1
|
Mariangeli M, Moreno A, Delcanale P, Abbruzzetti S, Diaspro A, Viappiani C, Bianchini P. Insights on the Mechanical Properties of SARS-CoV-2 Particles and the Effects of the Photosensitizer Hypericin. Int J Mol Sci 2024; 25:8724. [PMID: 39201411 PMCID: PMC11354238 DOI: 10.3390/ijms25168724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
SARS-CoV-2 is a highly pathogenic virus responsible for the COVID-19 disease. It belongs to the Coronaviridae family, characterized by a phospholipid envelope, which is crucial for viral entry and replication in host cells. Hypericin, a lipophilic, naturally occurring photosensitizer, was reported to effectively inactivate enveloped viruses, including SARS-CoV-2, upon light irradiation. In addition to its photodynamic activity, Hyp was found to exert an antiviral action also in the dark. This study explores the mechanical properties of heat-inactivated SARS-CoV-2 viral particles using Atomic Force Microscopy (AFM). Results reveal a flexible structure under external stress, potentially contributing to the virus pathogenicity. Although the fixation protocol causes damage to some particles, correlation with fluorescence demonstrates colocalization of partially degraded virions with their genome. The impact of hypericin on the mechanical properties of the virus was assessed and found particularly relevant in dark conditions. These preliminary results suggest that hypericin can affect the mechanical properties of the viral envelope, an effect that warrants further investigation in the context of antiviral therapies.
Collapse
Affiliation(s)
- Matteo Mariangeli
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, 43124 Parma, Italy; (M.M.); (P.D.); (S.A.)
- Nanoscopy and NIC@IIT, Center for Human Technology, Istituto Italiano di Tecnologia, 16152 Genova, Italy;
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy;
| | - Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, 43124 Parma, Italy; (M.M.); (P.D.); (S.A.)
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, 43124 Parma, Italy; (M.M.); (P.D.); (S.A.)
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, Center for Human Technology, Istituto Italiano di Tecnologia, 16152 Genova, Italy;
- DIFILAB, Dipartimento di Fisica, Università di Genova, 16146 Genova, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, 43124 Parma, Italy; (M.M.); (P.D.); (S.A.)
| | - Paolo Bianchini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, 43124 Parma, Italy; (M.M.); (P.D.); (S.A.)
- Nanoscopy and NIC@IIT, Center for Human Technology, Istituto Italiano di Tecnologia, 16152 Genova, Italy;
- DIFILAB, Dipartimento di Fisica, Università di Genova, 16146 Genova, Italy
| |
Collapse
|
2
|
Delcanale P, Uriati E, Mariangeli M, Mussini A, Moreno A, Lelli D, Cavanna L, Bianchini P, Diaspro A, Abbruzzetti S, Viappiani C. The Interaction of Hypericin with SARS-CoV-2 Reveals a Multimodal Antiviral Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14025-14032. [PMID: 35302731 PMCID: PMC8972258 DOI: 10.1021/acsami.1c22439] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hypericin is a photosensitizing drug that is active against membrane-enveloped viruses and therefore constitutes a promising candidate for the treatment of SARS-CoV-2 infections. The antiviral efficacy of hypericin is largely determined by its affinity toward viral components and by the number of active molecules loaded on single viruses. Here we use an experimental approach to follow the interaction of hypericin with SARS-CoV-2, and we evaluate its antiviral efficacy, both in the dark and upon photoactivation. Binding to viral particles is directly visualized with fluorescence microscopy, and a strong affinity for the viral particles, most likely for the viral envelope, is measured spectroscopically. The loading of a maximum of approximately 30 molecules per viral particle is estimated, despite with marked heterogeneity among particles. Because of this interaction, nanomolar concentrations of photoactivated hypericin substantially reduce virus infectivity on Vero E6 cells, but a partial effect is also observed in dark conditions, suggesting multiple mechanisms of action for this drug.
Collapse
Affiliation(s)
- Pietro Delcanale
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, 43124 Parma, Italy
| | - Eleonora Uriati
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, 43124 Parma, Italy
- Nanoscopy
@ Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Matteo Mariangeli
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, 43124 Parma, Italy
- Nanoscopy
@ Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Andrea Mussini
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, 43124 Parma, Italy
| | - Ana Moreno
- Istituto
Zooprofilattico Sperimentale della Lombardia e dell’Emilia
Romagna, 25124 Brescia, Italy
| | - Davide Lelli
- Istituto
Zooprofilattico Sperimentale della Lombardia e dell’Emilia
Romagna, 25124 Brescia, Italy
| | - Luigi Cavanna
- Dipartimento
di Oncologia-Ematologia, Azienda USL di
Piacenza, 29121 Piacenza, Italy
| | - Paolo Bianchini
- Nanoscopy
@ Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Alberto Diaspro
- Nanoscopy
@ Istituto Italiano di Tecnologia, 16152 Genova, Italy
- DIFILAB,
Dipartimento di Fisica, Università
di Genova, 16146 Genova, Italy
| | - Stefania Abbruzzetti
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, 43124 Parma, Italy
| |
Collapse
|
3
|
Hypericin and Pheophorbide a Mediated Photodynamic Therapy Fighting MRSA Wound Infections: A Translational Study from In Vitro to In Vivo. Pharmaceutics 2021; 13:pharmaceutics13091399. [PMID: 34575478 PMCID: PMC8472478 DOI: 10.3390/pharmaceutics13091399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/14/2023] Open
Abstract
High prevalence rates of methicillin-resistant Staphylococcus aureus (MRSA) and lack of effective antibacterial treatments urge discovery of alternative therapeutic modalities. The advent of antibacterial photodynamic therapy (aPDT) is a promising alternative, composing rapid, nonselective cell destruction without generating resistance. We used a panel of clinically relevant MRSA to evaluate hypericin (Hy) and pheophobide a (Pa)-mediated PDT with clinically approved methylene blue (MB). We translated the promising in vitro anti-MRSA activity of selected compounds to a full-thick MRSA wound infection model in mice (in vivo) and the interaction of aPDT innate immune system (cytotoxicity towards neutrophils). Hy-PDT consistently displayed lower minimum bactericidal concentration (MBC) values (0.625-10 µM) against ATCC RN4220/pUL5054 and a whole panel of community-associated (CA)-MRSA compared to Pa or MB. Interestingly, Pa-PDT and Hy-PDT topical application demonstrated encouraging in vivo anti-MRSA activity (>1 log10 CFU reduction). Furthermore, histological analysis showed wound healing via re-epithelization was best in the Hy-PDT group. Importantly, the dark toxicity of Hy was significantly lower (p < 0.05) on neutrophils compared to Pa or MB. Overall, Hy-mediated PDT is a promising alternative to treat MRSA wound infections, and further rigorous mechanistic studies are warranted.
Collapse
|
4
|
Amanda Pedroso de Morais F, Sonchini Gonçalves R, Souza Campanholi K, Martins de França B, Augusto Capeloto O, Lazarin-Bidoia D, Bento Balbinot R, Vataru Nakamura C, Carlos Malacarne L, Caetano W, Hioka N. Photophysical characterization of Hypericin-loaded in micellar, liposomal and copolymer-lipid nanostructures based F127 and DPPC liposomes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119173. [PMID: 33316657 DOI: 10.1016/j.saa.2020.119173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 05/22/2023]
Abstract
Hypericin (Hy) compound presents a high photoactivity in photodynamic therapy (PDT), photodiagnosis and theranostics applications. The maintenance of this compound in monomeric form could undermine the potential benefits of its photophysical and photodynamic activity. In this study, we demonstrated that the Hy formulated in a system based on the use of the F127 copolymer and the 1,2-dipalmitoyl-sn-3-glycerol-phosphatidylcholine (DPPC) as micelles, liposomal vesicles and Copolymer-Lipid coated systems, have improved its photophysical properties for many clinical modalities. Based on the results of the triplet state lifetime values (τt), the singlet oxygen quantum yield (ΦΔ1O2), the fluorescence lifetime (τF) and the fluorescence quantum yield (ΦF), all Hy formulations had its photophysical properties described in different models of drug delivery systems (DDS). In addition, the transient spectra profile of those formulations was unaffected by the Hy incorporation process, except for the liposomal system, which demonstrated to be the less stable one by flash photolysis technique. The cytotoxic effects of those formulations were also investigated for CaCo-2 and HaCat cells line. The cytotoxic concentrations for 50% (CC50) were 0.56, 1.05, 1.33 and 4.80 µmol L-1 for Copolymer-Lipid/Hy, DPPC/Hy, F127/Hy and ethanol/Hy for CaCo-2 cells, respectively, and 0.69, 2.02, 1.45 and 1.16 µmol L-1 for Copolymer-Lipid/Hy, DPPC/Hy, F127/Hy and ethanol/Hy for HaCat cells, respectively. The F127 copolymer had a significant role in many photophysical parameters determined for Copolymer-Lipid/Hy coated system. Although all those formulations had shown satisfactory results, Copolymer-Lipid/Hy proved to be superior in many aspects, being the most promising formulation for PDT, photodiagnosis and theranostics applications.
Collapse
Affiliation(s)
| | - Renato Sonchini Gonçalves
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Katieli Souza Campanholi
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Bruna Martins de França
- Department of Chemistry, Federal University of Rio de Janeiro, 149 Athos da Silveira Ramos Ave., 21941-909 Rio de Janeiro, RJ, Brazil
| | - Otávio Augusto Capeloto
- Department of Physics, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Danielle Lazarin-Bidoia
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Rodolfo Bento Balbinot
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Celso Vataru Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Luis Carlos Malacarne
- Department of Physics, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, 5790 Colombo Ave., 87020-900 Maringá, PR, Brazil
| |
Collapse
|
5
|
de Morais FAP, Gonçalves RS, Vilsinski BH, Lazarin-Bidóia D, Balbinot RB, Tsubone TM, Brunaldi K, Nakamura CV, Hioka N, Caetano W. Hypericin photodynamic activity in DPPC liposomes - part II: stability and application in melanoma B16-F10 cancer cells. Photochem Photobiol Sci 2020; 19:620-630. [PMID: 32248218 DOI: 10.1039/c9pp00284g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypericin (Hyp) is considered a promising photosensitizer for Photodynamic Therapy (PDT), due to its high hydrophobicity, affinity for cell membranes, low toxicity and high photooxidation activity. In this study, Hyp photophysical properties and photodynamic activity against melanoma B16-F10 cells were optimized using DPPC liposomes (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) as a drug delivery system. This nanoparticle is used as a cell membrane biomimetic model and solubilizes hydrophobic drugs. Hyp oxygen singlet lifetime (τ) in DPPC was approximately two-fold larger than that in P-123 micelles (Pluronic™ surfactants), reflecting a more hydrophobic environment provided by the DPPC liposome. On the other hand, singlet oxygen quantum yield values (ΦΔ1O2) in DPPC and P-123 were similar; Hyp molecules were preserved as monomers. The Hyp/DPPC liposome aqueous dispersion was stable during fluorescence emission and the liposome diameter remained stable for at least five days at 30 °C. However, the liposomes collapsed after the lyophilization/rehydration process, which was resolved by adding the lyoprotectant Trehalose to the liposome dispersion before lyophilization. Cell viability of the Hyp/DPPC formulation was assessed against healthy HaCat cells and high-metastatic melanoma B16-F10 cells. Hyp incorporated into the DPPC carrier presented a higher selectivity index than the Hyp sample previously solubilized in ethanol under the illumination effect. Moreover, the IC50 was lower for Hyp in DPPC than for Hyp pre-solubilized in ethanol. These results indicate the potential of the formulation of Hyp/DPPC for future biomedical applications in PDT treatment.
Collapse
Affiliation(s)
| | | | | | - Danielle Lazarin-Bidóia
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Rodolfo Bento Balbinot
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Tayana Mazin Tsubone
- Universidade Federal de Uberlandia, Institute of Chemistry, 38400-902, Minas, Gerais, Brazil
| | - Kellen Brunaldi
- Physiological Sciences Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Celso Vatatu Nakamura
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Noboru Hioka
- Chemistry Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Wilker Caetano
- Chemistry Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|
6
|
Hally C, Delcanale P, Nonell S, Viappiani C, Abbruzzetti S. Photosensitizing proteins for antibacterial photodynamic inactivation. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.201900031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Cormac Hally
- Institut Quimic de Sarrià, Universitat Ramon Llull Barcelona Spain
- Dipartimento di Scienze Matematiche, Fisiche e InformaticheUniversità di Parma Parma Italy
| | - Pietro Delcanale
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Science and Technology (BIST) Barcelona Spain
| | - Santi Nonell
- Institut Quimic de Sarrià, Universitat Ramon Llull Barcelona Spain
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e InformaticheUniversità di Parma Parma Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e InformaticheUniversità di Parma Parma Italy
| |
Collapse
|
7
|
Delcanale P, Hally C, Nonell S, Bonardi S, Viappiani C, Abbruzzetti S. Photodynamic action of Hypericum perforatum hydrophilic extract against Staphylococcus aureus. Photochem Photobiol Sci 2020; 19:324-331. [DOI: 10.1039/c9pp00428a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypericin (Hyp) is one of the most effective, naturally occurring photodynamic agents, which proved effective against a wide array of microorganisms.
Collapse
Affiliation(s)
- Pietro Delcanale
- Institute for Bioengineering of Catalonia (IBEC)
- the Barcelona Institute of Science and Technology (BIST)
- Barcelona
- Spain
| | - Cormac Hally
- Institut Quimic de Sarrià
- Universitat Ramon Llull
- 08017 Barcelona
- Spain
- Dipartimento di Scienze Matematiche
| | - Santi Nonell
- Institut Quimic de Sarrià
- Universitat Ramon Llull
- 08017 Barcelona
- Spain
| | - Silvia Bonardi
- Dipartimento di Scienze Medico-Veterinarie
- Università degli Studi di Parma
- 43126 Parma
- Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche
- Fisiche e Informatiche
- Università di Parma
- 43124 Parma
- Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche
- Fisiche e Informatiche
- Università di Parma
- 43124 Parma
- Italy
| |
Collapse
|
8
|
Bianchini P, Cozzolino M, Oneto M, Pesce L, Pennacchietti F, Tognolini M, Giorgio C, Nonell S, Cavanna L, Delcanale P, Abbruzzetti S, Diaspro A, Viappiani C. Hypericin-Apomyoglobin: An Enhanced Photosensitizer Complex for the Treatment of Tumor Cells. Biomacromolecules 2019; 20:2024-2033. [PMID: 30995399 DOI: 10.1021/acs.biomac.9b00222] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bioavailability of photosensitizers for cancer photodynamic therapy is often hampered by their low solubility in water. Here, we overcome this issue by using the water-soluble protein apomyoglobin (apoMb) as a carrier for the photosensitizer hypericin (Hyp). The Hyp-apoMb complex is quickly uptaken by HeLa and PC3 cells at submicromolar concentrations. Fluorescence emission of Hyp-apoMb is exploited to localize the cellular distribution of the photosensitizer. The plasma membrane is rapidly and efficiently loaded, and fluorescence is observed in the cytoplasm only at later times and to a lesser extent. Comparison with cells loaded with Hyp alone demonstrates that the uptake of the photosensitizer without the protein carrier is a slower, less efficient process, that involves the whole cell structure without preferential accumulation at the plasma membrane. Cell viability assays demonstrate that the Hyp-apoMb exhibits superior performance over Hyp. Similar results were obtained using tumor spheroids as three-dimensional cell culture models.
Collapse
Affiliation(s)
- Paolo Bianchini
- Nanoscopy , Istituto Italiano di Tecnologia , via Morego 30 , Genoa 16163 , Italy.,Nikon Imaging Center , Istituto Italiano di Tecnologia , via Morego 30 , Genoa 16163 , Italy
| | - Marco Cozzolino
- Nanoscopy , Istituto Italiano di Tecnologia , via Morego 30 , Genoa 16163 , Italy.,Department of Physics , University of Genoa , via Dodecaneso 33 , Genoa 16146 , Italy
| | - Michele Oneto
- Nanoscopy , Istituto Italiano di Tecnologia , via Morego 30 , Genoa 16163 , Italy.,Nikon Imaging Center , Istituto Italiano di Tecnologia , via Morego 30 , Genoa 16163 , Italy
| | - Luca Pesce
- Nanoscopy , Istituto Italiano di Tecnologia , via Morego 30 , Genoa 16163 , Italy.,Department of Physics , University of Genoa , via Dodecaneso 33 , Genoa 16146 , Italy
| | | | - Massimiliano Tognolini
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , Parco area delle Scienze 27/A , 43124 Parma , Italy
| | - Carmine Giorgio
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , Parco area delle Scienze 27/A , 43124 Parma , Italy
| | - Santi Nonell
- Institut Quimic de Sarrià , Universitat Ramon Llull , Via Augusta 390 , 08017 Barcelona , Spain
| | - Luigi Cavanna
- Dipartimento di Oncologia-Ematologia , Azienda USL di Piacenza , Via Taverna, 49 , 29121 Piacenza , Italy
| | - Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche , Università di Parma , Parco area delle Scienze 7/A , 43124 Parma , Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche , Università di Parma , Parco area delle Scienze 7/A , 43124 Parma , Italy
| | - Alberto Diaspro
- Nanoscopy , Istituto Italiano di Tecnologia , via Morego 30 , Genoa 16163 , Italy.,Nikon Imaging Center , Istituto Italiano di Tecnologia , via Morego 30 , Genoa 16163 , Italy.,Department of Physics , University of Genoa , via Dodecaneso 33 , Genoa 16146 , Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche , Università di Parma , Parco area delle Scienze 7/A , 43124 Parma , Italy
| |
Collapse
|
9
|
Serum albumins are efficient delivery systems for the photosensitizer hypericin in photosensitization-based treatments against Staphylococcus aureus. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
de Morais FAP, Gonçalves RS, Vilsinski BH, de Oliveira ÉL, Rocha NL, Hioka N, Caetano W. Hypericin photodynamic activity in DPPC liposome. PART I: biomimetism of loading, location, interactions and thermodynamic properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 190:118-127. [PMID: 30513414 DOI: 10.1016/j.jphotobiol.2018.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/02/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
Hypericin (Hyp) is a potential photosensitizer drug for Photodynamic Therapy (PDT). However, the high lipophilicity of Hyp prevents its preparation in water. To overcome the Hyp solubility problem, this study uses the liposomal vesicle of DPPC. Otherwise liposome is also one of the most employed artificial systems that mimetizes cell membranes. Our present focus is the interaction of Hyp into DPPC liposome as biomimetic system. We studied the loading, interaction, and localization of Hyp (2.8 μmol L-1) in DPPC (5.4 mmol L-1) liposomes, as well as the thermodynamic aspects of Hyp-liposomes. The Hyp addition to the DPPC liposome dispersion showed a Encapsulation Efficiency for [Hyp] = 2.8 μmol L-1 in [DPPC] = 5.3 mmol L-1 of 74.3% and 89.3% at 30.0 and 50.0 °C, respectively. The encapsulation profile obeys a pseudo first-order kinetic law, with a rate constant of 1.26 × 10-3 s-1 at 30.0 °C. Also the data suggests this reaction is preceded by an extremely rapid step. A study on the binding of Hyp/DPPC liposomes (Kb), performed at several temperatures, showed results of 4.8 and 18.5 × 103 L mol-1 at 293 and 323 K, respectively. Additionally, a decrease was observed in the ΔG of the Hyp/DPPC interaction (-20.6 and - 26.4 kL mol-1 at 293 and 323 K, respectively). The resulting ΔH > 0 with ΔS < 0 shows that the entropy is driven the process. Studies of Hyp location in the liposome at 298 K revealed the existence of two different Hyp populations with a Stern-Volmer constant (Ksv) of 4.65 and 1.87 L mol-1 using iodide as an aquo-suppressor at concentration ranged from 0 to 0.025 mol L-1 and from 0.025 to 0.150 mol L-1, respectively. Furthermore, studies of Fluorescence Resonance Energy Transfer, using DPH as a donor and Hyp as an acceptor, revealed that Hyp is allocated in different binding sites of the liposome. This is dependent on temperature. Thermal studies revealed that the Hyp/DPPC formulation presented reasonable stability. Size and morphological investigations showed that Hyp incorporation increases the average size of DPPC liposomes from 116 to 154 nm. The study demonstrated the ability of the Hyp-DPPC liposome as an interesting system for drug delivery system that can be applied to PDT.
Collapse
Affiliation(s)
- Flávia A P de Morais
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil.
| | - Renato S Gonçalves
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil.
| | - Bruno H Vilsinski
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil
| | - Évelin L de Oliveira
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil
| | - Nicola L Rocha
- Instituto de Química, Universidade Estadual de Campinas, Rua Carlos Gomes 241- Campinas - SP, Brazil
| | - Noboru Hioka
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil.
| | - Wilker Caetano
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87020-900, Maringá, PR, Brazil.
| |
Collapse
|
11
|
Main photophysical properties of oxyblepharismin. Biophys Chem 2017; 229:5-10. [DOI: 10.1016/j.bpc.2017.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 11/22/2022]
|
12
|
Joniova J, Rebič M, Strejčková A, Huntosova V, Staničová J, Jancura D, Miskovsky P, Bánó G. Formation of Large Hypericin Aggregates in Giant Unilamellar Vesicles-Experiments and Modeling. Biophys J 2017; 112:966-975. [PMID: 28297655 DOI: 10.1016/j.bpj.2017.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
The incorporation of hypericin (Hyp) from aqueous solutions into giant unilamellar vesicle (GUV) membranes has been studied experimentally and by means of kinetic Monte Carlo modeling. The time evolution of Hyp fluorescence originating from Hyp monomers dissolved in the GUV membrane has been recorded by confocal microscopy and while trapping individual GUVs in optical tweezers. It was shown that after reaching a maximum, the fluorescence intensity gradually decreased toward longer times. Formation of oversized Hyp clusters has been observed on the GUV surface at prolonged time. A simplified kinetic Monte Carlo model is presented to follow the aggregation/dissociation processes of Hyp molecules in the membrane. The simulation results reproduced the basic experimental observations: the scaling of the characteristic fluorescence decay time with the vesicle diameter and the buildup of large Hyp clusters in the GUV membrane.
Collapse
Affiliation(s)
- Jaroslava Joniova
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University, Košice, Slovakia; Laboratory of Organometallic and Medicinal Chemistry, ISIC, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Matúš Rebič
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University, Košice, Slovakia
| | - Alena Strejčková
- Department of Chemistry, Biochemistry and Biophysics, Institute of Biophysics, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Veronika Huntosova
- Center for Interdisciplinary Biosciences, Faculty of Science, P.J. Šafárik University, Košice, Slovakia
| | - Jana Staničová
- Department of Chemistry, Biochemistry and Biophysics, Institute of Biophysics, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University, Košice, Slovakia; Center for Interdisciplinary Biosciences, Faculty of Science, P.J. Šafárik University, Košice, Slovakia
| | - Pavol Miskovsky
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University, Košice, Slovakia; Center for Interdisciplinary Biosciences, Faculty of Science, P.J. Šafárik University, Košice, Slovakia
| | - Gregor Bánó
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University, Košice, Slovakia; Center for Interdisciplinary Biosciences, Faculty of Science, P.J. Šafárik University, Košice, Slovakia.
| |
Collapse
|
13
|
Hovhannisyan V, Dong CY, Chen SJ. Photodynamic dye adsorption and release performance of natural zeolite. Sci Rep 2017; 7:45503. [PMID: 28361968 PMCID: PMC5374542 DOI: 10.1038/srep45503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/01/2017] [Indexed: 12/25/2022] Open
Abstract
Clinoptilolite type of zeolite (CZ) is a promising material for biomedicine and pharmaceutics due to its non-toxicity, thermal stability, expanded surface area, and exceptional ability to adsorb various atoms and organic molecules into micropores. Using multiphoton microscopy, we demonstrated that individual CZ particles produce two-photon excited luminescence and second harmonic generation signal at femtosecond laser excitation, and adsorb photo-dynamically active dyes such as hypericin and methylene blue. Furthermore, the release of hypericin from CZ pores in the presence of biomolecules is shown, and CZ can be considered as an effective material for drug delivery and controlled release in biological systems. The results may open new perspectives in application of CZ in biomedical imaging, and introducing of the optical approaches into the clinical environment.
Collapse
Affiliation(s)
- Vladimir Hovhannisyan
- College of Photonics, National Chiao Tung University, Tainan 711, Taiwan.,Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Chen-Yuan Dong
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Shean-Jen Chen
- College of Photonics, National Chiao Tung University, Tainan 711, Taiwan.,Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
14
|
Delcanale P, Rodríguez-Amigo B, Juárez-Jiménez J, Luque FJ, Abbruzzetti S, Agut M, Nonell S, Viappiani C. Tuning the local solvent composition at a drug carrier surface: the effect of dimethyl sulfoxide/water mixture on the photofunctional properties of hypericin-β-lactoglobulin complexes. J Mater Chem B 2017; 5:1633-1641. [PMID: 32263935 DOI: 10.1039/c7tb00081b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aggregation is a major problem for the anti-microbial photodynamic applications of hydrophobic photosensitizers since it strongly reduces the amount of singlet oxygen generated in aqueous solutions. Binding of hypericin (Hyp) to the milk whey protein β-lactoglobulin (βLG), occurring at the two hydrophobic cavities located at the interface of the protein homodimer, can be exploited to confer water-solubility and biocompatibility to the photosensitizer. The introduction of a small amount of the organic cosolvent dimethyl sulfoxide (DMSO) leads to a remarkable improvement of the photophysical properties of the complex Hyp-βLG by increasing its fluorescence emission and singlet oxygen photosensitization quantum yields. Surprisingly, the ability of the complex to photo-inactivate bacteria of the strain Staphylococcus aureus is strongly reduced in the presence of DMSO, despite the higher yield of photosensitization. The reasons for this apparently contradictory behavior are investigated, providing new insights into the use of carrier systems for hydrophobic photosensitizers.
Collapse
Affiliation(s)
- P Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhou Y, Liang X, Dai Z. Porphyrin-loaded nanoparticles for cancer theranostics. NANOSCALE 2016; 8:12394-12405. [PMID: 26730838 DOI: 10.1039/c5nr07849k] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Porphyrins have been used as pioneering theranostic agents not only for the photodynamic therapy, sonodynamic therapy and radiotherapy of cancer, but also for diagnostic fluorescence imaging, magnetic resonance imaging and photoacoustic imaging. A variety of porphyrins have been developed but very few of them have actually been employed in clinical trials due to their poor selectivity to tumorous tissue and high accumulation rates in the skin. In addition, most porphyrin molecules are hydrophobic and form aggregates in aqueous media. Nevertheless, the use of nanoparticles as porphyrin carriers shows great promise to overcome these shortcomings. Encapsulating or attaching porphyrins to nanoparticles makes them more suitable for tissue delivery because we can create materials with a conveniently specific tissue lifetime, specific targeting, immune tolerance, and hydrophilicity as well as other characteristics through rational design. In addition, various functional components (e.g. for targeting, imaging or therapeutic functions) can be easily introduced into a single nanoparticle platform for cancer theranostics. This review presents the current state of knowledge on porphyrin-loaded nanoparticles for the interwined imaging and therapy of cancer. The future trends and limitations of prophyrin-loaded nanoparticles are also outlined.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
16
|
Jämbeck JPM, Eriksson ESE, Laaksonen A, Lyubartsev AP, Eriksson LA. Molecular Dynamics Studies of Liposomes as Carriers for Photosensitizing Drugs: Development, Validation, and Simulations with a Coarse-Grained Model. J Chem Theory Comput 2015; 10:5-13. [PMID: 26579887 DOI: 10.1021/ct400466m] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Liposomes are proposed as drug delivery systems and can in principle be designed so as to cohere with specific tissue types or local environments. However, little detail is known about the exact mechanisms for drug delivery and the distributions of drug molecules inside the lipid carrier. In the current work, a coarse-grained (CG) liposome model is developed, consisting of over 2500 lipids, with varying degrees of drug loading. For the drug molecule, we chose hypericin, a natural compound proposed for use in photodynamic therapy, for which a CG model was derived and benchmarked against corresponding atomistic membrane bilayer model simulations. Liposomes with 21-84 hypericin molecules were generated and subjected to 10 microsecond simulations. Distribution of the hypericins, their orientations within the lipid bilayer, and the potential of mean force for transferring a hypericin molecule from the interior aqueous "droplet" through the liposome bilayer are reported herein.
Collapse
Affiliation(s)
- Joakim P M Jämbeck
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691, Stockholm, Sweden
| | - Emma S E Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-41296 Göteborg, Sweden
| | - Aatto Laaksonen
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691, Stockholm, Sweden
| | - Alexander P Lyubartsev
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691, Stockholm, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-41296 Göteborg, Sweden
| |
Collapse
|
17
|
Subdiffraction localization of a nanostructured photosensitizer in bacterial cells. Sci Rep 2015; 5:15564. [PMID: 26494535 PMCID: PMC4616064 DOI: 10.1038/srep15564] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022] Open
Abstract
Antibacterial treatments based on photosensitized production of reactive oxygen species is a promising approach to address local microbial infections. Given the small size of bacterial cells, identification of the sites of binding of the photosensitizing molecules is a difficult issue to address with conventional microscopy. We show that the excited state properties of the naturally occurring photosensitizer hypericin can be exploited to perform STED microscopy on bacteria incubated with the complex between hypericin and apomyoglobin, a self-assembled nanostructure that confers very good bioavailability to the photosensitizer. Hypericin fluorescence is mostly localized at the bacterial wall, and accumulates at the polar regions of the cell and at sites of cell wall growth. While these features are shared by Gram-negative and Gram-positive bacteria, only the latter are effectively photoinactivated by light exposure.
Collapse
|
18
|
Joniova J, Buriankova L, Buzova D, Miskovsky P, Jancura D. Kinetics of incorporation/redistribution of photosensitizer hypericin to/from high-density lipoproteins. Int J Pharm 2014; 475:578-84. [DOI: 10.1016/j.ijpharm.2014.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 01/11/2023]
|
19
|
Strejčková A, Staničová J, Jancura D, Miškovský P, Bánó G. Spatial Orientation and Electric-Field-Driven Transport of Hypericin Inside of Bilayer Lipid Membranes. J Phys Chem B 2013; 117:1280-6. [DOI: 10.1021/jp3114539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alena Strejčková
- Department of Biophysics, Pavol Jozef Šafárik University, Jesenná
5, Košice 041 54, Slovak Republic
| | - Jana Staničová
- Institute of Biophysics and
Biomathematics, University of Veterinary Medicine, Komenského 73, Košice 041 81, Slovak Republic
| | - Daniel Jancura
- Department of Biophysics, Pavol Jozef Šafárik University, Jesenná
5, Košice 041 54, Slovak Republic
| | - Pavol Miškovský
- Department of Biophysics, Pavol Jozef Šafárik University, Jesenná
5, Košice 041 54, Slovak Republic
| | - Gregor Bánó
- Department of Biophysics, Pavol Jozef Šafárik University, Jesenná
5, Košice 041 54, Slovak Republic
| |
Collapse
|
20
|
Gbur P, Dedic R, Chorvat Jr D, Miskovsky P, Hala J, Jancura D. Time-resolved Luminescence and Singlet Oxygen Formation After Illumination of the Hypericin-Low-density Lipoprotein Complex. Photochem Photobiol 2009; 85:816-23. [DOI: 10.1111/j.1751-1097.2008.00483.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652049809006843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Taroni P, Valentini G, Comelli D, D'Andrea C, Cubeddu R, Hu DN, Roberts JE. Time-resolved Microspectrofluorimetry and Fluorescence Lifetime Imaging of Hypericin in Human Retinal Pigment Epithelial Cells¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb00220.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Mahet M, Plaza P, Martin M, Checcucci G, Lenci F. Primary photoprocesses in oxyblepharismin interacting with its native protein partner. J Photochem Photobiol A Chem 2007. [DOI: 10.1016/j.jphotochem.2006.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Taroni P, Valentini G, Comelli D, D'Andrea C, Cubeddu R, Hu DN, Roberts JE. Time-resolved Microspectrofluorimetry and Fluorescence Lifetime Imaging of Hypericin in Human Retinal Pigment Epithelial Cells¶. Photochem Photobiol 2005. [DOI: 10.1562/2004-11-30-ir-385.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Kascakova S, Refregiers M, Jancura D, Sureau F, Maurizot JC, Miskovsky P. Fluorescence Spectroscopic Study of Hypericin-photosensitized Oxidation of Low-density Lipoproteins. Photochem Photobiol 2005; 81:1395-403. [PMID: 15960595 DOI: 10.1562/2005-04-28-ra-503] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
By means of UV-VIS absorption and fluorescence spectroscopy, we demonstrate that the photosensitizer hypericin (Hyp) interacts nonspecifically with low-density lipoproteins (LDL), most probably with the lipid fraction of LDL. The molar ratio of monomeric Hyp binding to nonoxidized LDL and mildly oxidized LDL is 30:1. Increasing the Hyp concentration further leads to the formation of Hyp aggregates inside the LDL molecule. We also demonstrate that photoactivated Hyp oxidizes LDL in a light dose and excitation wavelength dependent manner. The level of oxidation of LDL depends on the amount of Hyp inside the LDL molecule. The maximum of the photosensitized oxidation of the LDL by Hyp is achieved for a 30:1 molar ratio, which corresponds to the maximum concentration of monomeric form of Hyp in LDL.
Collapse
Affiliation(s)
- Slavka Kascakova
- Department of Biophysics, University of P. J. Safarik, Kosice, Slovak Republic
| | | | | | | | | | | |
Collapse
|
26
|
Damoiseau X, Schuitmaker HJ, Lagerberg JW, Hoebeke M. Increase of the photosensitizing efficiency of the Bacteriochlorin a by liposome-incorporation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2001; 60:50-60. [PMID: 11386681 DOI: 10.1016/s1011-1344(01)00118-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To describe the action mechanisms of Bacteriochlorin a (BCA), a second generation photosensitizer, in phosphate buffer (PB) and in dimyristoyl phosphatidylcholine (DMPC) liposomes we carried out oxygen consumption and ESR measurements. In PB, where BCA was in a monomer-dimer equilibrium, our results suggested that the oxygen consumption was related to the BCA monomers concentration in solution. Incorporation of BCA in DMPC liposomes, by promoting the monomerization of BCA, increased 9-fold the oxygen consumption in comparison to the value in PB. The use of specific singlet oxygen quenchers (Azide and 9,10-Anthracenedipropionic acid) in ESR and oxygen consumption experiments allowed us to assert that BCA was mainly a type II sensitizer when it was incorporated in DMPC. Finally, the cell survival of WiDr cells after a PDT treatment was measured for cells incubated with BCA in cell culture medium and cells incubated with BCA in DMPC. Irrespective of the dye concentration, the cell survival was lower when liposomes were used. This effect could be the result of a better BCA monomerization and/or a different BCA uptake in cells.
Collapse
Affiliation(s)
- X Damoiseau
- Experimental Physics, Institute of Physics, University of Liège, Belgium.
| | | | | | | |
Collapse
|
27
|
Yova D, Hovhannisyan V, Theodossiou T. Photochemical effects and hypericin photosensitized processes in collagen. JOURNAL OF BIOMEDICAL OPTICS 2001; 6:52-57. [PMID: 11178580 DOI: 10.1117/1.1331559] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/1999] [Revised: 02/22/2000] [Accepted: 09/13/2000] [Indexed: 05/23/2023]
Abstract
Emission and excitation spectra of collagen were recorded in the ultraviolet and visible regions. The existence of several types of chromophores absorbing and emitting throughout these spectral regions was observed. It was shown that laser irradiation at 355 and 532 nm caused collagen fluorescence photobleaching by 30%, when the delivered light doses were 9 and 18 J/cm2, respectively. This process of collagen fluorophores photodestruction was found to be a one-photon effect. The effect of hypericin (HYP), a polycyclic quinone, photosensitization on collagen was also studied. Addition of HYP aqueous solution to collagen produced quenching, redshift of the maximum, and broadening of the spectral form of its fluorescence. These effects became more prominent with increasing HYP concentration. The fluorescence of HYP sensitized collagen decreased in a spectrally nonproportional manner during laser irradiation at both 355 and 532 nm.
Collapse
Affiliation(s)
- D Yova
- National Technical University of Athens, Department of Electrical Engineering and Computing, Greece
| | | | | |
Collapse
|
28
|
|
29
|
Hoebeke M, Damoiseau X, Schuitmaker HJ, Van de Vorst A. Fluorescence, absorption and electron spin resonance study of bacteriochlorin a incorporation into membrane models. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1420:73-85. [PMID: 10446292 DOI: 10.1016/s0005-2736(99)00097-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Analysis of the bacteriochlorin a absorption spectra suggests the existence of a monomer-dimer equilibrium, particularly intense in phosphate buffer and favored by a decrease of the pH. The dye in methanolic solution is predominantly in monomeric form. Fluorescence and electron spin resonance nitroxide spin labeling measurements indicate that incorporation into the lipid phase of dimyristoyl-L-alpha-phosphatidylcholine liposomes induces dye monomerization. Moreover, the molecules are bound in the external surface of the vesicles and a complete incorporation is ensured by a lipid-to-dye ratio greater than 125.
Collapse
Affiliation(s)
- M Hoebeke
- Department of Experimental Physics, Institute of Physics B5, University of Liège, 4000, Liège, Belgium
| | | | | | | |
Collapse
|
30
|
Losi A, Vecll A, Viappiani C. Photoinduced Structural Volume Changes in Aqueous Solutions of Blepharismin. Photochem Photobiol 1999. [DOI: 10.1111/j.1751-1097.1999.tb03309.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|