1
|
Kuhlmann L, Göen T, Hiller J. New metabolites of 2-ethylhexyl salicylate in human urine after simulated real-life dermal sunscreen application. Toxicol Lett 2024; 400:1-8. [PMID: 39034015 DOI: 10.1016/j.toxlet.2024.07.912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
2-Ethylhexyl salicylate (EHS) is an organic UV filter which is used in sunscreen and other personal care products. The dermal uptake of EHS was studied in several dermal-exposure experiments. This paper aims to coherently assess urine samples after dermal exposure for the biomarkers EHS, 5OH-EHS, 5oxo-EHS, and 5cx-EPS as well as further biomarkers of interest, specifically 4OH-EHS, 4oxo-EHS, 2OH-EHS, and 6OH-EHS, for the first time. Samples from 18 participants of a pre-existing dermal exposure study under real-life conditions were reassessed using a comprehensive LC-MS/MS method. EHS accounts for 34 % of the cumulative excretion of all analytes within 24 h after exposure, followed by 5OH-EHS (19 %), 5cx-EPS (18 %), 4OH-EHS (15 %) and 5oxo-EHS (11 %). Further metabolites were only quantified in minor amounts. EHS as the most prominent excretion parameter in this study demonstrates the missing first-pass effect after dermal absorption. Furthermore, the applied novel comprehensive analytical procedure revealed oxidation at the ω (5cx-EPS, 6OH-EHS), ω-1 (5OH-EHS, 5oxo-EHS), and ω-2 positions (4OH-EHS, 4oxo-EHS) in the main chain of the ethylhexyl group as well as oxidation in the side chain (2OH-EHS). The presented data are of high relevance for a reliable toxicological risk assessment of dermal exposure to EHS.
Collapse
Affiliation(s)
- Laura Kuhlmann
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, Erlangen 91054, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, Erlangen 91054, Germany
| | - Julia Hiller
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, Erlangen 91054, Germany.
| |
Collapse
|
2
|
Rosic N, Climstein M, Boyle GM, Thanh Nguyen D, Feng Y. Exploring Mycosporine-like Amino Acid UV-Absorbing Natural Products for a New Generation of Environmentally Friendly Sunscreens. Mar Drugs 2023; 21:md21040253. [PMID: 37103392 PMCID: PMC10142268 DOI: 10.3390/md21040253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Human skin needs additional protection from damaging ultraviolet radiation (UVR: 280-400 nm). Harmful UVR exposure leads to DNA damage and the development of skin cancer. Available sunscreens offer chemical protection from detrimental sun radiation to a certain extent. However, many synthetic sunscreens do not provide sufficient UVR protection due to the lack of photostability of their UV-absorbing active ingredients and/or the lack of ability to prevent the formation of free radicals, inevitably leading to skin damage. In addition, synthetic sunscreens may negatively affect human skin, causing irritation, accelerating skin aging and even resulting in allergic reactions. Beyond the potential negative effect on human health, some synthetic sunscreens have been shown to have a harmful impact on the environment. Consequently, identifying photostable, biodegradable, non-toxic, and renewable natural UV filters is imperative to address human health needs and provide a sustainable environmental solution. In nature, marine, freshwater, and terrestrial organisms are protected from harmful UVR through several important photoprotective mechanisms, including the synthesis of UV-absorbing compounds such as mycosporine-like amino acids (MAAs). Beyond MAAs, several other promising, natural UV-absorbing products could be considered for the future development of natural sunscreens. This review investigates the damaging impact of UVR on human health and the necessity of using sunscreens for UV protection, specifically UV-absorbing natural products that are more environmentally friendly than synthetic UV filters. Critical challenges and limitations related to using MAAs in sunscreen formulations are also evaluated. Furthermore, we explain how the genetic diversity of MAA biosynthetic pathways may be linked to their bioactivities and assess MAAs' potential for applications in human health.
Collapse
Affiliation(s)
- Nedeljka Rosic
- Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW 2480, Australia
| | - Mike Climstein
- Physical Activity, Sport and Exercise Research (PASER) Theme, Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia
- Physical Activity, Lifestyle, Ageing and Wellbeing, Faculty Research Group, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2000, Australia
| | - Glen M Boyle
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Duy Thanh Nguyen
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
3
|
Review on photoprotection: a clinician’s guide to the ingredients, characteristics, adverse effects, and disease-specific benefits of chemical and physical sunscreen compounds. Arch Dermatol Res 2022; 315:735-749. [PMID: 36443500 DOI: 10.1007/s00403-022-02483-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/15/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Photoprotection is a critical health prevention strategy to reduce the deleterious effects of ultraviolet radiation (UVR) and visible light (VL). Methods of photoprotection are reviewed in this paper, with an emphasis on sunscreen. The most appropriate sunscreen formulation for personal use depends on several factors. Active sunscreen ingredients vary in their protective effect over the UVR and VL spectrum. There are dermatologic diseases that cause photosensitivity or that are aggravated by a particular action spectrum. In these situations, sunscreen suggestions can address the specific concern. Sunscreen does not represent a single entity. Appropriate personalized sunscreen selection is critical to improve compliance and clinical outcomes. Health care providers can facilitate informed product selection with awareness of evolving sunscreen formulations and counseling patients on appropriate use. This review aims to summarize different forms of photoprotection, discuss absorption of sunscreen ingredients, possible adverse effects, and disease-specific preferences for chemical, physical or oral agents that may decrease UVR and VL harmful effects.
Collapse
|
4
|
Hopf NB, Champmartin C, Schenk L, Berthet A, Chedik L, Du Plessis JL, Franken A, Frasch F, Gaskin S, Johanson G, Julander A, Kasting G, Kilo S, Larese Filon F, Marquet F, Midander K, Reale E, Bunge AL. Reflections on the OECD guidelines for in vitro skin absorption studies. Regul Toxicol Pharmacol 2020; 117:104752. [PMID: 32791089 DOI: 10.1016/j.yrtph.2020.104752] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/20/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
At the 8th conference of Occupational and Environmental Exposure of the Skin to Chemicals (OEESC) (16-18 September 2019) in Dublin, Ireland, several researchers performing skin permeation assays convened to discuss in vitro skin permeability experiments. We, along with other colleagues, all of us hands-on skin permeation researchers, present here the results from our discussions on the available OECD guidelines. The discussions were especially focused on three OECD skin absorption documents, including a recent revision of one: i) OECD Guidance Document 28 (GD28) for the conduct of skin absorption studies (OECD, 2004), ii) Test Guideline 428 (TGD428) for measuring skin absorption of chemical in vitro (OECD, 2004), and iii) OECD Guidance Notes 156 (GN156) on dermal absorption issued in 2011 (OECD, 2011). GN156 (OECD, 2019) is currently under review but not finalized. A mutual concern was that these guidance documents do not comprehensively address methodological issues or the performance of the test, which might be partially due to the years needed to finalize and update OECD documents with new skin research evidence. Here, we summarize the numerous factors that can influence skin permeation and its measurement, and where guidance on several of these are omitted and often not discussed in published articles. We propose several improvements of these guidelines, which would contribute in harmonizing future in vitro skin permeation experiments.
Collapse
Affiliation(s)
- N B Hopf
- Centre for Primary Care and Public Health (Unisante), Department for Occupational and Environmental Health (DSTE), Exposure Science Unit, Switzerland.
| | - C Champmartin
- French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), France.
| | - L Schenk
- Karolinska Institutet, Institute of Environmental Medicine, Unit of Integrative Toxicology, Sweden.
| | - A Berthet
- Centre for Primary Care and Public Health (Unisante), Department for Occupational and Environmental Health (DSTE), Exposure Science Unit, Switzerland.
| | - L Chedik
- French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), France.
| | - J L Du Plessis
- Occupational Hygiene and Health Research Initiative (OHHRI) North-West University, South Africa.
| | - A Franken
- Occupational Hygiene and Health Research Initiative (OHHRI) North-West University, South Africa.
| | - F Frasch
- Occupational Hygiene and Health Research Initiative (OHHRI) North-West University, South Africa.
| | - S Gaskin
- University of Adelaide, School of Public Health, Health and Medical Sciences, Australia.
| | - G Johanson
- Karolinska Institutet, Institute of Environmental Medicine, Unit of Integrative Toxicology, Sweden.
| | - A Julander
- Karolinska Institutet, Institute of Environmental Medicine, Unit of Integrative Toxicology, Sweden.
| | - G Kasting
- University of Cincinnati, James L. Winkle College of Pharmacy, USA.
| | - S Kilo
- Friedrich-Alexander University Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Germany.
| | - F Larese Filon
- University of Trieste, Clinical Unit of Occupational Medicine, Department of Medical, Surgical and Health Sciences, Italy.
| | - F Marquet
- French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), France.
| | - K Midander
- Karolinska Institutet, Institute of Environmental Medicine, Unit of Integrative Toxicology, Sweden.
| | - E Reale
- Centre for Primary Care and Public Health (Unisante), Department for Occupational and Environmental Health (DSTE), Exposure Science Unit, Switzerland.
| | - A L Bunge
- Colorado School of Mines, Chemical and Biological Engineering, USA.
| |
Collapse
|
5
|
Imaging and quantifying drug delivery in skin - Part 1: Autoradiography and mass spectrometry imaging. Adv Drug Deliv Rev 2020; 153:137-146. [PMID: 31778729 DOI: 10.1016/j.addr.2019.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/21/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Abstract
In this two-part review we present an up-to-date description of different imaging methods available to map the localization of drugs on skin as a complement of established ex-vivo absorption studies. This first part deals with invasive methods which are grouped in two classes according to their underlying principles: i) methods using radioactivity such as autoradiography and ii) mass spectrometry methods such as MALDI and SIMS. For each method, a description of the principle is given along with example applications of imaging and quantifying drug delivery in human skin. Thanks to these techniques a better assessment of the fate of drugs is obtained: its localization on a particular skin structure, its potential accumulation, etc. A critical comparison in terms of capabilities, sensitivity and practical applicability is included that will help the reader to select the most appropriate technique depending on the particular problem to be solved.
Collapse
|
6
|
Yamada M, Mohammed Y, Prow TW. Advances and controversies in studying sunscreen delivery and toxicity. Adv Drug Deliv Rev 2020; 153:72-86. [PMID: 32084432 DOI: 10.1016/j.addr.2020.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/02/2020] [Accepted: 02/10/2020] [Indexed: 02/04/2023]
Abstract
This review critically evaluates the sunscreen delivery and toxicity field. We chose to focus on approved sunscreens in this review. Optimal sunscreen use prevents skin cancer and photoageing but there is an important knowledge gap in sunscreen/skin interactions. Sunscreen delivery is a key for efficacy, but studying sunscreen delivery is not straightforward. We review the strengths and weaknesses of in vitro, excised skin and clinical approaches. Understanding positive and negative sunscreen effects on skin homeostasis is also challenging. The results in this field, especially in vitro testing, are controversial and experimental design varies widely which further supports disparities between some findings. We hypothesize that bias towards showing sunscreen toxicity to increase impact could be problematic. We explore that perception through a detailed review of experimental design, especially in cell culture models. Our conclusion is that emerging, non- and minimally invasive technologies are enabling new approaches to volunteer studies that could significantly improve knowledge of sunscreen delivery and interactions.
Collapse
|
7
|
Hiller J, Klotz K, Meyer S, Uter W, Hof K, Greiner A, Göen T, Drexler H. Systemic availability of lipophilic organic UV filters through dermal sunscreen exposure. ENVIRONMENT INTERNATIONAL 2019; 132:105068. [PMID: 31470219 DOI: 10.1016/j.envint.2019.105068] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Chemical UV filters are common components in sunscreens and cosmetic products and used to protect the skin against harmful effects of sunlight like sunburn. However, the effectiveness of sunscreens in the prevention of skin cancer is in some parts still controversial. Meanwhile, questions about negative effects of the chemical UV filters on human health arise and request an effective risk assessment. Real-life exposure data in humans after application of these products are still rare. Thus, we explored whether and to what extent UV filters are absorbed through the skin into the human body. MATERIAL AND METHODS Plasma and urine samples from 20 healthy volunteers were collected before, during and after a real-life exposure scenario (1st application: 2 mg/cm2; 2nd and 3rd (after 2 and 4 h): 1 mg/cm2 each) using a commercial sunscreen formulation for one day. These samples were analyzed for their content of the currently prominent UV filters octocrylene and avobenzone as well as 2-cyano-3,3-diphenylacrylic acid (CDAA) as the main octocrylene metabolite by using different liquid chromatography electrospray-ionization tandem mass spectrometric procedures. RESULTS Following dermal sunscreen exposure, avobenzone, octocrylene and CDAA reached concentrations up to 11 μg/L, 25 μg/L and 1352 μg/L in plasma. In urine detection rates of avobenzone and octocrylene were low while CDAA showed a high detection rate and reached up to 5207 μg/g creatinine. Kinetic models could be fitted for octocrylene and CDAA in plasma and CDAA in urine. Concentration peaks were reached between 10 and 16 h after first application and half-life periods were in the range of 1.5 to 2 days. The lipophilic UV filter octocrylene and its metabolite CDAA showed a much slower elimination than other more hydrophilic UV filters. Concordantly, the metabolite CDAA in particular showed a markedly increased renal excretion over the whole sampling period and indicated high internal exposure to OC. DISCUSSION Real-life sunscreen usage leads to considerable bioavailability of organic UV filters and their metabolites which is rarely seen for other environmental exposures. A combined monitoring of the parent compound and its metabolites is important to fully address internal exposure to the UV filter in humans. Considering the kinetic profiles a prolonged systemic release due to depot formation in skin and a potential accumulation through multi-day exposure is presumed. High in-vivo loads call for a critical toxicological assessment of the UV filters and their metabolites.
Collapse
Affiliation(s)
- Julia Hiller
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestr. 9-11, 91054 Erlangen, Germany.
| | - Katrin Klotz
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestr. 9-11, 91054 Erlangen, Germany.
| | - Sebastian Meyer
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute of Medical Informatics, Biometry and Epidemiology, Waldstr. 6, 91054 Erlangen, Germany.
| | - Wolfgang Uter
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute of Medical Informatics, Biometry and Epidemiology, Waldstr. 6, 91054 Erlangen, Germany.
| | - Kerstin Hof
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestr. 9-11, 91054 Erlangen, Germany.
| | - Annette Greiner
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestr. 9-11, 91054 Erlangen, Germany.
| | - Thomas Göen
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestr. 9-11, 91054 Erlangen, Germany.
| | - Hans Drexler
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Henkestr. 9-11, 91054 Erlangen, Germany.
| |
Collapse
|
8
|
Toxicokinetics of urinary 2-ethylhexyl salicylate and its metabolite 2-ethyl-hydroxyhexyl salicylate in humans after simulating real-life dermal sunscreen exposure. Arch Toxicol 2019; 93:2565-2574. [PMID: 31435713 DOI: 10.1007/s00204-019-02537-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
Chemical UV filters are common components in sunscreens and cosmetic products. The question of adverse health risks is not completely resolved, partly owing to lacking human data from dermal exposure, which are essential for sound risk assessment. Therefore, we investigated the urinary toxicokinetics of 2-ethylhexyl salicylate (EHS) after a 1-day dermal real-life sunscreen application scenario. Twenty human volunteers were dermally exposed to a commercial sunscreen for 9 h under real-life conditions (2 mg/cm2 body surface area; double re-application; corresponding to 3.8 g EHS). Urine samples were analyzed for EHS and one of its specific metabolites 2-ethyl-5-hydroxyhexyl salicylate (5OH-EHS) using a two-dimensional liquid chromatographic electrospray-ionization tandem mass spectrometric procedure. EHS and 5OH-EHS were excreted after sunscreen application and reached up to 525 µg/g and 213 µg/g creatinine, respectively. The toxicokinetic models showed concentration peaks between 7 and 8 h after first application. First-phase terminal half-lives were 8-9 h. For 5OH-EHS, a second-phase terminal half-life could be determined (87 h). EHS and 5OH-EHS showed a faster elimination with 70-80% of the overall excretion occurring within 24 h after application compared to more lipophilic UV filters. Cumulative excreted amounts over 24 h reached up to 334 µg EHS and 124 µg of 5OH-EHS. Simulated real-life sunscreen use for 1 day leads to the bioavailability of the UV filter EHS in humans. The kinetic profiles with a prolonged systemic availability indicate a skin depot and make accumulation during consecutive multi-day exposure likely.
Collapse
|
9
|
Prunk Zdravković T, Zdravković B, Zdravković M, Dariš B, Lunder M, Ferk P. In-vitro study of the influence of octocrylene on a selected metastatic melanoma cell line. GIORN ITAL DERMAT V 2019; 154:197-204. [DOI: 10.23736/s0392-0488.17.05616-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Han C, Liu Y, He H. The photoenhanced aging process of soot by the heterogeneous ozonization reaction. Phys Chem Chem Phys 2016; 18:24401-7. [DOI: 10.1039/c6cp03938c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Light can dramatically enhance the heterogeneous aging process of soot by O3, leading to the formation of various oxygen-containing species.
Collapse
Affiliation(s)
- Chong Han
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing
- China
- School of Metallurgy
| | - Yongchun Liu
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing
- China
- Center for Excellence in Urban Atmospheric Environment
| | - Hong He
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing
- China
- Center for Excellence in Urban Atmospheric Environment
| |
Collapse
|
11
|
Fernández E, Hostachy S, Sandt C, Rodríguez G, Bertrand HC, Clède S, Cócera M, Maza ADL, Lambert F, Policar C, López O. Monitoring bicosomes containing antioxidants in normal and irradiated skin. RSC Adv 2016. [DOI: 10.1039/c6ra11170j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Monitoring penetration of bicosomes containing antioxidants into normal and irradiated skin by FTIR.
Collapse
Affiliation(s)
| | - Sarah Hostachy
- École Normale Supérieure – PSL Research University
- Département de Chimie Sorbornne Universités – UPMC UNIV Paris 06
- CNRS UMR 7203 LBM
- 75005 Paris
- France
| | | | | | - Helene C. Bertrand
- École Normale Supérieure – PSL Research University
- Département de Chimie Sorbornne Universités – UPMC UNIV Paris 06
- CNRS UMR 7203 LBM
- 75005 Paris
- France
| | - Sylvain Clède
- École Normale Supérieure – PSL Research University
- Département de Chimie Sorbornne Universités – UPMC UNIV Paris 06
- CNRS UMR 7203 LBM
- 75005 Paris
- France
| | | | - Alfonso de la Maza
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- 08034 Barcelona
- Spain
| | - François Lambert
- École Normale Supérieure – PSL Research University
- Département de Chimie Sorbornne Universités – UPMC UNIV Paris 06
- CNRS UMR 7203 LBM
- 75005 Paris
- France
| | - Clotilde Policar
- École Normale Supérieure – PSL Research University
- Département de Chimie Sorbornne Universités – UPMC UNIV Paris 06
- CNRS UMR 7203 LBM
- 75005 Paris
- France
| | - Olga López
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- 08034 Barcelona
- Spain
| |
Collapse
|
12
|
Miquel-Jeanjean C, Crépel F, Raufast V, Payre B, Datas L, Bessou-Touya S, Duplan H. Penetration Study of Formulated Nanosized Titanium Dioxide in Models of Damaged and Sun-Irradiated Skins. Photochem Photobiol 2012; 88:1513-21. [DOI: 10.1111/j.1751-1097.2012.01181.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Bolzinger MA, Briançon S, Pelletier J, Chevalier Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr Opin Colloid Interface Sci 2012. [DOI: 10.1016/j.cocis.2012.02.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Karlsson I, Persson E, Mårtensson J, Börje A. Investigation of the Sunscreen Octocrylene’s Interaction with Amino Acid Analogs in the Presence of UV Radiation. Photochem Photobiol 2012; 88:904-12. [DOI: 10.1111/j.1751-1097.2012.01142.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Beani JC. [Solar protection products: efficacy and risks]. Ann Dermatol Venereol 2012; 139:261-72. [PMID: 22482479 DOI: 10.1016/j.annder.2012.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/21/2011] [Accepted: 01/31/2012] [Indexed: 12/31/2022]
Abstract
Solar protection products (SPP) containing chemical filters and/or mineral filters are extensively used today in photoprotection; however, concerns continue to be voiced about their efficacy and about their possible dangers. A rapid review of photoprotection strategies shows that SPP owe their photoprotective effect to the absence of other photoprotection methods having clearly established efficacy in healthy subjects; in addition, they exhibit real protective efficacy against the majority of harmful effects of solar radiation, provided they have been devised in keeping with the specifications clearly set out in the recommendations of the French Medicines Agency (Afssaps). Such efficacy is dependent on their correct usage, recently reiterated by Afssaps in its recommendations to end-users concerning the good use of solar products: application of adequate quantities of such products, selection of the appropriate photoprotection class based on phototype and conditions of exposure, and regular renewal of applications in the event of prolonged exposure and after bathing or profuse sweating. Solar filters have long been known to cause contact allergic dermatitis, irritative dermatitis and photosensitisation, and a particular risk has appeared with the use of octocrylene. However, debate has centred primarily on the risk of endocrine disturbance potentially induced by chemical filters, certain of which exhibit established transcutaneous penetration. The risk of mimicry of an effect of oestradiol has been raised on the basis of a series of studies, almost all of which were carried out by the same team, and which mainly concerned 4-methylbenzylidene-camphor (4-MBC) following oral absorption in the rat. The risk of this type of effect with SPPs under normal conditions of use seems fairly remote according to the current state of knowledge; in any event, within the context of the "National Fertility Action Plan", Afssaps has been formally requested to analyse the risk associated with cosmetic substances that are "reprotoxic" and/or affect endocrine function, as a result of which various filters are currently being reassessed for such risk. The greater alleged safety of mineral filters, based on the absence of introduction of risk of photosensitisation (as a result of which they are preferred for use in young children), no longer seems so clear since the introduction of titanium dioxide (TiO2) and zinc oxide (ZnO) in the form of nanoparticles. Afssaps drew up a risk assessment report concerning cutaneous penetration, genotoxicity and oncogenesis for TiO(2) and ZnO in nanoparticle form; further studies are needed before any general conclusions may be drawn. The European Scientific Committee on Consumer Safety (SCCS) is also carrying out an evaluation of the use of TiO(2) and of ZnO as UV filters. Finally, current data do not suggest that SPPs exert any harmful effects by inhibiting the beneficial effects of the sun, in particular, vitamin D synthesis.
Collapse
Affiliation(s)
- J-C Beani
- Clinique universitaire de dermato-vénéréologie, allergologie et photobiologie, pôle pluridisciplinaire de médecine, CHU, Grenoble cedex, France.
| |
Collapse
|
16
|
Evaluation of physicochemical properties, skin permeation and accumulation profiles of salicylic acid amide prodrugs as sunscreen agent. Int J Pharm 2011; 419:154-60. [DOI: 10.1016/j.ijpharm.2011.07.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/07/2011] [Accepted: 07/27/2011] [Indexed: 11/21/2022]
|
17
|
Karlsson I, Vanden Broecke K, Mårtensson J, Goossens A, Börje A. Clinical and experimental studies of octocrylene's allergenic potency. Contact Dermatitis 2011; 64:343-52. [DOI: 10.1111/j.1600-0536.2011.01899.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|