1
|
Qu Y, Li D, Liu W, Shi D. Molecular consideration relevant to the mechanism of the comorbidity between psoriasis and systemic lupus erythematosus (Review). Exp Ther Med 2023; 26:482. [PMID: 37745036 PMCID: PMC10515117 DOI: 10.3892/etm.2023.12181] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Systemic lupus erythematosus (SLE), a common autoimmune disease with a global incidence and newly diagnosed population estimated at 5.14 (range, 1.4-15.13) per 100,000 person-years and 0.40 million people annually, respectively, affects multiple tissues and organs; for example, skin, blood system, heart and kidneys. Accumulating data has also demonstrated that psoriasis (PS) can be a systemic inflammatory disease, which can affect organs other than the skin and occur alongside other autoimmune diseases, such as inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis and SLE. The current explanations for the possible comorbidity of PS and SLE include: i) The two diseases share susceptible gene loci; ii) they share a common IL-23/T helper 17 (Th17) axis inflammatory pathway; and iii) the immunopathogenesis of the two conditions is a consequence of the interactions between IL-17 cytokines with effector Th17 cells, T regulatory cells, as well as B cells. In addition, the therapeutic efficacy of IL-17 or TNF-α inhibitors has been demonstrated in PS, and has also become evident in SLE. However, the mechanisms have not been investigated. To the best of our knowledge, there remains a lack of substantial studies on the correlation between PS and SLE. In the present review, the literature, with regards to the epidemiology, genetic predisposition, inflammatory mechanisms and treatment of the patients with both PS and SLE, has been reviewed. Further investigations into the molecular pathogenic mechanism may provide drug targets that could benefit the patients with concomitant PS and SLE.
Collapse
Affiliation(s)
- Yuying Qu
- Department of Dermatology, College of Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Weida Liu
- Department of Medical Mycology, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, Jiangsu 272002, P.R. China
| | - Dongmei Shi
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
2
|
Zhu JL, Tran LT, Smith M, Zheng F, Cai L, James JA, Guthridge JM, Chong BF. Modular gene analysis reveals distinct molecular signatures for subsets of patients with cutaneous lupus erythematosus. Br J Dermatol 2021; 185:563-572. [PMID: 33400293 DOI: 10.1111/bjd.19800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cutaneous lupus erythematosus (CLE) is a heterogeneous autoimmune disease with clinical sequelae such as itching, dyspigmentation and scarring. OBJECTIVES We applied a previously described modular analysis approach to assess the molecular heterogeneity of patients with CLE. METHODS Whole-blood transcriptomes of RNA sequencing data from a racially and ethnically diverse group of patients with CLE (n = 62) were used to calculate gene co-expression module scores. An unsupervised cluster analysis and k-means clustering based on these module scores were then performed. We used Fisher's exact tests and Kruskal-Wallis tests to compare characteristics between patient clusters. RESULTS Six unique clusters of patients with CLE were identified from the cluster analysis. We observed that seven inflammation modules were elevated in two clusters of patients with CLE. Additionally, these clusters were characterized by interferon, neutrophil and cell-death signatures, suggesting that interferon-related proteins, neutrophils and cell-death processes could be driving the inflammatory response in these subgroups. Three different clusters had a predominant T-cell signature, which were supported by lymphocyte counts. CONCLUSIONS Our data support a diverse molecular profile in CLE that further adds to the clinical variations of this skin disease, and may affect disease course and treatment selection. Future studies with a larger and diverse cohort of patients with CLE are warranted to confirm these findings.
Collapse
Affiliation(s)
- J L Zhu
- Department of Dermatology, University of Texas at Southwestern Medical Center, Dallas, TX, USA
| | - L T Tran
- Arthritis and Clinical Research Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - M Smith
- Arthritis and Clinical Research Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - F Zheng
- Arthritis and Clinical Research Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - L Cai
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, Dallas, TX, USA
| | - J A James
- Arthritis and Clinical Research Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - J M Guthridge
- Arthritis and Clinical Research Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - B F Chong
- Department of Dermatology, University of Texas at Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Zhou X, Yan J, Lu Q, Zhou H, Fan L. The pathogenesis of cutaneous lupus erythematosus: The aberrant distribution and function of different cell types in skin lesions. Scand J Immunol 2020; 93:e12933. [PMID: 32654170 DOI: 10.1111/sji.12933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune disease with a broad range of cutaneous manifestations. In skin lesions of CLE, keratinocytes primarily undergo apoptosis. Interferon-κ(IFN-κ) is belonged to type I interferons (type I IFNs) and is selectively produced by keratinocytes. Recently, keratinocytes selectively produced IFN-κ is identified to be a key to trigger type I interferon responses in CLE. Other immune cells such as plasmacytoid dendritic cells (pDCs) are identified to be relevant origin of type I interferons (type I IFNs) which are central to the development of CLE lesions and responsible for mediating Th1 cell activity. Other types of cells such as neutrophils, B cells and Th17 cells also are involved in the development of this disease. The close interaction of those cells composes a comprehensive and complicated network in CLE. In this review, we discussed the aberrant distribution and function of different cells types involved in this disease and will offer a new direction for research and therapy in the near future.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Jinli Yan
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital of Central South University, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Lan Fan
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Lupus erythematosus (LE) is characterized by broad and varied clinical forms ranging from a localized skin lesion to a life-threatening form with severe systemic manifestations. The overlapping between cutaneous LE (CLE) and systemic LE (SLE) brings difficulties to physicians for early accurate diagnosis and sometimes may lead to delayed treatment for patients. We comprehensively review recent progress about the similarities and differences of the main three subsets of LE in pathogenesis and immunological mechanisms, with a particular focus on the skin damage. RECENT FINDINGS Recent studies on the mechanisms contributing to the skin damage in lupus have shown a close association of abnormal circulating inflammatory cells and abundant production of IgG autoantibodies with the skin damage of SLE, whereas few evidences if serum autoantibodies and circulating inflammatory cells are involved in the pathogenesis of CLE, especially for the discoid LE (DLE). Till now, the pathogenesis and molecular/cellular mechanism for the progress from CLE to SLE are far from clear. But more and more factors correlated with the differences among the subsets of LE and progression from CLE to SLE have been found, such as the mutation of IRF5, IFN regulatory factors and abnormalities of plasmacytoid dendritic cells (PDCs), Th1 cells, and B cells, which could be the potential biomarkers for the interventions in the development of LE. A further understanding in pathogenesis and immunological mechanisms for skin damage in different subsets of LE makes us think more about the differences and cross-links in the pathogenic mechanism of CLE and SLE, which will shed a light in predictive biomarkers and therapies in LE.
Collapse
|
5
|
Dey-Rao R, Sinha AA. In silico Analyses of Skin and Peripheral Blood Transcriptional Data in Cutaneous Lupus Reveals CCR2-A Novel Potential Therapeutic Target. Front Immunol 2019; 10:640. [PMID: 30984198 PMCID: PMC6450170 DOI: 10.3389/fimmu.2019.00640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
Cutaneous lesions feature prominently in lupus erythematosus (LE). Yet lupus and its cutaneous manifestations exhibit extraordinary clinical heterogeneity, making it imperative to stratify patients with varying organ involvement based on molecular criteria that may be of clinical value. We conducted several in silico bioinformatics-based analyses integrating chronic cutaneous lupus erythematosus (CCLE)-skin and blood expression profiles to provide novel insights into disease mechanisms and potential future therapy. In addition to substantiating well-known prominent apoptosis and interferon related response in both tissue environments, the overrepresentation of GO categories in the datasets, in the context of existing literature, led us to model a “disease road-map” demonstrating a coordinated orchestration of the autoimmune response in CCLE reflected in three phases: (1) initiation, (2) amplification, and (3) target damage in skin. Within this framework, we undertook in silico interactome analyses to identify significantly “over-connected” genes that are potential key functional players in the metabolic reprogramming associated with skin pathology in CCLE. Furthermore, overlapping and distinct transcriptional “hot spots” within CCLE skin and blood expression profiles mapping to specified chromosomal locations offer selected targets for identifying disease-risk genes. Lastly, we used a novel in silico approach to prioritize the receptor protein CCR2, whose expression level in CCLE tissues was validated by qPCR analysis, and suggest it as a drug target for use in future potential CCLE therapy.
Collapse
Affiliation(s)
- Rama Dey-Rao
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
6
|
Solano-Gálvez SG, Abadi-Chiriti J, Gutiérrez-Velez L, Rodríguez-Puente E, Konstat-Korzenny E, Álvarez-Hernández DA, Franyuti-Kelly G, Gutiérrez-Kobeh L, Vázquez-López R. Apoptosis: Activation and Inhibition in Health and Disease. Med Sci (Basel) 2018; 6:E54. [PMID: 29973578 PMCID: PMC6163961 DOI: 10.3390/medsci6030054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
There are many types of cell death, each involving multiple and complex molecular events. Cell death can occur accidentally when exposed to extreme physical, chemical, or mechanical conditions, or it can also be regulated, which involves a genetically coded complex machinery to carry out the process. Apoptosis is an example of the latter. Apoptotic cell death can be triggered through different intracellular signalling pathways that lead to morphological changes and eventually cell death. This is a normal and biological process carried out during maturation, remodelling, growth, and development in tissues. To maintain tissue homeostasis, regulatory, and inhibitory mechanisms must control apoptosis. Paradoxically, these same pathways are utilized during infection by distinct intracellular microorganisms to evade recognition by the immune system and therefore survive, reproduce and develop. In cancer, neoplastic cells inhibit apoptosis, thus allowing their survival and increasing their capability to invade different tissues and organs. The purpose of this work is to review the generalities of the molecular mechanisms and signalling pathways involved in apoptosis induction and inhibition. Additionally, we compile the current evidence of apoptosis modulation during cancer and Leishmania infection as a model of apoptosis regulation by an intracellular microorganism.
Collapse
Affiliation(s)
- Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Jack Abadi-Chiriti
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Luis Gutiérrez-Velez
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Eduardo Rodríguez-Puente
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Enrique Konstat-Korzenny
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Diego-Abelardo Álvarez-Hernández
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Giorgio Franyuti-Kelly
- Medical IMPACT, Infectious Disease Department, Mexico City 53900, Estado de México, Mexico.
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología, Mexico City, 14080, Mexico.
| | - Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| |
Collapse
|
7
|
Stannard JN, Reed TJ, Myers E, Lowe L, Sarkar MK, Xing X, Gudjonsson JE, Kahlenberg JM. Lupus Skin Is Primed for IL-6 Inflammatory Responses through a Keratinocyte-Mediated Autocrine Type I Interferon Loop. J Invest Dermatol 2017; 137:115-122. [PMID: 27646883 PMCID: PMC5183476 DOI: 10.1016/j.jid.2016.09.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/18/2016] [Accepted: 09/06/2016] [Indexed: 01/18/2023]
Abstract
Cutaneous lupus erythematosus is a disfiguring and common manifestation in systemic lupus erythematosus, and the etiology of this predisposition for cutaneous inflammation is unknown. Here, we sought to examine the keratinocyte as an important source of IL-6 and define the mechanism for its increased production in cutaneous lupus erythematosus. Evaluation of discoid and subacute cutaneous lupus erythematosus lesions showed significant epidermal up-regulation of IL-6 compared with control via real-time PCR and immunohistochemistry. Keratinocytes from unaffected skin of lupus patients produced significantly more IL-6 compared with healthy control subjects after exposure to toll-like receptor 2, 3, or 4 agonists or exposure to UVB radiation. Pretreatment with type I interferons (IFN-α and IFN-κ) increased IL-6 production by control keratinocytes, and type I IFN blockade decreased IL-6 secretion by lupus keratinocytes. Secretion of keratinocyte-specific IFN-κ was significantly increased after toll-like receptor 2 and UVB treatment in lupus keratinocytes, and neutralization of IFN-κ decreased IL-6 production by lupus keratinocytes. Thus, lupus keratinocytes are primed for IL-6 hyperproduction in a type I IFN-dependent manner. Increased production of IFN-κ by lupus keratinocytes drives this response, indicating that IFN-κ may play a pathogenic role in cutaneous lupus erythematosus and serve as a target for treatment.
Collapse
Affiliation(s)
- Jasmine N Stannard
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Division of Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Tamra J Reed
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily Myers
- Division of Rheumatology, Department of Medicine, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Lori Lowe
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA; Department of Pathology, University of Michigan, Ann Arbor, Michigan USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
8
|
Skiljevic D, Bonaci-Nikolic B, Brasanac D, Nikolic M. Apoptosis of keratinocytes and serum DNase I activity in patients with cutaneous lupus erythematosus: relationship with clinical and immunoserological parameters. J Eur Acad Dermatol Venereol 2016; 31:523-529. [DOI: 10.1111/jdv.13943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/18/2016] [Indexed: 11/26/2022]
Affiliation(s)
- D. Skiljevic
- Department of Dermatovenereology; Faculty of Medicine; University of Belgrade; Belgrade Serbia
| | - B. Bonaci-Nikolic
- Department of Allergy and Clinical Immunology; Faculty of Medicine; University of Belgrade; Belgrade Serbia
| | - D. Brasanac
- Department of Pathology; Faculty of Medicine; University of Belgrade; Belgrade Serbia
| | - M. Nikolic
- Department of Dermatovenereology; Faculty of Medicine; University of Belgrade; Belgrade Serbia
| |
Collapse
|
9
|
Abstract
The pathophysiology of cutaneous lupus erythematosus (CLE) encompasses the complex interactions between genetics, the environment, and cells and their products. Recent data have provided enhanced understanding of these interactions and the mechanism by which they cause disease. A number of candidate genes have been identified which increase the risk of developing CLE. Ultraviolet radiation, the predominant environmental exposure associated with CLE, appears to initiate CLE lesion formation by inducing apoptosis, precipitating autoantigen presentation, and promoting cellular production of specific cytokines. Autoantibodies are a well-known entity in CLE, but their exact role remains unclear. Finally, cells ranging from native skin cells to innate and adaptive immune cells produce cytokines and other molecules and play specific roles in lesion formation and perpetuation. Native skin cells implicated in CLE include keratinocytes and endothelial cells. Innate immune cells crucial to CLE pathophysiology include dendritic cells and neutrophils. The primary adaptive immune cells thought to be involved include Th1 cells, Th17 cells, cytotoxic T cells, and invariant natural killer T cells. Though the pathophysiology of CLE has yet to be fully characterized, current research provides direction for future research and therapies.
Collapse
Affiliation(s)
- Jordan C Achtman
- Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, 19104, USA. .,Department of Dermatology, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Victoria P Werth
- Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, 19104, USA. .,Department of Dermatology, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Robinson E, Werth V. The role of cytokines in the pathogenesis of cutaneous lupus erythematosus. Cytokine 2015; 73:326-34. [DOI: 10.1016/j.cyto.2015.01.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/24/2015] [Accepted: 01/28/2015] [Indexed: 02/07/2023]
|
11
|
Dey-Rao R, Sinha AA. Genome-wide transcriptional profiling of chronic cutaneous lupus erythematosus (CCLE) peripheral blood identifies systemic alterations relevant to the skin manifestation. Genomics 2014; 105:90-100. [PMID: 25451738 DOI: 10.1016/j.ygeno.2014.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/24/2014] [Accepted: 11/11/2014] [Indexed: 12/15/2022]
Abstract
Major gaps remain regarding pathogenetic mechanisms underlying clinical heterogeneity in lupus erythematosus (LE). As systemic changes are likely to underlie skin specific manifestation, we analyzed global gene expression in peripheral blood of a small cohort of chronic cutaneous LE (CCLE) patients and healthy individuals. Unbiased hierarchical clustering distinguished patients from controls revealing a "disease" based signature. Functional annotation of the differentially expressed genes (DEGs) highlight enrichment of interferon related immune response and apoptosis signatures, along with other key pathways. There is a 26% overlap of the blood and lesional skin transcriptional profile from a previous analysis by our group. We identified four transcriptional "hot spots" at chromosomal regions harboring statistically increased numbers of DEGs which offer prioritized potential loci for downstream fine mapping studies in the search for CCLE specific susceptibility loci. Additionally, we uncover evidence to support both shared and distinct mechanisms for cutaneous and systemic manifestations of lupus.
Collapse
Affiliation(s)
- R Dey-Rao
- Department of Dermatology, University at Buffalo, Buffalo, NY, USA
| | - A A Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
12
|
Dey-Rao R, Smith J, Chow S, Sinha A. Differential gene expression analysis in CCLE lesions provides new insights regarding the genetics basis of skin vs. systemic disease. Genomics 2014; 104:144-55. [DOI: 10.1016/j.ygeno.2014.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/15/2014] [Indexed: 01/06/2023]
|
13
|
Immunologic and genetic considerations of cutaneous lupus erythematosus: a comprehensive review. J Autoimmun 2013; 41:34-45. [PMID: 23380467 DOI: 10.1016/j.jaut.2013.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/04/2013] [Indexed: 12/20/2022]
Abstract
Cutaneous lupus erythematosus (CLE) refers to those subtypes of lupus erythematosus (LE) that have predominantly skin manifestations. Discoid lupus erythematosus (DLE), subacute cutaneous lupus erythematosus (SCLE), LE panniculitis (LEP) and lupus erythematosus tumidus (LET) all fall into the category of CLE. The pathogenesis of CLE is likely multifactorial. UV irradiation has been shown to induce keratinocyte apoptosis. Impaired clearance of apoptotic cells is a potential mechanism for the development of CLE. UV irradiation can also induce externalization of autoantigens such as Ro/SSA, exposing them to circulating autoantibodies. Some drugs have been associated with CLE. Possible mechanisms include stimulation of an immune response through disruption of central tolerance and altered T cell function. T17 cells may also play a role in the pathogenesis of CLE as they have been detected in skin lesions of LE. Treg cells have been found to be decreased in LE lesions, which may contribute to the breakdown of self-tolerance. Epidermal Langerhans cells are reduced in CLE while plasmacytoid DCs are increased in the lesions of CLE, suggesting that DCs may also play an important role in the pathogenesis of CLE. Type I IFN- and TNF-α are both upregulated in lesions of CLE. Other cytokines such as IL-6 and IL-17 are also implicated in the pathogenesis of CLE. Cellular and cytokine networks can be impacted by environmental factors and genetic variations and this can result in an increased risk of developing autoimmune diseases such as CLE.
Collapse
|
14
|
Bens G. [Photosensitivity in lupus erythematosus]. Rev Med Interne 2009; 30:857-65. [PMID: 19304357 DOI: 10.1016/j.revmed.2009.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Accepted: 01/24/2009] [Indexed: 11/24/2022]
Abstract
Photosensitivity is one of the ARA diagnostic criteria of systemic lupus erythematosus. Sun exposure can also induce extracutaneous manifestations of the disease. Photosensitivity may be difficult to prove by history taking in lupus patients, as the delay between sun exposure and the onset of specific skin lesions is rather long. Photo-induction of lupus can occur by ultraviolet A (UVA) radiation in the shadow or behind window glass, so that the relationship between radiation exposure and exacerbation of the disease may not seem obvious to the patient. Phototesting procedures for lupus erythematosus have been described, but they are not used in routine practice. Both UVB and UVA play a role in the pathogenesis of lupus erythematosus: in the epidermis they induce DNA damage, they expose nuclear antigens and photo-induced neo-antigens at the cell surface, they lead to an accumulation of apoptotic material, and they induce several pro-inflammatory cytokines. In the dermis, UV radiation triggers skin infiltration by inflammatory cells by modulation of microvascular flow rates and by upregulation of white blood cell migration from dermal capillaries to the skin. Photodistribution of skin lesions and a delay of their onset of more than 48 hours after sun exposure are clinical hallmarks of cutaneous lupus erythematosus that are usually completed by histological confirmation. Photoprotection is essential in the treatment of lupus patients: it comprises sun avoidance suitable for both UVB and UVA radiation, protective clothing, and topical broad-spectrum filters.
Collapse
Affiliation(s)
- G Bens
- Service de dermatologie, centre hospitalier régional d'Orléans, hôpital Porte-Madeleine, BP 2439, Orléans cedex 1, France.
| |
Collapse
|
15
|
Stavropoulos PG, Goules AV, Avgerinou G, Katsambas AD. Pathogenesis of subacute cutaneous lupus erythematosus. J Eur Acad Dermatol Venereol 2008; 22:1281-9. [DOI: 10.1111/j.1468-3083.2008.02806.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Lin JY, Tournas JA, Burch JA, Monteiro-Riviere NA, Zielinski J. Topical isoflavones provide effective photoprotection to skin. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2008; 24:61-6. [PMID: 18353084 DOI: 10.1111/j.1600-0781.2008.00329.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND/PURPOSE Isoflavones, one main group of phytoestrogens, have antioxidative and photoprotective effects in cellular and mouse studies. The aim of this study is to obtain a more comprehensive understanding of the isoflavone-mediated photoprotection with the pig skin model, a more human-resembling model. METHODS The pig skin was treated with five well-known isoflavone compounds (genistein, equol, daidzein, biochanin A, and formononetin) and one antioxidant combination solution of 15% vitamin C and 1% vitamin E and 0.5% ferulic acid (CEF) daily for 4 days. Skin was irradiated with solar-simulated UV irradiation, 1 to 5 minimal erythema dose (MED) at 1-MED intervals. Evaluation was carried out 24 h later by colorimeter-measured erythema and sunburn cell numbers. RESULTS Topical application of 0.5% solutions of three individual phytoestrogens - genistein, daidzein, biochanin A - are better than similar solutions of equol or formononetin in protecting pig skin from solar-simulated ultraviolet (SSUV)-induced photodamage, as measured by sunburn cell formation and/or erythema. However, the protection was less than that provided by a topical combination antioxidant standard containing 15% L-ascorbic acid, 1%alpha-tocopherol, and 0.5% ferulic acid. CONCLUSION Isoflavones provide effective photoprotection and are good candidate ingredients for protection against ultraviolet (UV) photodamage.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
17
|
Lin JH, Dutz JP, Sontheimer RD, Werth VP. Pathophysiology of Cutaneous Lupus Erythematosus. Clin Rev Allergy Immunol 2007; 33:85-106. [DOI: 10.1007/s12016-007-0031-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Lee HJ, Sinha AA. Cutaneous lupus erythematosus: understanding of clinical features, genetic basis, and pathobiology of disease guides therapeutic strategies. Autoimmunity 2007; 39:433-44. [PMID: 17060022 DOI: 10.1080/08916930600886851] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cutaneous features of the protean disease lupus erythematous (LE) constitute 4 of 11 diagnostic criteria for systemic lupus erythematosus (SLE) and are exhibited by approximately 3/4 of patients during the course of their disease. Because the pathogenesis of LE is multifactorial and polygenic, many of the details of the pathogenesis remain unclear. We review here the clinical features of cutaneous lupus and recent genetic data that elucidate potential candidate genes for both cutaneous lupus erythematosus (CLE) and SLE. We discuss advances in elucidating the autoimmune pathogenesis of CLE and SLE. Furthermore, promising experimental therapies based on these advances are reviewed in the context of B cell directed therapies, T cell directed therapies, disruption of B and T cell interactions, cytokine directed therapies and finally, end-effector targeted therapies.
Collapse
Affiliation(s)
- Henry J Lee
- Department of Dermatology, Weill Medical College of Cornell University, 525 East 68th Street Rm F-340, New York, NY 10021, USA
| | | |
Collapse
|
19
|
Abstract
The cause and effect between ultraviolet light and cutaneous lupus erythematosus (CLE) is clear. In LE patients indeed, photosensitivity is one of the major diagnostic criteria of the systemic form of lupus erythematosus. This strong clinical association has led to the postulate that abnormal photosensitivity participates in the pathogenesis of cutaneous lesions in LE. What is not clear is how the ultraviolet radiation (UVR) induces cutaneous lesions in susceptible individuals despite the fact that profound effects of UVR on the cellular components of the skin have been extensively studied. The whole scenario is complicated by the relationship between sunlight and the cutaneous immune system. Pronounced effects of UVR on the cutaneous immune response further complicate the understanding of photosensitivity in LE. In addition, the network of cutaneous cytokines, chemokines, and adhesion molecules has become increasingly intricate, thus contributing to the genetic substrate of each individual, and to the tremendous complexity of the pathogenesis of CLE.
Collapse
Affiliation(s)
- Chiara Angotti
- Department of Medicine, Division of Rheumatology, University of Florence, Florence, Italy.
| |
Collapse
|
20
|
Abstract
There have been a number of recent advances in the genetic understanding of photosensitive rheumatic diseases, especially subacute cutaneous lupus erythematosus and dermatomyositis. These advances support the concept that increased numbers of ultraviolet light-induced apoptotic cells in skin lead to a supra-threshold concentration of antigenic peptides. The current genetic data suggest that increased keratinocyte apopotosis can result from increased amounts of TNF-alpha that induce apoptosis due to a ultraviolet light-sensitive TNF promoter polymorphism or to decreased clearance of apototic cells due to polymorphisms associated with decreased serum levels of collectins such as C1q and mannose-binding lectin. These diseases are frequently oligogenic, and other yet to be elucidated genes will, in individual patients, lead to increased numbers of apoptotic cells associated with these cutaneous autoimmune diseases. In the presence of specific MHC class I and II genes, antigen-presenting cells initiate a primary immune response that leads to cutaneous, and likely systemic, autoimmune disease.
Collapse
Affiliation(s)
- Victoria P Werth
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
21
|
Iordanov MS, Choi RJ, Ryabinina OP, Dinh TH, Bright RK, Magun BE. The UV (Ribotoxic) stress response of human keratinocytes involves the unexpected uncoupling of the Ras-extracellular signal-regulated kinase signaling cascade from the activated epidermal growth factor receptor. Mol Cell Biol 2002; 22:5380-94. [PMID: 12101233 PMCID: PMC133934 DOI: 10.1128/mcb.22.15.5380-5394.2002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In mammals, UVB radiation is of biological relevance primarily for the cells of the epidermis. We report here the existence of a UVB response that is specific for proliferating human epidermal keratinocytes. Unlike other cell types that also display a UVB response, keratinocytes respond to UVB irradiation with a transient but potent downregulation of the Ras-extracellular signal-regulated kinase (ERK) signaling cascade. The downregulation of ERK precedes a profound decrease in the steady-state levels of cyclin D1, a mediator of the proliferative action of ERK. Keratinocytes exhibit high constitutive activity of the Ras-ERK signaling cascade even in culture medium lacking supplemental growth factors. The increased activity of Ras and phosphorylation of ERK in these cells are maintained by the autocrine production of secreted molecules that activate the epidermal growth factor receptor (EGFR). Irradiation of keratinocytes increases the phosphorylation of EGFR on tyrosine residues Y845, Y992, Y1045, Y1068, Y1086, Y1148, and Y1173 above the basal levels and leads to the increased recruitment of the adaptor proteins Grb2 and ShcA and of a p55 form of the regulatory subunit of the phosphatidylinositide 3-kinase to the UVB-activated EGFR. Paradoxically, however, UVB causes, at the same time, the inactivation of Ras and a subsequent dephosphorylation of ERK. By contrast, the signaling pathway leading from the activated EGFR to the phosphorylation of PKB/Akt1 is potentiated by UVB. The UVB response of keratinocytes appeared to be a manifestation of the more general ribotoxic stress response inasmuch as the transduction of the UVB-generated inhibitory signal to Ras and ERK required the presence of active ribosomes at the time of irradiation.
Collapse
Affiliation(s)
- Mihail S Iordanov
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, OR 97201, USA
| | | | | | | | | | | |
Collapse
|
22
|
Misra RB, Babu GS, Ray RS, Hans RK. Tubifex: a sensitive model for UV-B-induced phototoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2002; 52:288-295. [PMID: 12297092 DOI: 10.1006/eesa.2002.2184] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The natural increase of UV-B radiation levels due to depletion of the ozone layer in the atmosphere may impose additional stress for the survival of zooplanktons which serve as a major constituent of the aquatic food chain. To study the adverse effects of UV-B radiation on the aquatic biomass, studies were conducted using the aquatic organism Tubifex as a model, as UV-B radiation is known to penetrate into the natural waters. UV-B radiation induced mortality in tubifex and the production of activated oxygen species by these organisms. Alterations in DNA, RNA, protein, glutathione (GSH), hydrogen peroxide H(2)O(2), thiobarbituric acid-reactive substance (TBA-RS), ATPase, AChE, GST, and LDH activities in Tubifex at various doses (0-2.0 J) of UV-B radiation were found. LC(50) value for UV-B-induced mortality of Tubifex was 0.80+/-0.15 J and the threshold dose was 0.35+/-0.05 J; mortality began within 3h postirradiation. UV-B dose-dependent production of singlet oxygen, superoxide anion, and hydroxyl radicals by Tubifex was observed. DNA, RNA, protein, and GSH contents were found to decrease significantly (P<0.001) while H(2)O(2) and TBA-RS increased (P<0.01) under the influence of UV-B radiation. The activities of ATpase, AChE, and GST enzymes were inhibited (P<0.01) and LDH activity was significantly increased (P<0.001) in Tubifex exposed to UV-B radiation. The results suggest that an increase in UV-B radiation alters several biochemical processes, leading to the mortality of the organism. Tubifex could be useful as a sensitive alternate model for studying UV-B-induced phototoxicity and possible mechanisms of action.
Collapse
Affiliation(s)
- R B Misra
- Photobiology Division, Industrial Toxicology Research Centre, Lucknow, India
| | | | | | | |
Collapse
|
23
|
Furukawa F, Itoh T, Wakita H, Yagi H, Tokura Y, Norris DA, Takigawa M. Keratinocytes from patients with lupus erythematosus show enhanced cytotoxicity to ultraviolet radiation and to antibody-mediated cytotoxicity. Clin Exp Immunol 1999; 118:164-70. [PMID: 10540174 PMCID: PMC1905409 DOI: 10.1046/j.1365-2249.1999.01026.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Keratinocyte cytotoxicity is an important component of the immunopathology of photosensitive lupus erythematosus, and antibody-dependent cell-mediated cytotoxicity (ADCC) has been shown to be an important mechanism by which autoantibodies, especially those specific for SS-A/Ro, can induce keratinocyte damage in models of photosensitive lupus. We provide further evidence that keratinocytes from patients with photosensitive lupus show significantly greater ultraviolet radiation (UVR)-induced cytotoxicity, and that ADCC of these targets is especially enhanced by autologous patient's serum or by anti-SS-A/Ro+ sera. Keratinocytes from normal uninvolved skin of 29 patients with cutaneous lupus erythematosus (LE) were grown in cell culture and tested as targets in cytotoxicity experiments in vitro. Cultured keratinocytes from patients with systemic lupus erythematosus (SLE) and subacute cutaneous lupus erythematosus (SCLE) showed significantly greater cytotoxicity following UVR treatment than did keratinocytes from normal adult controls or from neonatal foreskins (P < 0.01). The same cultures also showed greater UVR-induced binding of IgG from fractionated anti-SS-A/Ro+ preparations. ADCC experiments were also performed using keratinocytes cultured from patients with SLE, SCLE, discoid lupus erythematosus (DLE), and normal controls. When keratinocytes were incubated in autologous serum plus a standard mononuclear cell effector population, the percentage of ADCC observed was significantly greater in cultures containing keratinocytes and sera from the SLE and SCLE patients (P < 0.001). When cultured keratinocytes were added to different IgG antibody probes, plus standard mononuclear effector populations, greater ADCC was seen using the anti-SS-A/Ro probe and keratinocytes from patients with SLE or SCLE. With normal human neonatal keratinocyte targets, the anti-SS-A/Ro probe induced greater ADCC than that seen with anti-ssDNA or normal human serum. We have shown that keratinocytes from patients with some forms of lupus erythematosus (SLE and SCLE) show greater cytotoxicity in vitro when irradiated with UVR, and greater susceptibility to ADCC whether the antibody source is their own serum or an anti-SS-A/Ro probe.
Collapse
Affiliation(s)
- F Furukawa
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Kölgen W, Van Weelden H, Den Hengst S, Guikers KL, Kiekens RC, Knol EF, Bruijnzeel-Koomen CA, Van Vloten WA, de Gruijl FR. CD11b+ cells and ultraviolet-B-resistant CD1a+ cells in skin of patients with polymorphous light eruption. J Invest Dermatol 1999; 113:4-10. [PMID: 10417611 DOI: 10.1046/j.1523-1747.1999.00625.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
After ultraviolet exposure Langerhans cells (epidermal CD1a+ cells) disappear from the healthy skin, and CD11b+ macrophage-like cells, which are reported to produce interleukin-10, appear in a matter of days. These phenomena are related to the ultraviolet-induced local suppression of contact hypersensitivity reactions. A defect in this suppression might allow inadvertent immune reactions to develop after ultraviolet (over)exposure; i.e., it could cause ultraviolet-B-induced polymorphous light eruption. In order to test this we first exposed buttock skin of eight healthy volunteers to six minimal erythema doses from Philips TL12 lamps, and indeed observed a dramatic disappearance of CD1a+ cells 48 and 72 h later, at which time the number of CD11b+ cells increased in the dermis, and some occurred in the epidermis. The epidermis thickened and showed large defects, filled by CD11b+ cells, just below the stratum corneum. In 10 patients with polymorphous light eruption (five with a normal minimal erythema dose and five with a low minimal erythema dose) CD1a+ cells were present in the epidermis as well as in the dermis before exposure. Strikingly, these cells were still present in considerable number at 48 and 72 h after exposure to six minimal erythema doses. CD11b+ cells already present in the dermis before ultraviolet exposure, increased after ultraviolet exposure, and subsequently also invaded the epidermis. Despite the six minimal erythema doses, there were no apparent defects in the epidermis of the polymorphous light eruption patients. This deviant early response to ultraviolet radiation is likely to be of direct relevance to the polymorphous light eruption and is perhaps useful as a diagnostic criterion.
Collapse
Affiliation(s)
- W Kölgen
- Dermatology, University AZU, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hoffmann K, Kaspar K, von Kobyletzki G, Stücker M, Altmeyer P. UV transmission and UV protection factor (UPF) measured on split skin following exposure to UVB radiation--correlation with the minimal erythema dose (MED). PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 1999; 15:133-9. [PMID: 10404724 DOI: 10.1111/j.1600-0781.1999.tb00073.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study the ultraviolet (UV) transmission of split skin exposed to UVB radiation and of non-exposed skin was compared in the 280-390 nm wavelength range and quantified. In addition, the correlation between the increase in the minimal erythema dose (MED) associated with a defined exposure to UVB and the ultraviolet protection factor (UPF) calculated from the transmission data was investigated. The study population consisted of 12 patients. Two pieces of split skin of the same thickness (0.3 mm) were taken from the right thigh of each patient. One specimen was removed from an area of non-exposed healthy skin and the other from an area which had been exposed to UVB radiation for a period of 12 days in which the initial dose of 1/3 MED was raised by 1/3 MED every 4 days. The split skin specimens were stretched over a special frame; subsequently, the UV transmission was determined with a spectrophotometer. The mean values obtained for UV transmission were all significantly below the initial data for non-exposed split skin. In the UV range of 280--390 nm, the transmission measured in the exposed specimens was 49.1% of the value measured in the non-exposed split skin (P<0.05). The corresponding values for the UVA range (315--390 nm) and the UVB range (280--315 nm) were 50.1% and 29.5%, respectively (P<0.05), based on the initial transmission data obtained from non-exposed skin. The clinical determination of MED after 12 days of exposure to UVB yielded mean values that were 3.2 times the initial values. Moreover, the mean UPFs calculated from the transmission data measured at the end of the 12-day exposure period were also about three times the initial values. The present study has thus established a significant correlation between the clinical MED values and the UPFs calculated from the transmission data measured following exposure to UVB.
Collapse
Affiliation(s)
- K Hoffmann
- Department of Dermatology, Ruhr University Bochum, Germany
| | | | | | | | | |
Collapse
|
26
|
|