability to modulate NO signaling in many physiological and pathophysiological processes. Such actions and their potential pharmaceutical uses demand a better knowledge of their stability in aqueous solutions. Herein, we investigated the effects of concentration, temperature, pH, room light and metal ions on the long-term kinetic behavior of two representative primary RSNOs, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylcysteine (SNAC). The thermal decomposition of GSNO and SNAC were shown to be affected by the auto-catalytic action of the thiyl radicals. At 25 °C in the dark and protected from the catalytic action of metal ions, GSNO and SNAC solutions 1 mM showed half-lives of 49 and 76 days, and apparent activation energies of 84 ± 14 and 90 ± 6 kJ mol-1, respectively. Both GSNO and SNAC exhibited increased stability in the pH range 5-7. At high pH the decomposition pathway of GSNO involves the formation of an intermediate (GS-NO22-), which decomposes generating GSH and nitrite. GSNO solutions displayed lower sensitivity to the catalytic action of metal ions than SNAC and the exposure to room light led to a 5-fold increase in the initial rates of decomposition of both RSNOs. In all comparisons, SNAC solutions showed higher stability than GSNO solutions. These findings provide strategic information about the stability of GSNO and SNAC and may open new perspectives for their use as experimental or therapeutic NO donors.
Collapse
Affiliation(s)
| | | | - Guilherme F Picheth
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | | |
Collapse
|
16
|
Szaciłowski K, Stasicka Z. S-Nitrosothiols: Materials, Reactivity and Mechanisms. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967401103165181] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article provides a comprehensive view of S-nitrosothiols, chemical behaviour, the pathways leading to their synthesis, their spectral properties, analytical methods of detection and determination, chemical and photochemical reactivity, kinetic aspects and suggested mechanisms. The structure parameters of S-nitrosothiols and the parent thiols are analysed with respect to their effect on the strengthening or weakening the S–NO bond, and in consequence on the S-nitrosothiol stability. This depends also on the ease of S–S bond formation in the product disulphide. These structural features seem to be crucial both to spontaneous as well as to Cu-catalysed decomposition. Principal emphasis is given here to the S-nitrosothiols’ ability to act as ligands and to the effect of coordination on the ligand properties. The chemical and photochemical behaviours of the complexes are described in more detail and their roles in chemical and biochemical systems are discussed. The aim of the article is to demonstrate that the contribution of S-nitrosothiols to chemical and biochemical processes is more diverse than supposed hitherto. Nevertheless, their role is predictable and, based on the correlation between structure and reactivity, many important mechanisms of biochemical processes can be interpreted and various applications designed.
Collapse
Affiliation(s)
- Konrad Szaciłowski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
| | - Zofia Stasicka
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
| |
Collapse
|
17
|
Alimoradi H, Barzegar-Fallah A, Sammut IA, Greish K, Giles GI. Encapsulation of tDodSNO generates a photoactivated nitric oxide releasing nanoparticle for localized control of vasodilation and vascular hyperpermeability. Free Radic Biol Med 2019; 130:297-305. [PMID: 30367997 DOI: 10.1016/j.freeradbiomed.2018.10.433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/07/2018] [Accepted: 10/18/2018] [Indexed: 11/25/2022]
Abstract
We report the synthesis and characterization of a photoactive nitric oxide (NO) releasing nanoparticle (NP) by encapsulation of the NO donor tert-dodecane S-nitrosothiol (tDodSNO) into a co-polymer of styrene and maleic anhydride (SMA) to afford SMA-tDodSNO. Encapsulation did not affect tDodSNO's stability or NO release profile, but imparted water solubility and protection from degradation reactions with glutathione. Under photoactivation the NP acted as a potent NO donor, with photoactivation acting as a switch to induce localized vasodilation in aortic rings (EC50* 660 nM at 2700 W/m2) and cause vascular hyperpermeability in mesenteric beds (8-fold increase in dye uptake at 1 µM SMA-tDodSNO with 460 W/m2 photoactivation). The NP was markedly superior as a photoactive NO donor in comparison to the S-nitrosothiols GSNO and SNAP, which are commonly used in experimental studies, as well as sodium nitroprusside, a clinically used vasodilator. Future development of this NP may find wide ranging therapeutic applications for treating cardiovascular disease and other disorders related to NO signaling, as well as enhancing macromolecular drug delivery to target organs through selective hyperpermeability. Supporting information describing the biophysical characterization of SMA-tDodSNO is supplied in an accompanying Data in Brief article (Alimoradi et al., doi: 10.1016/j.dib.2018.10.149).
Collapse
Affiliation(s)
- Houman Alimoradi
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Anita Barzegar-Fallah
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Ivan A Sammut
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Khaled Greish
- College of Medicine and Medical Sciences, Department of Molecular Medicine, Nanomedicine Unit, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Gregory I Giles
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
18
|
Bignon E, Allega MF, Lucchetta M, Tiberti M, Papaleo E. Computational Structural Biology of S-nitrosylation of Cancer Targets. Front Oncol 2018; 8:272. [PMID: 30155439 PMCID: PMC6102371 DOI: 10.3389/fonc.2018.00272] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) plays an essential role in redox signaling in normal and pathological cellular conditions. In particular, it is well known to react in vivo with cysteines by the so-called S-nitrosylation reaction. S-nitrosylation is a selective and reversible post-translational modification that exerts a myriad of different effects, such as the modulation of protein conformation, activity, stability, and biological interaction networks. We have appreciated, over the last years, the role of S-nitrosylation in normal and disease conditions. In this context, structural and computational studies can help to dissect the complex and multifaceted role of this redox post-translational modification. In this review article, we summarized the current state-of-the-art on the mechanism of S-nitrosylation, along with the structural and computational studies that have helped to unveil its effects and biological roles. We also discussed the need to move new steps forward especially in the direction of employing computational structural biology to address the molecular and atomistic details of S-nitrosylation. Indeed, this redox modification has been so far an underappreciated redox post-translational modification by the computational biochemistry community. In our review, we primarily focus on S-nitrosylated proteins that are attractive cancer targets due to the emerging relevance of this redox modification in a cancer setting.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Francesca Allega
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marta Lucchetta
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Tiberti
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark.,Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Champeau M, Póvoa V, Militão L, Cabrini FM, Picheth GF, Meneau F, Jara CP, de Araujo EP, de Oliveira MG. Supramolecular poly(acrylic acid)/F127 hydrogel with hydration-controlled nitric oxide release for enhancing wound healing. Acta Biomater 2018; 74:312-325. [PMID: 29777958 DOI: 10.1016/j.actbio.2018.05.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 01/20/2023]
Abstract
Topical nitric oxide (NO) delivery has been shown to accelerate wound healing. However, delivering NO to wounds at appropriate rates and doses requires new biomaterial-based strategies. Here, we describe the development of supramolecular interpolymer complex hydrogels comprising PEO-PPO-PEO (F127) micelles embedded in a poly(acrylic acid) (PAA) matrix, with S-nitrosoglutathione (GSNO) molecules dissolved in the hydrophilic domain. We show that PAA:F127/GSNO hydrogels start releasing NO upon hydration at rates controlled by their rates of water absorption. SAXS measurements indicate that the supramolecular structure of the hydrogels retains long-range order domains of F127 micelles. The PAA/F1227 hydrogels displayed dense morphologies and reduced rates of hydration. The NO release rates remain constant over the first 200 min, are directly correlated with the hydration rates of the PAA:F127/GSNO hydrogels, and can be modulated in the range of 40 nmol/g h to 1.5 μmol/g h by changing the PAA:F127 mass ratio. Long-term NO-release profiles over 5 days are governed by the first-order exponential decay of GSNO, with half-lives in the range of 0.5-3.4 days. A preliminary in vivo study on full-thickness excisional wounds in mice showed that topical NO release from the PAA:F127/GSNO hydrogels is triggered by exudate absorption and leads to increased angiogenesis and collagen fiber organization, as well as TGF-β, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue. In summary, these results suggest that hydration-controlled NO release from topical PAA:F127/GSNO hydrogels is a potential strategy for enhancing wound healing. STATEMENT OF SIGNIFICANCE The topical delivery of nitric oxide (NO) to wounds may provide significant beneficial results and represent a promising strategy to treat chronic wounds. However, wound dressings capable of releasing NO after application and allowing the modulation of NO release rates, demand new platforms. Here, we describe a novel strategy to overcome these challenges, based on the use of supramolecular poly(acrylic acid) (PAA):F127 hydrogels charged with the NO donor S-nitrosoglutathione (GSNO) from whereby the NO release can be triggered by exudate absorption and delivered to the wound at rates controlled by the PAA:F127 mass ratio. Preliminary in vivo results offer a proof of concept for this strategy by demonstrating increased angiogenesis; collagen fibers organization; and TGF-β, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue after topical treatment with a PAA:F127/GSNO hydrogel.
Collapse
|
20
|
Keszler A, Lindemer B, Hogg N, Weihrauch D, Lohr NL. Wavelength-dependence of vasodilation and NO release from S-nitrosothiols and dinitrosyl iron complexes by far red/near infrared light. Arch Biochem Biophys 2018; 649:47-52. [PMID: 29752896 DOI: 10.1016/j.abb.2018.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 11/28/2022]
Abstract
Far red/near infrared (R/NIR) energy is a novel therapy, but its mechanism of action is poorly characterized. Cytochrome c oxidase (Cco) of the mitochondrial electron transport chain is considered the primary photoacceptor for R/NIR to photolyze a putative heme nitrosyl in Cco to liberate free nitric oxide (NO). We previously observed R/NIR light directly liberates NO from nitrosylated hemoglobin and myoglobin, and recently suggested S-nitrosothiols (RSNO) and dinitrosyl iron complexes (DNIC) may be primary sources of R/NIR-mediated NO. Here we indicate R/NIR light exposure induces wavelength dependent dilation of murine facial artery, with longer wavelengths (740, and 830 nm) exhibiting reduced potency when compared to 670 nm. R/NIR also stimulated NO release from pure solutions of low molecular weight RSNO (GSNO and SNAP) and glutathione dinitrosyl iron complex (GSH-DNIC) in a power- and wavelength-dependent manner, with the greatest effect at 670 nm. NO release from SNAP using 670 was nearly ten-fold more than GSNO or GSH-DNIC, with no substantial difference in NO production at 740 nm and 830 nm. Thermal effects of irradiation on vasodilation or NO release from S-nitrosothiols and DNIC was minimal. Our results suggest 670 nm is the optimal wavelength for R/NIR treatment of certain vascular-related diseases.
Collapse
Affiliation(s)
- Agnes Keszler
- Department of Medicine- Division of Cardiovascular Medicine, United States.
| | - Brian Lindemer
- Department of Medicine- Division of Cardiovascular Medicine, United States.
| | - Neil Hogg
- Department of Biophysics, United States; Department of Redox Biology Program, United States.
| | | | - Nicole L Lohr
- Department of Medicine- Division of Cardiovascular Medicine, United States; Cardiovascular Center, Medical College of Wisconsin, United States; Clement J Zablocki VA Medical Center, United States.
| |
Collapse
|
21
|
Slominski AT, Zmijewski MA, Plonka PM, Szaflarski JP, Paus R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018; 159:1992-2007. [PMID: 29546369 PMCID: PMC5905393 DOI: 10.1210/en.2017-03230] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022]
Abstract
The skin, a self-regulating protective barrier organ, is empowered with sensory and computing capabilities to counteract the environmental stressors to maintain and restore disrupted cutaneous homeostasis. These complex functions are coordinated by a cutaneous neuro-endocrine system that also communicates in a bidirectional fashion with the central nervous, endocrine, and immune systems, all acting in concert to control body homeostasis. Although UV energy has played an important role in the origin and evolution of life, UV absorption by the skin not only triggers mechanisms that defend skin integrity and regulate global homeostasis but also induces skin pathology (e.g., cancer, aging, autoimmune responses). These effects are secondary to the transduction of UV electromagnetic energy into chemical, hormonal, and neural signals, defined by the nature of the chromophores and tissue compartments receiving specific UV wavelength. UV radiation can upregulate local neuroendocrine axes, with UVB being markedly more efficient than UVA. The locally induced cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin-peptides, enkephalins, or others can be released into circulation to exert systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioidogenic effects, and immunosuppression, independent of vitamin D synthesis. Similar effects are seen after exposure of the eyes and skin to UV, through which UVB activates hypothalamic paraventricular and arcuate nuclei and exerts very rapid stimulatory effects on the brain. Thus, UV touches the brain and central neuroendocrine system to reset body homeostasis. This invites multiple therapeutic applications of UV radiation, for example, in the management of autoimmune and mood disorders, addiction, and obesity.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
- Correspondence: Andrzej T. Slominski, MD, PhD, Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294. E-mail:
| | | | - Przemyslaw M Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jerzy P Szaflarski
- Departments of Neurology and Neurobiology and the UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
22
|
Lin SY, Wang MR, Chiu SJ, Lin CY, Hu TM. S-Nitrosothiols (SNO) as light-responsive molecular activators for post-synthesis fluorescence augmentation in fluorophore-loaded nanospheres. J Mater Chem B 2018; 6:153-164. [DOI: 10.1039/c7tb02233f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For the first time S-nitrosothiol is engineered into fluorophore-loaded silica nanospheres for post-synthesis, light-triggered fluorescence augmentation.
Collapse
Affiliation(s)
- Shu-Yi Lin
- School of Pharmacy, National Defense Medical Center
- Taipei
- Republic of China
| | - Meng-Ren Wang
- School of Pharmacy, National Defense Medical Center
- Taipei
- Republic of China
| | - Shih-Jiuan Chiu
- School of Pharmacy, Taipei Medical University
- Taipei
- Republic of China
| | - Chien-Yu Lin
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University
- Taipei
- Republic of China
| | - Teh-Min Hu
- School of Pharmacy, National Defense Medical Center
- Taipei
- Republic of China
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University
- Taipei
| |
Collapse
|
23
|
Slanina T, Šebej P. Visible-light-activated photoCORMs: rational design of CO-releasing organic molecules absorbing in the tissue-transparent window. Photochem Photobiol Sci 2018; 17:692-710. [DOI: 10.1039/c8pp00096d] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rational design of visible-light-activatable transition-metal-free CO-releasing molecules with an emphasis on mechanistic details of the CO release.
Collapse
Affiliation(s)
- Tomáš Slanina
- Institute for Organic Chemistry and Chemical Biology
- Goethe-University Frankfurt
- 60438 Frankfurt
- Germany
| | - Peter Šebej
- Research Centre for Toxic Compounds in the Environment
- Faculty of Science
- Masaryk University
- 625 00 Brno
- Czech Republic
| |
Collapse
|
24
|
Lourenço SDM, de Oliveira MG. Topical photochemical nitric oxide release from porous poly(vinyl alcohol) membrane for visible light modulation of dermal vasodilation. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Goudie MJ, Brainard BM, Schmiedt CW, Handa H. Characterization and in vivo performance of nitric oxide-releasing extracorporeal circuits in a feline model of thrombogenicity. J Biomed Mater Res A 2016; 105:539-546. [PMID: 27741554 DOI: 10.1002/jbm.a.35932] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/28/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022]
Abstract
Infection and thrombosis are the two leading complications associated with blood contacting medical devices, and have led to the development of active materials that can delivery antibiotics or antithrombotic agents. Two key characteristics of these materials are the ability to produce controlled delivery, as well as minimal systemic delivery of the agent outside of the device site. Nitric oxide (NO) releasing materials are attractive as NO plays pivotal roles in the body's natural defense against bacterial infection, as well as regulation of platelet adhesion and activation. This work characterizes an NO-releasing extracorporeal circuit (ECC) under flow conditions for the first time, examining the effect of incubation and application of the top coating on leaching of NO donor and NO-release kinetics. Top coated ECCs with incubation delivered ca. 1% of the total NO potential over the 4-h period, whereas uncoated ECCs delivered over 4.5% of the total NO. Incubated ECC loops maintained a flux of 1.83 ± 0.50 × 10-10 mol min-1 cm-2 for the full 4 h duration. The NO-releasing ECC loops significantly increased the time-to-clot as compared to the corresponding control (11 ± 3.6 min control, 132 ± 93.0 min NO-releasing) when evaluated in vivo in a feline animal model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 539-546, 2017.
Collapse
Affiliation(s)
- Marcus J Goudie
- College of Engineering, University of Georgia, Athens, Georgia
| | - Benjamin M Brainard
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Chad W Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Hitesh Handa
- College of Engineering, University of Georgia, Athens, Georgia
| |
Collapse
|
26
|
Goudie MJ, Brisbois EJ, Pant J, Thompson A, Potkay JA, Handa H. Characterization of an S-nitroso-N-acetylpenicillamine-based nitric oxide releasing polymer from a translational perspective. INT J POLYM MATER PO 2016; 65:769-778. [PMID: 27493297 DOI: 10.1080/00914037.2016.1163570] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Due to the role of nitric oxide (NO) in regulating a variety of biological functions in humans, numerous studies on different NO releasing/generating materials have been published over the past two decades. Although NO has been demonstrated to be a strong antimicrobial and potent antithrombotic agent, NO-releasing (NOrel) polymers have not reached the clinical setting. While increasing the concentration of the NO donor in the polymer is a common method to prolong the NO-release, this should not be at the cost of mechanical strength or biocompatibility of the original material. In this work, it was shown that the incorporation of S-nitroso-penicillamine (SNAP), an NO donor molecule, into Elast-eon E2As (a copolymer of mixed soft segments of polydimethylsiloxane and poly(hexamethylene oxide)), does not adversely impact the physical and biological attributes of the base polymer. Incorporating 10 wt % of SNAP into E2As reduces the ultimate tensile strength by only 20%. The inclusion of SNAP did not significantly affect the surface chemistry or roughness of E2As polymer. Ultraviolet radiation, ethylene oxide, and hydrogen peroxide vapor sterilization techniques retained approximately 90% of the active SNAP content, where sterilization of these materials did not affect the NO-release profile over an 18 day period. Furthermore, these NOrel materials were shown to be biocompatible with the host tissues as observed through hemocompatibility and cytotoxicity analysis. In addition, the stability of SNAP in E2As was studied under a variety of storage conditions, as they pertain to translational potential of these materials. SNAP-incorporated E2As stored at room temperature for over 6 months retained 87% of its initial SNAP content. Stored and fresh films exhibited similar NO release kinetics over an 18 day period. Combined, the results from this study suggest that SNAP-doped E2As polymer is suitable for commercial biomedical applications due to the reported physical and biological characteristics that are important for commercial and clinical success.
Collapse
Affiliation(s)
- Marcus J Goudie
- Department of Biological Engineering, University of Georgia, Athens, GA, USA
| | | | - Jitendra Pant
- Department of Biological Engineering, University of Georgia, Athens, GA, USA
| | | | | | - Hitesh Handa
- Department of Biological Engineering, University of Georgia, Athens, GA, USA
| |
Collapse
|
27
|
Ismail A, Araújo MO, Chagas CLS, Griveau S, D'Orlyé F, Varenne A, Bedioui F, Coltro WKT. Colorimetric analysis of the decomposition of S-nitrosothiols on paper-based microfluidic devices. Analyst 2016; 141:6314-6320. [DOI: 10.1039/c6an01439a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A disposable paper microfluidic device was developed to analyse different S-nitrosothiols simultaneously decomposed by Hg2+ as well as UV, Vis and IR lamps.
Collapse
Affiliation(s)
- Abdulghani Ismail
- Instituto de Química
- Universidade Federal de Goiás
- Goiânia
- Brazil
- Chimie ParisTech
| | | | | | - Sophie Griveau
- Chimie ParisTech
- PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé
- 75005 Paris
- France
- INSERM
| | - Fanny D'Orlyé
- Chimie ParisTech
- PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé
- 75005 Paris
- France
- INSERM
| | - Anne Varenne
- Chimie ParisTech
- PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé
- 75005 Paris
- France
- INSERM
| | - Fethi Bedioui
- Chimie ParisTech
- PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé
- 75005 Paris
- France
- INSERM
| | - Wendell K. T. Coltro
- Instituto de Química
- Universidade Federal de Goiás
- Goiânia
- Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica
| |
Collapse
|
28
|
Ismail A, Griveau S, d'Orlyé F, Varenne A, Bedioui F. Quantitation of Cu+-catalyzed Decomposition of S-Nitrosoglutathione Using Saville and Electrochemical Detection: a Pronounced Effect of Glutathione and Copper Concentrations. ELECTROANAL 2015. [DOI: 10.1002/elan.201500371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Ismail A, d'Orlyé F, Griveau S, Bedioui F, Varenne A, da Silva JAF. Capillary electrophoresis coupled to contactless conductivity detection for the analysis of S-nitrosothiols decomposition and reactivity. Electrophoresis 2015; 36:1982-8. [DOI: 10.1002/elps.201500036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Abdulghani Ismail
- PSL Research University; Chimie ParisTech; Unité de Technologies Chimiques et Biologiques pour la Santé; Paris France
- INSERM; Unité de Technologies Chimiques et Biologiques pour la Santé; Paris France
- CNRS; Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Unité de Technologies Chimiques et Biologiques pour la Santé; Paris France
| | - Fanny d'Orlyé
- PSL Research University; Chimie ParisTech; Unité de Technologies Chimiques et Biologiques pour la Santé; Paris France
- INSERM; Unité de Technologies Chimiques et Biologiques pour la Santé; Paris France
- CNRS; Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Unité de Technologies Chimiques et Biologiques pour la Santé; Paris France
| | - Sophie Griveau
- PSL Research University; Chimie ParisTech; Unité de Technologies Chimiques et Biologiques pour la Santé; Paris France
- INSERM; Unité de Technologies Chimiques et Biologiques pour la Santé; Paris France
- CNRS; Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Unité de Technologies Chimiques et Biologiques pour la Santé; Paris France
| | - Fethi Bedioui
- PSL Research University; Chimie ParisTech; Unité de Technologies Chimiques et Biologiques pour la Santé; Paris France
- INSERM; Unité de Technologies Chimiques et Biologiques pour la Santé; Paris France
- CNRS; Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Unité de Technologies Chimiques et Biologiques pour la Santé; Paris France
| | - Anne Varenne
- PSL Research University; Chimie ParisTech; Unité de Technologies Chimiques et Biologiques pour la Santé; Paris France
- INSERM; Unité de Technologies Chimiques et Biologiques pour la Santé; Paris France
- CNRS; Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Unité de Technologies Chimiques et Biologiques pour la Santé; Paris France
| | | |
Collapse
|
30
|
Colletta A, Wu J, Wo Y, Kappler M, Chen H, Xi C, Meyerhoff ME. S-Nitroso- N-acetylpenicillamine (SNAP) Impregnated Silicone Foley Catheters: A Potential Biomaterial/Device To Prevent Catheter-Associated Urinary Tract Infections. ACS Biomater Sci Eng 2015; 1:416-424. [PMID: 26462294 PMCID: PMC4593359 DOI: 10.1021/acsbiomaterials.5b00032] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/27/2015] [Indexed: 01/26/2023]
Abstract
![]()
Urinary Foley catheters are utilized
for management of hospitalized
patients and are associated with high rates of urinary tract infections
(UTIs). Nitric oxide (NO) potently inhibits microbial biofilm formation,
which is the primary cause of catheter associated UTIs (CAUTIs). Herein,
commercial silicone Foley catheters are impregnated via a solvent
swelling method with S-nitroso-N-acetyl-D-penicillamine (SNAP), a synthetic NO donor that exhibits
long-term NO release and stability when incorporated into low water-uptake
polymers. The proposed catheters generate NO surface-fluxes >0.7
×
10–10 mol min–1 cm–2 for over one month under physiological conditions, with minimal
SNAP leaching. These biomedical devices are demonstrated to significantly
decrease formation of biofilm on the surface of the catheter tubings
over 3, 7, and 14 day periods by microbial species (Staphylococcus
epidermidis and Proteus mirabilis) commonly
causing CAUTIs. Toxicity assessment demonstrates that the SNAP-impregnated
catheters are fully biocompatible, as extracts of the catheter tubings
score 0 on a 3-point grading scale using an accepted mouse fibroblast
cell-line toxicity model. Consequently, SNAP-impregnated silicone
Foley catheters can likely provide an efficient strategy to greatly
reduce the occurrence of nosocomial CAUTIs.
Collapse
Affiliation(s)
- Alessandro Colletta
- Department of Chemistry and Department of Environmental Health Sciences, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jianfeng Wu
- Department of Chemistry and Department of Environmental Health Sciences, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Yaqi Wo
- Department of Chemistry and Department of Environmental Health Sciences, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | - Hao Chen
- Biocrede Inc. , Plymouth, Michigan 48170, United States
| | - Chuanwu Xi
- Department of Chemistry and Department of Environmental Health Sciences, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Mark E Meyerhoff
- Department of Chemistry and Department of Environmental Health Sciences, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Hunter RA, Schoenfisch MH. S-Nitrosothiol analysis via photolysis and amperometric nitric oxide detection in a microfluidic device. Anal Chem 2015; 87:3171-6. [PMID: 25714120 DOI: 10.1021/ac503220z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A 530 nm light emitting diode was coupled to a microfluidic sensor to facilitate photolysis of nitrosothiols (i.e., S-nitrosoglutathione, S-nitrosocysteine, and S-nitrosoalbumin) and amperometric detection of the resulting nitric oxide (NO). This configuration allowed for maximum sensitivity and versatility, while limiting potential interference from nitrate decomposition caused by ultraviolet light. Compared to similar measurements of total S-nitrosothiol content in bulk solution, use of the microfluidic platform permitted significantly enhanced analytical performance in both phosphate-buffered saline and plasma (6-20× improvement in sensitivity depending on nitrosothiol type). Additionally, the ability to reduce sample volumes from milliliters to microliters provides increased clinical utility. To demonstrate its potential for biological analysis, this device was used to measure basal nitrosothiol levels from the vasculature of a healthy porcine model.
Collapse
Affiliation(s)
- Rebecca A Hunter
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
32
|
Brisbois EJ, Davis RP, Jones AM, Major TC, Bartlett RH, Meyerhoff ME, Handa H. Reduction in Thrombosis and Bacterial Adhesion with 7 Day Implantation of S-Nitroso- N-acetylpenicillamine (SNAP)-Doped Elast-eon E2As Catheters in Sheep. J Mater Chem B 2015; 3:1639-1645. [PMID: 25685358 DOI: 10.1039/c4tb01839g] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Thrombosis and infection are two common problems associated with blood-contacting medical devices such as catheters. Nitric oxide (NO) is known to be a potent antimicrobial agent as well as an inhibitor of platelet activation and adhesion. Healthy endothelial cells that line the inner walls of all blood vessels exhibit a NO flux of 0.5~4×10-10 mol cm-2 min-1 that helps prevent thrombosis. Materials with a NO flux that is equivalent to this level are expected to exhibit similar anti-thrombotic properties. In this study, NO-releasing catheters were fabricated by incorporating S-nitroso-N-acetylpenicillamine (SNAP) in the Elast-eon E2As polymer. The SNAP/E2As catheters release physiological levels of NO for up to 20 d, as measured by chemiluminescence. Furthermore, SNAP is stable in the E2As polymer, retaining 89% of the initial SNAP after ethylene oxide (EO) sterilization. The SNAP/E2As and E2As control catheters were implanted in sheep veins for 7 d to examine the effect on thrombosis and bacterial adhesion. The SNAP/E2As catheters reduced the thrombus area when compared to the control (1.56 ± 0.76 and 5.06 ± 1.44 cm2, respectively). A 90% reduction in bacterial adhesion was also observed for the SNAP/E2As catheters as compared to the controls. The results suggest that the SNAP/E2As polymer has the potential to improve the hemocompatibility and bactericidal activity of intravascular catheters, as well as other blood-contacting medical devices (e.g., vascular grafts, extracorporeal circuits).
Collapse
Affiliation(s)
| | - Ryan P Davis
- Department of Surgery, University of Michigan, Ann Arbor, MI USA
| | - Anna M Jones
- Department of Surgery, University of Michigan, Ann Arbor, MI USA
| | - Terry C Major
- Department of Surgery, University of Michigan, Ann Arbor, MI USA
| | | | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI USA
| | - Hitesh Handa
- Department of Biochemical Engineering, University of Georgia, Athens, GA, USA
| |
Collapse
|
33
|
Kumari S, Sammut IA, Giles GI. The design of nitric oxide donor drugs: s-nitrosothiol tDodSNO is a superior photoactivated donor in comparison to GSNO and SNAP. Eur J Pharmacol 2014; 737:168-76. [DOI: 10.1016/j.ejphar.2014.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 12/19/2022]
|
34
|
Ieda N, Hotta Y, Miyata N, Kimura K, Nakagawa H. Photomanipulation of Vasodilation with a Blue-Light-Controllable Nitric Oxide Releaser. J Am Chem Soc 2014; 136:7085-91. [DOI: 10.1021/ja5020053] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Naoya Ieda
- Graduate
School of Pharmaceutical Science, Nagoya City University, 3-1,
Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Yuji Hotta
- Graduate
School of Pharmaceutical Science, Nagoya City University, 3-1,
Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoki Miyata
- Graduate
School of Pharmaceutical Science, Nagoya City University, 3-1,
Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Kazunori Kimura
- Graduate
School of Pharmaceutical Science, Nagoya City University, 3-1,
Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate
School of Pharmaceutical Science, Nagoya City University, 3-1,
Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
35
|
Joslin JM, Neufeld BH, Reynolds MM. Correlating S-nitrosothiol decomposition and NO release for modified poly(lactic-co-glycolic acid) polymer films. RSC Adv 2014. [DOI: 10.1039/c4ra04817b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The decomposition of an S-nitrosated model polymer was correlated to the subsequent release of nitric oxide under multiple decomposition pathways.
Collapse
Affiliation(s)
- J. M. Joslin
- Department of Chemistry
- Colorado State University
- Fort Collins, USA
| | - B. H. Neufeld
- Department of Chemistry
- Colorado State University
- Fort Collins, USA
| | - Melissa M. Reynolds
- Department of Chemistry
- Colorado State University
- Fort Collins, USA
- School of Biomedical Engineering
- Colorado State University
| |
Collapse
|
36
|
Long-term nitric oxide release and elevated temperature stability with S-nitroso-N-acetylpenicillamine (SNAP)-doped Elast-eon E2As polymer. Biomaterials 2013; 34:6957-66. [PMID: 23777908 DOI: 10.1016/j.biomaterials.2013.05.063] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/24/2013] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is known to be a potent inhibitor of platelet activation and adhesion. Healthy endothelial cells that line the inner walls of all blood vessels exhibit a NO flux of 0.5-4 × 10(-10) mol cm(-2) min(-1) that helps prevent thrombosis. Materials with a NO flux that is equivalent to this level are expected to exhibit similar anti-thrombotic properties. In this study, five biomedical grade polymers doped with S-nitroso-N-acetylpenicillamine (SNAP) were investigated for their potential to control the release of NO from the SNAP within the polymers, and further control the release of SNAP itself. SNAP in the Elast-eon E2As polymer creates an inexpensive, homogeneous coating that can locally deliver NO (via thermal and photochemical reactions) as well slowly release SNAP. Furthermore, SNAP is surprisingly stable in the E2As polymer, retaining 82% of the initial SNAP after 2 months storage at 37 °C. The E2As polymer containing SNAP was coated on the walls of extracorporeal circulation (ECC) circuits and exposed to 4 h blood flow in a rabbit model of extracorporeal circulation to examine the effects on platelet count, platelet function, clot area, and fibrinogen adsorption. After 4 h, platelet count was preserved at 100 ± 7% of baseline for the SNAP/E2As coated loops, compared to 60 ± 6% for E2As control circuits (n = 4). The SNAP/E2As coating also reduced the thrombus area when compared to the control (2.3 ± 0.6 and 3.4 ± 1.1 pixels/cm(2), respectively). The results suggest that the new SNAP/E2As coating has potential to improve the thromboresistance of intravascular catheters, grafts, and other blood-contacting medical devices, and exhibits excellent storage stability compared to previously reported NO release polymeric materials.
Collapse
|
37
|
Balchin D, Wallace L, Dirr HW. S-nitrosation of glutathione transferase p1-1 is controlled by the conformation of a dynamic active site helix. J Biol Chem 2013; 288:14973-84. [PMID: 23572520 DOI: 10.1074/jbc.m113.462671] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
S-Nitrosation is a post-translational modification of protein cysteine residues, which occurs in response to cellular oxidative stress. Although it is increasingly being linked to physiologically important processes, the molecular basis for protein regulation by this modification remains poorly understood. We used transient kinetic methods to determine a minimal mechanism for spontaneous S-nitrosoglutathione (GSNO)-mediated transnitrosation of human glutathione transferase (GST) P1-1, a major detoxification enzyme and key regulator of cell proliferation. Cys(47) of GSTP1-1 is S-nitrosated in two steps, with the chemical step limited by a pre-equilibrium between the open and closed conformations of helix α2 at the active site. Cys(101), in contrast, is S-nitrosated in a single step but is subject to negative cooperativity due to steric hindrance at the dimer interface. Despite the presence of a GSNO binding site at the active site of GSTP1-1, isothermal titration calorimetry as well as nitrosation experiments using S-nitrosocysteine demonstrate that GSNO binding does not precede S-nitrosation of GSTP1-1. Kinetics experiments using the cellular reductant glutathione show that Cys(101)-NO is substantially more resistant to denitrosation than Cys(47)-NO, suggesting a potential role for Cys(101) in long term nitric oxide storage or transfer. These results constitute the first report of the molecular mechanism of spontaneous protein transnitrosation, providing insight into the post-translational control of GSTP1-1 as well as the process of protein transnitrosation in general.
Collapse
Affiliation(s)
- David Balchin
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
38
|
Fukuto JM, Cisneros CJ, Kinkade RL. A comparison of the chemistry associated with the biological signaling and actions of nitroxyl (HNO) and nitric oxide (NO). J Inorg Biochem 2013; 118:201-8. [DOI: 10.1016/j.jinorgbio.2012.08.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/15/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
|
39
|
Fernández-González MÁ, Marazzi M, López-Delgado A, Zapata F, García-Iriepa C, Rivero D, Castaño O, Temprado M, Frutos LM. Structural Substituent Effect in the Excitation Energy of a Chromophore: Quantitative Determination and Application to S-Nitrosothiols. J Chem Theory Comput 2012; 8:3293-302. [DOI: 10.1021/ct300597u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Marco Marazzi
- Departamento
de Química Física, Universidad
de Alcalá, E-28871 Alcalá de Henares (Madrid), Spain
| | - Alberto López-Delgado
- Departamento
de Química Física, Universidad
de Alcalá, E-28871 Alcalá de Henares (Madrid), Spain
| | - Felipe Zapata
- Departamento
de Química Física, Universidad
de Alcalá, E-28871 Alcalá de Henares (Madrid), Spain
| | - Cristina García-Iriepa
- Departamento
de Química Física, Universidad
de Alcalá, E-28871 Alcalá de Henares (Madrid), Spain
| | - Daniel Rivero
- Departamento
de Química Física, Universidad
de Alcalá, E-28871 Alcalá de Henares (Madrid), Spain
| | - Obis Castaño
- Departamento
de Química Física, Universidad
de Alcalá, E-28871 Alcalá de Henares (Madrid), Spain
| | - Manuel Temprado
- Departamento
de Química Física, Universidad
de Alcalá, E-28871 Alcalá de Henares (Madrid), Spain
| | - Luis Manuel Frutos
- Departamento
de Química Física, Universidad
de Alcalá, E-28871 Alcalá de Henares (Madrid), Spain
| |
Collapse
|
40
|
Giles NM, Kumari S, Gang BP, Yuen CWW, Billaud EMF, Giles GI. The molecular design of S-nitrosothiols as photodynamic agents for controlled nitric oxide release. Chem Biol Drug Des 2012; 80:471-8. [PMID: 22642531 DOI: 10.1111/j.1747-0285.2012.01420.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitric oxide is a small messenger molecule utilized by nature in cell signalling and the non-specific immune response. At present, nitric oxide releasing prodrugs cannot be efficiently targeted towards a specific body compartment, which restricts their therapeutic applications. To address this limitation, we have designed two photolabile nitric oxide releasing prodrugs, tert-butyl S-nitrosothiol and tert-dodecane S-nitrosothiol, which are based on the S-nitrosothiol functionality. By modulating the prodrugs' hydrophobicity, we postulated that we could increase their stability within the cell by preventing their interaction with hydrophilic thiols and metal ions; processes that are known to inactivate this prodrug class. Our data demonstrate that these prodrugs have improved nitric oxide release kinetics compared to currently available S-nitrosothiols, as they are highly stable in vitro in the absence of irradiation (t(1/2) > 3 h), while their rate of decomposition can be regulated by controlling the intensity or duration of the photostimulus. Nitric oxide release can readily be achieved using non-laser based light sources, which enabled us to characterize photoactivation as a trigger mechanism for nitric oxide release in A549 lung carcinoma cells. Here we confirmed that irradiation induced highly significant increases in cytotoxicity within a therapeutic drug range (1-100 μm), and the utility of this photoactivation switch opens up avenues for exploring the applications of these prodrugs for chemical biology studies and chemotherapy.
Collapse
Affiliation(s)
- Niroshini M Giles
- Department of Pharmacology and Toxicology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
41
|
Marazzi M, López-Delgado A, Fernández-González MA, Castaño O, Frutos LM, Temprado M. Modulating Nitric Oxide Release by S-Nitrosothiol Photocleavage: Mechanism and Substituent Effects. J Phys Chem A 2012; 116:7039-49. [DOI: 10.1021/jp304707n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Marco Marazzi
- Departamento de Química Física, Universidad de Alcalá, E-28871 Alcalá
de Henares, Madrid, Spain
| | - Alberto López-Delgado
- Departamento de Química Física, Universidad de Alcalá, E-28871 Alcalá
de Henares, Madrid, Spain
| | | | - Obis Castaño
- Departamento de Química Física, Universidad de Alcalá, E-28871 Alcalá
de Henares, Madrid, Spain
| | - Luis Manuel Frutos
- Departamento de Química Física, Universidad de Alcalá, E-28871 Alcalá
de Henares, Madrid, Spain
| | - Manuel Temprado
- Departamento de Química Física, Universidad de Alcalá, E-28871 Alcalá
de Henares, Madrid, Spain
| |
Collapse
|
42
|
Fukuto JM, Carrington SJ, Tantillo DJ, Harrison JG, Ignarro LJ, Freeman BA, Chen A, Wink DA. Small molecule signaling agents: the integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species. Chem Res Toxicol 2012; 25:769-93. [PMID: 22263838 PMCID: PMC4061765 DOI: 10.1021/tx2005234] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several small molecule species formally known primarily as toxic gases have, over the past 20 years, been shown to be endogenously generated signaling molecules. The biological signaling associated with the small molecules NO, CO, H₂S (and the nonendogenously generated O₂), and their derived species have become a topic of extreme interest. It has become increasingly clear that these small molecule signaling agents form an integrated signaling web that affects/regulates numerous physiological processes. The chemical interactions between these species and each other or biological targets is an important factor in their roles as signaling agents. Thus, a fundamental understanding of the chemistry of these molecules is essential to understanding their biological/physiological utility. This review focuses on this chemistry and attempts to establish the chemical basis for their signaling functions.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, California 94928, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Riccio DA, Nutz ST, Schoenfisch MH. Visible photolysis and amperometric detection of S-nitrosothiols. Anal Chem 2011; 84:851-6. [PMID: 22201553 DOI: 10.1021/ac2031805] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The concentration of S-nitrosothiols (RSNOs), endogenous transporters of the signaling molecule nitric oxide (NO), fluctuate greatly in physiology often as a function of disease state. RSNOs may be measured indirectly by cleaving the S-N bond and monitoring the liberated NO. While ultraviolet photolysis and reductive-based cleavage both decompose RSNOs to NO, poor selectivity and the need for additional reagents preclude their utility clinically. Herein, we report the coupling of visible photolysis (i.e., 500-550 nm) and amperometric NO detection to quantify RSNOs with greater selectivity and sensitivity. Enhanced sensitivity (up to 1.56 nA μM(-1)) and lowered theoretical detection limits (down to 30 nM) were achieved for low molecular weight RSNOs (i.e., S-nitrosoglutathione, S-nitrosocysteine) by tuning the irradiation exposure. Detection of nitrosated proteins (i.e., S-nitrosoalbumin) was also possible, albeit at a decreased sensitivity (0.11 nA μM(-1)). This detection scheme was used to measure RSNOs in plasma and illustrate the potential of this method for future physiological studies.
Collapse
|
44
|
Ankri R, Friedman H, Savion N, Kotev-Emeth S, Breitbart H, Lubart R. Visible light induces nitric oxide (NO) formation in sperm and endothelial cells. Lasers Surg Med 2010; 42:348-52. [PMID: 19790248 DOI: 10.1002/lsm.20849] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Visible light-based stimulation using low-intensity lasers, LEDs, and broadband visible light devices has been recently introduced for therapy of human tissues in the absence of exogenous photosensitizers. Nitric oxide (NO) formation might be a potential mechanism for photobiomodulation because it is synthesized in cells by nitric oxide synthase (NOS), which contains both flavin and heme groups that absorb visible light. NO synthesis may also result from increased reactive oxygen species (ROS), which are found in various cell cultures following visible light illumination. NO is mainly known for inducing blood vessel dilation by endothelial cells, and in sperm cells NO is considered as an important agent in acrosome reaction and capacitation process, which are essential for successful fertilization. PURPOSE To study NO formation in endothelial and sperm cells following visible light irradiation. MATERIALS AND METHODS Sperm and endothelial cells were illuminated with broadband visible light, 400-800 nm, 130 mW/cm(2), for 5 minutes. During illumination, the endothelial cells were incubated in PBS free of Ca(+2) and Mg(+2), and the sperm cells were incubated in NKM buffer, to induce "stress conditions." NO production was quantified by using the Griess reagent which reacts with nitrite in the medium to yield an Azo compound which has an absorption band at 540 nm. RESULTS Visible light illumination increased NO concentration both in sperm and endothelial cells. Blue light was more effective than red. Light-induced NO occurred only when endothelial cells were incubated in PBS free of Ca(+2) and Mg(+2), and in sperm cells, only when incubated in NKM. CONCLUSION Light induces NO formation in endothelial and sperm cells. In endothelial cells, NO formation may explain previous results demonstrating enhanced wound healing and pain relief following illumination. In illuminated sperm cells, NO formation may account for the enhanced fertilization rate.
Collapse
Affiliation(s)
- Rinat Ankri
- Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
45
|
Li Y, Lee PI. Controlled Nitric Oxide Delivery Platform Based on S-Nitrosothiol Conjugated Interpolymer Complexes for Diabetic Wound Healing. Mol Pharm 2010; 7:254-66. [DOI: 10.1021/mp900237f] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yan Li
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Ping I. Lee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
46
|
Opländer C, Volkmar CM, Paunel-Görgülü A, van Faassen EE, Heiss C, Kelm M, Halmer D, Mürtz M, Pallua N, Suschek CV. Whole Body UVA Irradiation Lowers Systemic Blood Pressure by Release of Nitric Oxide From Intracutaneous Photolabile Nitric Oxide Derivates. Circ Res 2009; 105:1031-40. [DOI: 10.1161/circresaha.109.207019] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Human skin contains photolabile nitric oxide derivates like nitrite and
S
-nitroso thiols, which after UVA irradiation, decompose and lead to the formation of vasoactive NO.
Objective:
Here, we investigated whether whole body UVA irradiation influences the blood pressure of healthy volunteers because of cutaneous nonenzymatic NO formation.
Methods and Results:
As detected by chemoluminescence detection or by electron paramagnetic resonance spectroscopy in vitro with human skin specimens, UVA illumination (25 J/cm
2
) significantly increased the intradermal levels of free NO. In addition, UVA enhanced dermal
S
-nitrosothiols 2.3-fold, and the subfraction of dermal
S
-nitrosoalbumin 2.9-fold. In vivo, in healthy volunteers creamed with a skin cream containing isotopically labeled
15
N-nitrite, whole body UVA irradiation (20 J/cm
2
) induced significant levels of
15
N-labeled
S
-nitrosothiols in the blood plasma of light exposed subjects, as detected by cavity leak out spectroscopy. Furthermore, whole body UVA irradiation caused a rapid, significant decrease, lasting up to 60 minutes, in systolic and diastolic blood pressure of healthy volunteers by 11±2% at 30 minutes after UVA exposure. The decrease in blood pressure strongly correlated (
R
2
=0.74) with enhanced plasma concentration of nitrosated species, as detected by a chemiluminescence assay, with increased forearm blood flow (+26±7%), with increased flow mediated vasodilation of the brachial artery (+68±22%), and with decreased forearm vascular resistance (−28±7%).
Conclusions:
UVA irradiation of human skin caused a significant drop in blood pressure even at moderate UVA doses. The effects were attributed to UVA induced release of NO from cutaneous photolabile NO derivates.
Collapse
Affiliation(s)
- Christian Opländer
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery, and Burn Center (C.O., C.M.V., N.P., C.V.S.), Medical Faculty, RWTH Aachen University, Germany; Department of Trauma and Hand Surgery (A.P.-G.), University Hospital Düsseldorf, Germany; Interface Physics (E.E.v.F.), Faculty of Sciences, Utrecht University, The Netherlands; Department of Cardiology and Vascular Medicine (C.H., M.K.), University Hospital Düsseldorf, Germany; and Institute of Laser Medicine (D.H., M.M.),
| | - Christine M. Volkmar
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery, and Burn Center (C.O., C.M.V., N.P., C.V.S.), Medical Faculty, RWTH Aachen University, Germany; Department of Trauma and Hand Surgery (A.P.-G.), University Hospital Düsseldorf, Germany; Interface Physics (E.E.v.F.), Faculty of Sciences, Utrecht University, The Netherlands; Department of Cardiology and Vascular Medicine (C.H., M.K.), University Hospital Düsseldorf, Germany; and Institute of Laser Medicine (D.H., M.M.),
| | - Adnana Paunel-Görgülü
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery, and Burn Center (C.O., C.M.V., N.P., C.V.S.), Medical Faculty, RWTH Aachen University, Germany; Department of Trauma and Hand Surgery (A.P.-G.), University Hospital Düsseldorf, Germany; Interface Physics (E.E.v.F.), Faculty of Sciences, Utrecht University, The Netherlands; Department of Cardiology and Vascular Medicine (C.H., M.K.), University Hospital Düsseldorf, Germany; and Institute of Laser Medicine (D.H., M.M.),
| | - Ernst E. van Faassen
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery, and Burn Center (C.O., C.M.V., N.P., C.V.S.), Medical Faculty, RWTH Aachen University, Germany; Department of Trauma and Hand Surgery (A.P.-G.), University Hospital Düsseldorf, Germany; Interface Physics (E.E.v.F.), Faculty of Sciences, Utrecht University, The Netherlands; Department of Cardiology and Vascular Medicine (C.H., M.K.), University Hospital Düsseldorf, Germany; and Institute of Laser Medicine (D.H., M.M.),
| | - Christian Heiss
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery, and Burn Center (C.O., C.M.V., N.P., C.V.S.), Medical Faculty, RWTH Aachen University, Germany; Department of Trauma and Hand Surgery (A.P.-G.), University Hospital Düsseldorf, Germany; Interface Physics (E.E.v.F.), Faculty of Sciences, Utrecht University, The Netherlands; Department of Cardiology and Vascular Medicine (C.H., M.K.), University Hospital Düsseldorf, Germany; and Institute of Laser Medicine (D.H., M.M.),
| | - Malte Kelm
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery, and Burn Center (C.O., C.M.V., N.P., C.V.S.), Medical Faculty, RWTH Aachen University, Germany; Department of Trauma and Hand Surgery (A.P.-G.), University Hospital Düsseldorf, Germany; Interface Physics (E.E.v.F.), Faculty of Sciences, Utrecht University, The Netherlands; Department of Cardiology and Vascular Medicine (C.H., M.K.), University Hospital Düsseldorf, Germany; and Institute of Laser Medicine (D.H., M.M.),
| | - Daniel Halmer
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery, and Burn Center (C.O., C.M.V., N.P., C.V.S.), Medical Faculty, RWTH Aachen University, Germany; Department of Trauma and Hand Surgery (A.P.-G.), University Hospital Düsseldorf, Germany; Interface Physics (E.E.v.F.), Faculty of Sciences, Utrecht University, The Netherlands; Department of Cardiology and Vascular Medicine (C.H., M.K.), University Hospital Düsseldorf, Germany; and Institute of Laser Medicine (D.H., M.M.),
| | - Manfred Mürtz
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery, and Burn Center (C.O., C.M.V., N.P., C.V.S.), Medical Faculty, RWTH Aachen University, Germany; Department of Trauma and Hand Surgery (A.P.-G.), University Hospital Düsseldorf, Germany; Interface Physics (E.E.v.F.), Faculty of Sciences, Utrecht University, The Netherlands; Department of Cardiology and Vascular Medicine (C.H., M.K.), University Hospital Düsseldorf, Germany; and Institute of Laser Medicine (D.H., M.M.),
| | - Norbert Pallua
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery, and Burn Center (C.O., C.M.V., N.P., C.V.S.), Medical Faculty, RWTH Aachen University, Germany; Department of Trauma and Hand Surgery (A.P.-G.), University Hospital Düsseldorf, Germany; Interface Physics (E.E.v.F.), Faculty of Sciences, Utrecht University, The Netherlands; Department of Cardiology and Vascular Medicine (C.H., M.K.), University Hospital Düsseldorf, Germany; and Institute of Laser Medicine (D.H., M.M.),
| | - Christoph V. Suschek
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery, and Burn Center (C.O., C.M.V., N.P., C.V.S.), Medical Faculty, RWTH Aachen University, Germany; Department of Trauma and Hand Surgery (A.P.-G.), University Hospital Düsseldorf, Germany; Interface Physics (E.E.v.F.), Faculty of Sciences, Utrecht University, The Netherlands; Department of Cardiology and Vascular Medicine (C.H., M.K.), University Hospital Düsseldorf, Germany; and Institute of Laser Medicine (D.H., M.M.),
| |
Collapse
|
47
|
Synthesis and Fragmentation of Furoxanaldehydes in the Gas Phase for Nanopatterned Alkyne Formation on a Solid Surface. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.2.459] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Abstract
Photochemical release of nitric oxide (NO) from the S-nitroso derivatives of glutathione, L-cysteine, N-acetyl-L-cysteine, L-cysteinemethylester, D,L-penicillamine, N-acetyl-D,L-penicillamine, and N-acetylcysteamine has been investigated at neutral and acidic pH. The release of NO from RSNO is one of the key reactions that could be utilized in photodynamic therapy. The UV-VIS and HPLC analyses have shown that under argon saturated conditions, disulfide (RSSR) is the major product of UV as well as sunlight induced decomposition. While in aerated conditions, nitirite—the end product of the oxidation of NO—was also observed along with disulfide. The formation of thiyl radical as the intermediate was reconfirmed by laser flash photolysis. The initial rate of formation of NO was on the order of 10−10dm3mol−1s−1. The quantum yields of these reactions were in the range of 0.2–0.8. The high quantum yields observed in the photo induced release of NO from RSNO using both UV and sunlight demonstrate the potential application of these reactions in photodynamic therapy.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW To understand the principles and limits of the methodologies used for the measurement of S-nitrosylated proteins. RECENT FINDINGS Among methods for studying protein S-nitrosylation, chemoluminescence and biotin switch assay have rapidly gained popularity. However, recent findings have attempted to highlight potential pitfalls for these methods. Many assays for biological S-nitrosylated proteins are used near the limit of detection and pretreatment of the biological samples can modify the S-NO bond. These results suggest that additional controls are essential in order to identify S-nitrosylated proteins and results should be quantitatively validated using more than one methodology. SUMMARY Protein S-nitrosylation is emerging as a key mechanism by which nitric oxide regulates cell signalling. This review focuses on existing methodologies for the measurement of S-nitrosylated proteins in biological matrices and the potential pitfalls of each method.
Collapse
Affiliation(s)
- Didier Borderie
- Laboratoire de biochimie A, Hôpital Cochin APHP, 27 rue du faubourg Saint Jacques, France.
| | | |
Collapse
|
50
|
Abstract
S-Nitrosylation is a ubiquitous signaling process in biological systems. Research regarding this signaling has been hampered, however, by assays that lack sensitivity and specificity. In particular, iodine-based assays for S-nitrosothiols (1) produce nitrosyliodide, a potent nitrosating agent that can be lost to reactions in the biological sample being studied; (2) require pretreatment of biological samples with several reagents that react with proteins, artifactually forming or breaking S-NO bonds before the assay; and (3) are not sensitive or specific for nitrogen oxides in biological samples, reporting a wide range of different concentrations and falsely reporting NO-modified proteins, to be nitrite. These data, therefore, suggest that iodine-based assays should never be used for biological S-nitrosothiols. There are other assays that provide reasonably sensitive and accurate data regarding biological S-nitrosothiols, including assays based on mass spectrometry, spectrophotometry, chemiluminescence, fluorescence, and immunostaining. Each assay, however, has limitations and should be quantitatively complemented by separate assays. Continued improvement in assays will facilitate improved understanding of S-nitrosylation signaling.
Collapse
Affiliation(s)
- Lisa A Palmer
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | |
Collapse
|