1
|
Bharucha AE, Daley SL, Low PA, Gibbons SJ, Choi KM, Camilleri M, Saw EJ, Farrugia G, Zinsmeister AR. Effects of hemin on heme oxygenase-1, gastric emptying, and symptoms in diabetic gastroparesis. Neurogastroenterol Motil 2016; 28:1731-1740. [PMID: 27283929 PMCID: PMC5083191 DOI: 10.1111/nmo.12874] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Therapeutic options for management of diabetic gastroparesis are limited. Failure to maintain upregulation of heme oxygenase (HO1) leads to loss of interstitial cells of Cajal and delayed gastric emptying (GE) in non-obese diabetic mice. Our hypothesis was that hemin upregulation of HO1 would restore normal GE in humans with gastroparesis. AIMS To compare effects of hemin and placebo infusions on HO1 activity and protein, GE, autonomic function, and gastrointestinal symptoms in diabetic gastroparesis. METHODS In a single-center, double-blind, placebo-controlled, randomized clinical trial, we compared intravenous hemin, prepared in albumin, or albumin alone (placebo) in 20 patients, aged 41 ± 5 (SEM) years with diabetic gastroparesis. After infusions on days 1, 3, and 7, weekly infusions were administered for 7 additional weeks. Assessments included blood tests for HO1 protein and enzyme activity levels, GE with 13 C-spirulina breath test, autonomic functions (baseline and end), and gastrointestinal symptoms every 2 weeks. KEY RESULTS Nine of 11 patients randomized to hemin completed all study procedures. Compared to placebo, hemin increased HO1 protein on days 3 (p = 0.0002) and 7 (p = 0.008) and HO1 activity on day 3 (p = 0.0003) but not after. Gastric emptying, autonomic functions, and symptoms did not differ significantly in the hemin group relative to placebo. CONCLUSIONS & INFERENCES Hemin failed to sustain increased HO1 levels beyond a week and did not improve GE or symptoms in diabetic gastroparesis. Further studies are necessary to ascertain whether more frequent hemin infusions or other drugs would have a more sustained effect on HO1 and improve GE.
Collapse
Affiliation(s)
| | - Shannon L. Daley
- Enteric Neurosciences Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | | | - Simon J. Gibbons
- Department of Physiology and Biomedical Engineering, Mayo Clinic Center for Biomedical Discovery, Rochester, MN
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic Center for Biomedical Discovery, Rochester, MN
| | - Michael Camilleri
- Enteric Neurosciences Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - essica J. Saw
- Mayo Medical School, Mayo Clinic College of Medicine, Rochester, MN
| | - Gianrico Farrugia
- Enteric Neurosciences Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Alan R Zinsmeister
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| |
Collapse
|
2
|
Zhong JL, Raval CM, Nisar MF, Bian C, Zhang J, Yang L, Tyrrell RM. Development of Refractoriness of HO-1 Induction to a Second Treatment with UVA Radiation and the Involvement of Nrf2 in Human Skin Fibroblasts. Photochem Photobiol 2014; 90:1340-8. [DOI: 10.1111/php.12343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/29/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Julia Li Zhong
- The Base of “111 Project” for Biomechanics and Tissue Repair Engineering; Key Laboratory of Biorheological Science and Technology; Ministry of Education; Bioengineering College; Chongqing University; Chongqing 400044 China
- Department of Pharmacy and Pharmacology; University of Bath; Bath UK
- Dermatology Institute; Sichuan Provincial People's Hospital; Chengdu Sichuan China
| | - Chintan M. Raval
- Department of Pharmacy and Pharmacology; University of Bath; Bath UK
| | - Muhammad Farrukh Nisar
- The Base of “111 Project” for Biomechanics and Tissue Repair Engineering; Key Laboratory of Biorheological Science and Technology; Ministry of Education; Bioengineering College; Chongqing University; Chongqing 400044 China
| | - ChunXiang Bian
- The Base of “111 Project” for Biomechanics and Tissue Repair Engineering; Key Laboratory of Biorheological Science and Technology; Ministry of Education; Bioengineering College; Chongqing University; Chongqing 400044 China
| | - Jin Zhang
- Department of Pharmacy and Pharmacology; University of Bath; Bath UK
| | - Li Yang
- The Base of “111 Project” for Biomechanics and Tissue Repair Engineering; Key Laboratory of Biorheological Science and Technology; Ministry of Education; Bioengineering College; Chongqing University; Chongqing 400044 China
| | - Rex M. Tyrrell
- Department of Pharmacy and Pharmacology; University of Bath; Bath UK
| |
Collapse
|
3
|
Xiang Y, Liu G, Yang L, Zhong JL. UVA-induced protection of skin through the induction of heme oxygenase-1. Biosci Trends 2012; 5:239-44. [PMID: 22281537 DOI: 10.5582/bst.2011.v5.6.239] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UVA (320-400 nm) and UVB (290-320 nm) are the major components of solar UV irradiation, which is associated with various pathological conditions. UVB causes direct damage to DNA of epidermal cells and is mainly responsible for erythema, immunosuppression, photoaging, and skin cancer. UVA has oxidizing properties that can cause damage or enhance UVB damaging effects on skin. On the other hand, UVA can also lead to high levels of heme oxygenase-1 (HO-1) expression of cells that can provide an antioxidant effect on skin as well as anti-inflammatory properties in mammals and rodents. Therefore, this review focuses on the potential protection of UVA wavebands for the skin immune response, instead of mechanisms that underlie UVA-induced damage. Also, the role of HO-1 in UVA-mediated protection against UVB-induced immunosuppression in skin will be summarized. Thus, this review facilitates further understanding of potential beneficial mechanisms of UVA irradiation, and using the longer UVA (UVA1, 340-400 nm) in combination with HO-1 for phototherapy and skin protection against sunlight exposure.
Collapse
Affiliation(s)
- Yuancai Xiang
- The "111 Project" Laboratory of Biomechanics & Tissue Repair Engineering, Ministry of Education, College of Bioengineering, Chongqing University, China
| | | | | | | |
Collapse
|
4
|
Tyrrell RM. Modulation of gene expression by the oxidative stress generated in human skin cells by UVA radiation and the restoration of redox homeostasis. Photochem Photobiol Sci 2012; 11:135-47. [DOI: 10.1039/c1pp05222e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Aroun A, Zhong JL, Tyrrell RM, Pourzand C. Iron, oxidative stress and the example of solar ultraviolet A radiation. Photochem Photobiol Sci 2012; 11:118-34. [DOI: 10.1039/c1pp05204g] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Raval CM, Zhong JL, Mitchell SA, Tyrrell RM. The role of Bach1 in ultraviolet A-mediated human heme oxygenase 1 regulation in human skin fibroblasts. Free Radic Biol Med 2012; 52:227-36. [PMID: 22107958 DOI: 10.1016/j.freeradbiomed.2011.10.494] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 10/27/2011] [Accepted: 10/29/2011] [Indexed: 10/15/2022]
Abstract
Up-regulation of heme oxygenase 1 (HO-1) by ultraviolet A (UVA; 320-380 nm) irradiation of human skin cells protects them against oxidative stress. The role of Nrf2 in up-regulation of HO-1 and other phase II genes is well established. The mechanism underlying Bach1-mediated HO-1 repression is less well understood although cellular localization seems to be crucial. Because prolonged HO-1 overexpression is likely to be detrimental, it is crucial that activation of the gene is transient. We now show that UVA irradiation of cultured human skin fibroblasts enhances accumulation of Bach1 mRNA and protein severalfold. Endogenous Bach1 protein accumulates in the nucleus after 8h and may occupy MARE sites after HO-1 activation thus providing a compensatory mechanism to control HO-1 overexpression. Overexpression of Bach1, together with MafK, represses basal and UVA-mediated HO-1 protein expression, whereas silencing of the Bach1 gene by Bach1-specific siRNAs causes robust enhancement of constitutive HO-1 levels. UVA treatment of cells in which Bach1 has been silenced leads to higher levels of induction of the HO-1 protein. Although Bach1 protein is exported from the nucleus 12h after UVA irradiation, the release of free cellular heme from microsomal heme-containing proteins is immediate rather than delayed. Although heme does promote the export of Bach1 via the Crm1/exportin 1 pathway and is involved in the delayed UVA-mediated export of the protein, it is not clear how this occurs.
Collapse
Affiliation(s)
- Chintan M Raval
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | | | | |
Collapse
|
7
|
Reeve VE, Allanson M, Arun SJ, Domanski D, Painter N. Mice drinking goji berry juice (Lycium barbarum) are protected from UV radiation-induced skin damage via antioxidant pathways. Photochem Photobiol Sci 2010; 9:601-7. [PMID: 20354657 DOI: 10.1039/b9pp00177h] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The goji berry, Lycium barbarum, has long been recognised in traditional Chinese medicine for various therapeutic properties based on its antioxidant and immune-modulating effects. This study describes the potential for orally consumed goji berry juice to alter the photodamage induced in the skin of mice by acute solar simulated UV (SSUV) irradiation. In Skh:hr-1 hairless mice, 5% goji berry juice significantly reduced the inflammatory oedema of the sunburn reaction. Dilutions of goji berry juice between 1% and 10% dose-dependently protected against SSUV-induced immunosuppression, and against suppression induced by the mediator, cis-urocanic acid, measured by the contact hypersensitivity reaction. The immune protection could not be ascribed to either the minor excipients in the goji juice, pear and apple juice, nor the vitamin C content, nor the preservative, and appeared to be a property of the goji berry itself. Antioxidant activity in the skin was demonstrated by the significant protection by 5% goji juice against lipid peroxidation induced by UVA radiation. Furthermore, two known inducible endogenous skin antioxidants, haem oxygenase-1 and metallothionein, were found to be involved in the photoimmune protection. The results suggest that consumption of this juice could provide additional photoprotection for susceptible humans.
Collapse
Affiliation(s)
- Vivienne E Reeve
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
8
|
Zhong JL, Edwards GP, Raval C, Li H, Tyrrell RM. The role of Nrf2 in ultraviolet A mediated heme oxygenase 1 induction in human skin fibroblasts. Photochem Photobiol Sci 2010; 9:18-24. [DOI: 10.1039/b9pp00068b] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Markovitch D, Tyrrell RM, Thompson D. The effect of prior exercise onex vivoinduction of heme oxygenase-1 in human lymphocytes. Free Radic Res 2009; 41:1125-34. [PMID: 17886034 DOI: 10.1080/10715760701589230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
It was postulated that prior demanding exercise would suppress the induction of the oxidant-responsive protein Heme Oxygenase-1 (HO-1) in mononuclear cells following subsequent ex vivo H(2)O(2) treatment. Eight male subjects completed two trials in a randomized order (one rest and one exercise) and ex vivo HO-1 protein induction was determined following H(2)O(2) treatment in lymphocytes and monocytes before and after each trial using a newly developed and reproducible assay. Lymphocytes obtained 2 h post-exercise showed a modest reduction in HO-1 protein expression in response to ex vivo treatment with H(2)O(2) (p<0.05). The plasma concentration of the HO-1 suppressor alpha1-antitrypsin increased immediately post-exercise (p<0.05) and it is tentatively suggested that this may explain the modest transient reduction in ex vivo HO-1 protein induction in lymphocytes in response to an independent oxidant challenge following a prior bout of demanding exercise.
Collapse
|
10
|
Reeve VE, Tyrrell RM, Allanson M, Domanski D, Blyth L. The role of interleukin-6 in UVA protection against UVB-induced immunosuppression. J Invest Dermatol 2008; 129:1539-46. [PMID: 19110542 DOI: 10.1038/jid.2008.377] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The proinflammatory cytokine IL-6 is released in the skin following UVB irradiation, but its potential for photoimmune modulation remains unclear. This study utilizes IL-6-deficient mice to demonstrate that IL-6 does not contribute to the normal contact hypersensitivity response, nor to its systemic suppression by UVB radiation or cis-urocanic acid. In contrast, IL-6 was required for the attenuation of UVB- or cis-urocanic acid-induced immunosuppression by sequential or concomitant UVA irradiation. The IL-6 was essential for several reactions previously established to be relevant for UVA photoimmune protection, namely the induction of heme oxygenase-1 (HO-1), the activity of its product carbon monoxide in activating guanylyl cyclase, and the consequent elevation of cutaneous cyclic guanosine monophosphate concentration. In addition, IL-6-deficient mouse skin had an elevated constitutive overexpression of HO activity, apparently not associated with photoimmune protection. This suggested that both the cutaneous level of HO activity, and the receptiveness of the HO-1 gene to stressors like UVA, normally controlled by promoter-binding repressor proteins, may also be under IL-6 control. Thus IL-6 has an important photoimmune protective function through interaction at several levels in the pathway determining the immunologically advantageous actions of UVA radiation. This may constitute a valuable endogenous antiphotocarcinogenic regulatory mechanism.
Collapse
Affiliation(s)
- Vivienne E Reeve
- Faculty of Veterinary Science, University of Sydney, Sydney, Australia.
| | | | | | | | | |
Collapse
|
11
|
Reeve VE, Domanski D. Refractoriness of UVA-induced Protection from Photoimmunosuppression Correlates with Heme Oxygenase Response to Repeated UVA Exposure¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760401rouipf2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Dekker P, Parish WE, Green MR. Protection by Food-derived Antioxidants from UV-A1-Induced Photodamage, Measured Using Living Skin Equivalents¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb01451.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Tyrrell RM, Reeve VE. Potential protection of skin by acute UVA irradiation—From cellular to animal models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2006; 92:86-91. [PMID: 16620921 DOI: 10.1016/j.pbiomolbio.2006.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The UVA (320-380 nm) component of sunlight has oxidizing properties which may be deleterious to skin cells and tissue but can also lead to the strong up-regulation of the heme-catabolizing enzyme, heme oxygenase-1. This enzyme has well-established antioxidant actions in cells as well as anti-inflammatory properties in mammals. There is also evidence from rodent models that this enzyme is responsible for the UVA-mediated protection against UVB-induced immunosuppression that occurs in skin. The relevance of these findings to acute and chronic effects of sunlight including skin carcinogenesis is currently under investigation as are the potential implications for sunlight protection in humans.
Collapse
Affiliation(s)
- R M Tyrrell
- Department of Pharmacy and Pharmacology University of Bath, BA2 7AY, UK.
| | | |
Collapse
|
14
|
Allanson M, Domanski D, Reeve VE. Photoimmunoprotection by UVA (320-400 nm) radiation is determined by UVA dose and is associated with cutaneous cyclic guanosine monophosphate. J Invest Dermatol 2006; 126:191-7. [PMID: 16417236 DOI: 10.1038/sj.jid.5700050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immunomodulating properties of UVA radiation remain controversial. Here, we demonstrate in female inbred Skh:hr-1 mice that single subinflammatory UVA exposures between 1.61 and 580.5 kJ/m(2) are not immunosuppressive. Furthermore, UVA exposures between 16.13 and 580.5 kJ/m(2) provided dose-related immunoprotection against UVB-induced immunosuppression. Higher UVA exposures (870.8-1,161 kJ/m(2)) became inflammatory and immunosuppressive alone, and lost the photoimmunoprotective capacity. We previously reported that UVA photoimmunoprotection depends on the induction of cutaneous heme oxygenase-1, particularly its enzymatic product, carbon monoxide (CO). CO was suggested to activate cutaneous guanylyl cyclase (GC), as the specific GC inhibitor, 1H-(1,2,4)oxadiazolo-(4,3-a)quinoxalin-1-one (ODQ), abrogated CO photoimmunoprotection in the mouse. This study shows that cutaneous cyclic guanosine monophosphate (cGMP) concentration increased only following immunoprotective UVA doses, or immunoprotective topical CO treatment, and cGMP production was inhibited by ODQ. Conversely, cGMP concentration was increased by inhibition of its degradative phosphodiesterase (PDE) with topical sildenafil. The PDE-5 isoform was identified in normal mouse skin. Subsequently, a moderate concentration of sildenafil was shown to simulate the effect of UVA in protecting against photoimmunosuppression by solar-simulated UV radiation or its mediator cis-urocanic acid. Thus, cutaneous cGMP, controlled by its synthesis via CO-activated GC and its degradation by PDE-5, is strongly associated with UVA photoimmunoprotection.
Collapse
Affiliation(s)
- Munif Allanson
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
15
|
Dekker P, Parish WE, Green MR. Protection by Food-derived Antioxidants from UV-A1–Induced Photodamage, Measured Using Living Skin Equivalents¶. Photochem Photobiol 2005. [DOI: 10.1562/2005-02-03-ra-432r.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Tyrrell RM. Solar ultraviolet A radiation: an oxidizing skin carcinogen that activates heme oxygenase-1. Antioxid Redox Signal 2004; 6:835-40. [PMID: 15345143 DOI: 10.1089/ars.2004.6.835] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ultraviolet A (UVA: 320-380 nm) radiation is an oxidizing carcinogen that has proved an ideal agent for demonstrating the oxidant inducibility of the mammalian heme oxygenase-1 (HO-1) gene. The UVA response in cultured human skin fibroblasts and other cell types is mediated by singlet oxygen and is strongly influenced by cellular reducing equivalents. Free heme, an entity that can be generated by UVA irradiation of cells, also appears to be a critical intermediate that can directly influence both the transcriptional activation and repression of the HO-1 gene. Heme release is likely to be of central importance to the inflammatory response in skin and its abrogation by HO.
Collapse
Affiliation(s)
- R M Tyrrell
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK.
| |
Collapse
|
17
|
Allanson M, Reeve VE. Immunoprotective UVA (320–400 nm) Irradiation Upregulates Heme Oxygenase-1 in the Dermis and Epidermis of Hairless Mouse Skin. J Invest Dermatol 2004; 122:1030-6. [PMID: 15102094 DOI: 10.1111/j.0022-202x.2004.22421.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The induction of heme oxygenase-1 (HO-1) by ultraviolet A (UVA) (320-400 nm) radiation provides a protective cellular defence against oxidative stress, and has been well demonstrated in cultured human skin fibroblasts, although keratinocytes were unreactive. The UVA responsiveness of HO-1 however, has not been confirmed in intact skin. Previously, we reported that UVA-inducible HO enzyme activity in mouse skin is protective against UVB-induced immunosuppression. This study identifies the induced HO isoform and its localization in mouse skin irradiated in vivo with such an immunoprotective UVA dose. We found that HO-1 mRNA was expressed in UVA-irradiated skin, but not in normal or UVB-irradiated skin, whereas constitutive HO-2 was always present. UVA-irradiated skin had increased HO enzyme activity and bilirubin content, and decreased heme content, consistent with HO-1 induction. In situ hybridization and immunohistochemical staining localized HO-1 mRNA and protein to both epidermis and dermis, with strongest expression in basal keratinocytes and weaker expression in dermal fibroblast-like and other cells, in contrast with UVA-induced HO-1 in cultured human skin fibroblasts. This suggests that cultured skin cells may not fully represent skin functions in vivo, or that there may be inherent differences between human and hairless mouse skin HO-1 responses.
Collapse
Affiliation(s)
- Munif Allanson
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
18
|
Rothfuss A, Speit G. Investigations on the mechanism of hyperbaric oxygen (HBO)-induced adaptive protection against oxidative stress. Mutat Res 2002; 508:157-65. [PMID: 12379471 DOI: 10.1016/s0027-5107(02)00213-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hyperbaric oxygen (HBO) treatment of cell cultures is a well suited model for studying genetic and cellular consequences of oxidative stress. We have previously shown that exposure of isolated human lymphocytes to HBO induces DNA damage and leads to the development of an adaptive response which protects lymphocytes from oxidative DNA damage induced by a repeated HBO exposure or by treatment with H(2)O(2). Our earlier studies also provided evidence for a functional involvement of the inducible enzyme heme oxygenase-1 (HO-1) in this adaptive protection. In contrast, V79 Chinese hamster cells did neither show a comparable adaptive protection nor an induction of HO-1 after HBO exposure. We now investigated possible mechanism(s) by which HO-1 contributes to an enhanced resistance of lymphocytes against oxidative stress. HO-1 catalyzes the rate-limiting step in heme degradation to form carbon monoxide (CO), biliverdin and free iron. We can now show that supplementation with exogenous CO does not protect V79 cells from HBO-induced oxidative DNA damage suggesting that increased generation of CO cannot account for the observed adaptive protection. On the other hand, HBO-exposed lymphocytes showed a small but reproducible increase in cellular ferritin levels, which might indicate that the underlying protective mechanism is based on an induction of ferritin, which may act antioxidatively by preventing the generation of the DNA-damaging hydroxyl radical via Fenton reaction. Our results further show that isolated lymphocytes also induce HO-1 and develop an adaptive protection when the first HBO exposure does not induce DNA damage, indicating that DNA damage is not the trigger for the development of the adaptive protection.
Collapse
Affiliation(s)
- Andreas Rothfuss
- Universitätsklinikum Ulm, Abteilung Humangenetik, D-89070 Ulm, Germany
| | | |
Collapse
|
19
|
Reeve VE, Domanski D. Refractoriness of UVA-induced protection from photoimmunosuppression correlates with heme oxygenase response to repeated UVA exposure. Photochem Photobiol 2002; 76:401-5. [PMID: 12405147 DOI: 10.1562/0031-8655(2002)076<0401:rouipf>2.0.co;2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Single suberythemal exposures of UVA radiation have been shown to block the immunosuppressive effects of UVB radiation in the mouse. The immunoprotection is dependent both on the presence of the cytokine, IFN-gamma, and on the induction of the antioxidant stress enzyme, heme oxygenase (HO), in the skin. Recently, the transcriptional response of the HO-1 gene to UVA radiation in cultured human skin fibroblasts was reported to be refractory to a second UVA irradiation. In this study on the hairless mouse, we demonstrate that the inducibility of HO enzyme activity in the skin similarly became refractory to a second UVA irradiation at 24 h but, like the fibroblast response, was restored when the interval between the UVA exposures was increased to 96 h. Under the conditions of refractory HO enzyme induction, the protective effect of UVA radiation against the suppression of contact hypersensitivity induced by UVB radiation or cis-urocanic acid was strongly attenuated but was restored when the interval between UVA exposures was increased to 96 h. The results thus confirm the strong relationship between HO induction and photoimmunoprotection by UVA radiation, and describe a new phenomenon of immunological refractoriness that develops with rapidly repeated UVA exposures.
Collapse
Affiliation(s)
- Vivienne E Reeve
- Faculty of Veterinary Science, University of Sydney, NSW, Australia.
| | | |
Collapse
|
20
|
Dennery PA. Regulation and role of heme oxygenase in oxidative injury. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:181-99. [PMID: 10842752 DOI: 10.1016/s0070-2137(01)80008-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The HO-1 isoenzyme is an early stress response gene regulated by many forms of oxidative stress. The HO-2 isoenzyme is predominantly a constitutive enzyme, which may serve to sequester heme as well as degrade it. All HO enzyme activity results in the degradation of heme and the production of antioxidant bile pigments, which would favor an antioxidant role for the enzyme. In fact, in oxidative stress in vitro, HO-1 is protective (91-94) but within a narrow threshold of overexpression (93,94) in some models, since iron released in the HO reaction may obviate any cytoprotective effect (Fig. 3). So far, HO-2 appears to be beneficial in oxygen toxicity in vivo, but the consequences of HO-2 overexpression have not yet been tested. It will be important to better define the role of each HO isoenzyme in oxidative stress so as to determine whether enhancing these complex systems could alleviate some of the cellular changes seen as a result of oxidative injury. Furthermore, prior to considering therapeutic maneuvers to enhance HO, a complete understanding of the physiologic consequences of HO-1 induction and associated reactions, in each particular setting, will be crucial.
Collapse
Affiliation(s)
- P A Dennery
- Stanford University School of Medicine, California 94305, USA
| |
Collapse
|
21
|
Abstract
Reactive oxygen species are produced by all aerobic cells and are widely believed to play a pivotal role in aging as well as a number of degenerative diseases. The consequences of the generation of oxidants in cells does not appear to be limited to promotion of deleterious effects. Alterations in oxidative metabolism have long been known to occur during differentiation and development. Experimental perturbations in cellular redox state have been shown to exert a strong impact on these processes. The discovery of specific genes and pathways affected by oxidants led to the hypothesis that reactive oxygen species serve as subcellular messengers in gene regulatory and signal transduction pathways. Additionally, antioxidants can activate numerous genes and pathways. The burgeoning growth in the number of pathways shown to be dependent on oxidation or antioxidation has accelerated during the last decade. In the discussion presented here, we provide a tabular summary of many of the redox effects on gene expression and signaling pathways that are currently known to exist.
Collapse
Affiliation(s)
- R G Allen
- Lankenau Medical Research Center, Thomas Jefferson University, Wynnewood, PA 19106, USA
| | | |
Collapse
|
22
|
Abstract
The ultraviolet A (UVA, 320-400 nm) component of sunlight has the potential to generate an oxidative stress in cells and tissue so that antioxidants (both endogenous and exogenous) strongly influence the biological effects of UVA. The expression of several genes (including heme oxygenase-1, HO-1; collagenase; the CL100 phosphatase and the nuclear oncogenes, c-fos and c-jun) is induced following physiological doses of UVA to cells and this effect can be strongly enhanced by removing intracellular glutathione or enhancing singlet oxygen lifetime. We have observed that heme is released from microsomal heme-containing proteins by UVA and other oxidants and that activation of HO-1 expression by UVA correlates with levels of heme release. UVA radiation also leads to an increase in labile iron pools (either directly or via HO-1) and eventual increases in ferritin levels. The role of heme oxygenase in protection of skin fibroblasts is probably an emergency inducible defense pathway to remove heme liberated by oxidants. The slower increase in ferritin levels is an adaptive response which serves to keep labile iron pools low and thereby reduce Fenton chemistry and oxidant-induced chain reactions involving lipid peroxidation. In keratinocytes, the primary target of UVA radiation, heme oxygenase levels are constitutively high (because of HO-2 expression). Since there is a corresponding increase in basal levels of ferritin the epidermis appears to be well protected constitutively against the oxidative stress generated by UVA.
Collapse
Affiliation(s)
- R Tyrrell
- Department of Pharmacy and Pharmacology, University of Bath, UK.
| |
Collapse
|
23
|
Kvam E, Noel A, Basu-Modak S, Tyrrell RM. Cyclooxygenase dependent release of heme from microsomal hemeproteins correlates with induction of heme oxygenase 1 transcription in human fibroblasts. Free Radic Biol Med 1999; 26:511-7. [PMID: 10218639 DOI: 10.1016/s0891-5849(98)00224-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Induction of heme oxygenase 1 transcription and enzymatic activity is a common response after exposure of cells to various forms of oxidative stress including ultraviolet A radiation (UVA) and hydrogen peroxide. We now show that UVA irradiation or hydrogen peroxide treatment of human skin fibroblasts leads to an immediate release of the heme oxygenase substrate, heme, from microsomal hemeproteins. The release of heme by UVA apparently involves cyclooxygenase activity because it is inhibited by the cyclooxygenase inhibitor indomethacin. We also demonstrate a high degree of correlation between the amount of heme released and the degree of subsequent induction of heme oxygenase 1 transcription following UVA and hydrogen peroxide treatment. We propose that release of heme from microsomal hemeproteins determines the degree of induction of heme oxygenase 1 transcription in human fibroblasts after oxidative stress.
Collapse
Affiliation(s)
- E Kvam
- The Department of Pharmacy and Pharmacology, University of Bath, UK
| | | | | | | |
Collapse
|
24
|
Suttner DM, Sridhar K, Lee CS, Tomura T, Hansen TN, Dennery PA. Protective effects of transient HO-1 overexpression on susceptibility to oxygen toxicity in lung cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:L443-51. [PMID: 10070108 DOI: 10.1152/ajplung.1999.276.3.l443] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat fetal lung cells (RFL-6) were transiently transfected with a full-length rat heme oxygenase (HO)-1 cDNA construct and then exposed to hyperoxia (95% O2-5% CO2) for 48 h. Total HO activity and HO-1 protein were measured as well as cell viability, lactate dehydrogenase (LDH) release, protein oxidation, lipid peroxidation, and total glutathione to measure oxidative injury. HO-1 overexpression resulted in increased total HO activity (2-fold), increased HO-1 protein (1.5-fold), and increased cell proliferation. Immunohistochemistry revealed perinuclear HO-1 localization, followed by migration to the nucleus by day 3. Decreased cell death, protein oxidation, and lipid peroxidation but increased LDH release and glutathione depletion were seen with HO-1 overexpression. Reactive iron content could not explain the apparent loss of cell membrane integrity. With the addition of tin mesoporphyrin, total HO activity was decreased and all changes in injury parameters were normalized to control values. We conclude that moderate overexpression of HO-1 is protective against oxidative injury, but we speculate that there is a beneficial threshold of HO-1 expression.
Collapse
Affiliation(s)
- D M Suttner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94304, USA
| | | | | | | | | | | |
Collapse
|
25
|
Niess AM, Passek F, Lorenz I, Schneider EM, Dickhuth HH, Northoff H, Fehrenbach E. Expression of the antioxidant stress protein heme oxygenase-1 (HO-1) in human leukocytes. Free Radic Biol Med 1999; 26:184-92. [PMID: 9890653 DOI: 10.1016/s0891-5849(98)00192-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inducible heme oxygenase (HO-1) is an antioxidant stress protein, that is mainly induced by reactive oxygen species (ROS), cytokines and hyperthermia. By using flow cytometry the present investigation demonstrated a rise in the cytoplasmic expression of HO-1 in lympho- (L), mono- (M) and granulocytes (G) of 9 endurance-trained male subjects after a half marathon run. The expression was more pronounced in M (median: 98.3% HO-1 positive cells/4.31 mfc) and G (94.8%/1.93 mfc) than in L (80.1%/1.51 mfc) when measured 3 h post-exercise. Additionally the exercise protocol caused a rise in the plasma levels of myeloperoxidase, TNF alpha and interleukin-8 (IL-8), indicating an inflammatory response. We could detect a correlation between IL-8 and HO-1, directly after exercise, that was apparent in G (r = 0.67, p < .05) and L (r = 0.80, p < .05), but did not reach significance in M (r = 0.65, p = 0.06). An additional detection of HO-1 at rest in 12 untrained subjects showed a higher baseline expression of HO-1 compared to the athletes. The regulatory pathways leading to an increased expression of HO-1 after endurance exercise are not completely clear, but a causal involvement of a cytokine-mediated generation of ROS must be discussed. We supposed that the down-regulation of the baseline expression of HO-1 in athletes reflects an adaptional mechanism to regular exercise training.
Collapse
Affiliation(s)
- A M Niess
- Medical Clinic und Policlinic, Department of Sports Medicine, University of Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|