1
|
Zamudio Díaz DF, Klein AL, Guttmann M, Zwicker P, Busch L, Kröger M, Klose H, Rohn S, Schleusener J, Meinke MC. Skin optical properties from 200 to 300 nm support far UV-C skin-safety in vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 247:112784. [PMID: 37690371 DOI: 10.1016/j.jphotobiol.2023.112784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
The growing threat of multi-drug resistant pathogens and airborne microbial diseases has highlighted the need to improve or develop novel disinfection methods for clinical environments. Conventional ultraviolet C (UV-C) lamps effectively inactivate microorganisms but are harmful to human skin and eyes upon exposure. The use of new 233 nm far UV-C LEDs as an antiseptic can overcome those limitations. In this research, the light penetration into the skin was elucidated for the UV-C region (<300 nm) by measuring the scattering and absorption of skin layers and inverse Monte Carlo simulation, and further confirmed by the first clinical pilot trial in which healthy volunteers were irradiated with a dose of 60 mJ/cm2 at 233 nm. The radiation is strongly absorbed in the stratum corneum, resulting in minimal skin damage without inducing inflammatory responses. The results suggest that 233 nm far UV-C light emitting diodes (LEDs) could effectively inactivate microorganisms, while being safe and soft for the skin.
Collapse
Affiliation(s)
- Daniela F Zamudio Díaz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charitéplatz 1, 10117 Berlin, Germany; Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Anna Lena Klein
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charitéplatz 1, 10117 Berlin, Germany
| | - Martin Guttmann
- Ferdinand-Braun-Institut (FBH), Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
| | - Paula Zwicker
- University Medicine Greifswald, Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Loris Busch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charitéplatz 1, 10117 Berlin, Germany
| | - Marius Kröger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charitéplatz 1, 10117 Berlin, Germany
| | - Holger Klose
- artMED Private Practice for Plastic and Aesthetic Surgery, Friedrichstraße 61, 10117 Berlin, Germany
| | - Sascha Rohn
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Johannes Schleusener
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charitéplatz 1, 10117 Berlin, Germany
| | - Martina C Meinke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
2
|
Oyebanji OA, Brewer C, Bayless S, Schmeusser B, Corbin DA, Sulentic CEW, Sherwin CMT, Chen Y, Rapp CM, Cates EE, Long Y, Travers JB, Rohan CA. Topical Photodynamic Therapy Generates Bioactive Microvesicle Particles: Evidence for a Pathway Involved in Immunosuppressive Effects. J Invest Dermatol 2023; 143:1279-1288.e9. [PMID: 36708950 PMCID: PMC10293022 DOI: 10.1016/j.jid.2022.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023]
Abstract
Although effective in treating actinic damage, topical photodynamic therapy (PDT) has been shown to be immunosuppressive through unknown mechanisms, which could potentially limit its effectiveness. Multiple types of environmental stressors, including PDT, can produce the immunosuppressive lipid mediator platelet-activating factor (PAF). Because PAF can produce subcellular microvesicle particles (MVPs), these studies tested whether PDT can generate PAF and MVP release and whether these are involved in PDT-induced immunosuppression. Previously, topical PDT using blue light and 5-aminolevulinic acid was found to be a potent stimulus for PAF production in mice and human skin explants and human patients, and we show that experimental PDT also generates high levels of MVP. PDT-generated MVPs were independent of the PAF receptor but were dependent on the MVP-generating enzyme acid sphingomyelinase. Patients undergoing topical PDT treatment to at least 10% of body surface area showed local and systemic immunosuppression as measured by inhibition of delayed-type hypersensitivity reactions. Finally, using a murine model of contact hypersensitivity, PDT immunosuppression was blocked by genetic and pharmacologic inhibition of acid sphingomyelinase and genetic inhibition of PAF receptor signaling. These studies describe a mechanism involving MVP through which PDT exerts immunomodulatory effects, providing a potential target to improve its effectiveness.
Collapse
Affiliation(s)
- Oladayo A Oyebanji
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Chad Brewer
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Sharlo Bayless
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Benjamin Schmeusser
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Danielle A Corbin
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Courtney E W Sulentic
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Catherine M T Sherwin
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA; Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA; Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Christine M Rapp
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Elizabeth E Cates
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Yuhan Long
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA; Department of Dermatology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA; Dayton V.A. Medical Center, Dayton, Ohio, USA.
| | - Craig A Rohan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA; Department of Dermatology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA; Dayton V.A. Medical Center, Dayton, Ohio, USA
| |
Collapse
|
3
|
Tse BCY, Ferguson AL, Koay YC, Grau GE, Don AS, Byrne SN. Exposure to solar ultraviolet radiation establishes a novel immune suppressive lipidome in skin-draining lymph nodes. Front Immunol 2023; 13:1045731. [PMID: 36741361 PMCID: PMC9895826 DOI: 10.3389/fimmu.2022.1045731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/22/2022] [Indexed: 01/21/2023] Open
Abstract
The ability of ultraviolet radiation to suppress the immune system is thought to be central to both its beneficial (protection from autoimmunity) and detrimental (carcinogenic) effects. Previous work revealed a key role for lipids particularly platelet-activating factor and sphingosine-1-phosphate in mediating UV-induced immune suppression. We therefore hypothesized that there may be other UV-induced lipids that have immune regulatory roles. To assess this, mice were exposed to an immune suppressive dose of solar-simulated UV (8 J/cm2). Lipidomic analysis identified 6 lipids (2 acylcarnitines, 2 neutral lipids, and 2 phospholipids) with significantly increased levels in the skin-draining lymph nodes of UV-irradiated mice. Imaging mass spectrometry of the lipids in combination with imaging mass cytometry identification of lymph node cell subsets indicated a preferential location of UV-induced lipids to T cell areas. In vitro co-culture of skin-draining lymph node lipids with lymphocytes showed that lipids derived from UV-exposed mice have no effect on T cell activation but significantly inhibited T cell proliferation, indicating that the lipids play an immune regulatory role. These studies are important first steps in identifying novel lipids that contribute to UV-mediated immune suppression.
Collapse
Affiliation(s)
- Benita C. Y. Tse
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Angela L. Ferguson
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Yen Chin Koay
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia,Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Georges E. Grau
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Anthony S. Don
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Scott N. Byrne
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia,Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Sydney, NSW, Australia,*Correspondence: Scott N. Byrne,
| |
Collapse
|
4
|
Rohan CJ, Lohade RP, Brewer C, Travers JB. Platelet-activating factor and microvesicle particles as potential mediators for the toxicity associated with intoxicated thermal burn injury. Biofactors 2022; 48:1250-1256. [PMID: 36342751 PMCID: PMC9789186 DOI: 10.1002/biof.1917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Thermal burn injuries (TBIs) in patients who are alcohol-intoxicated result in greater morbidity and mortality. The systemic toxicity found in human patients, which includes both immediate systemic cytokine generation with multiple organ failure and a delayed systemic immunosuppression, has previously been replicated in mouse models combining ethanol and localized TBI. Though considerable insights have been provided with these models, the exact mechanisms for these pathologic effects are unclear. In this review, we highlight the roles of the lipid mediator platelet-activating factor (PAF) and subcellular microvesicle particle (MVP) release in response to intoxicated thermal burn injury (ITBI) as effectors in the pathology. Particularly, MVP is released from keratinocytes in response to PAF receptor (PAFR) activation due to excess PAF produced by ITBI. These subcellular particles carry and thus protect the metabolically labile PAF which enable binding of this potent lipid mediator to several key sites. We hypothesize that PAF carried by MVP can bind to PAFR within the gut, activating myosin light chain kinase (MLCK). The subsequent gut barrier dysfunction in response to MLCK activation then allows bacteria to invade the lymphatic system and, eventually, the bloodstream, resulting in sepsis and resultant dysregulated inflammation in multiple organs. PAF in MVP also activate the skin mast cell PAFR resulting in migration of this key effector cell to the lymph nodes to induce immunosuppression. This review thus provides a mechanism and potential therapeutic approaches for the increased toxicity and immunosuppressive outcomes of TBI in the presence of acute ethanol exposure.
Collapse
Affiliation(s)
- Carson J. Rohan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton Ohio
| | - Rushabh P. Lohade
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton Ohio
| | - Chad Brewer
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton Ohio
| | - Jeffrey B. Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton Ohio
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton Ohio
- Department of Medicine, Dayton Veterans Administration Hospital, Dayton Ohio
| |
Collapse
|
5
|
The medicinal mushroom Ganoderma lucidum attenuates UV-induced skin carcinogenesis and immunosuppression. PLoS One 2022; 17:e0265615. [PMID: 35312729 PMCID: PMC8936451 DOI: 10.1371/journal.pone.0265615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/01/2022] [Indexed: 11/27/2022] Open
Abstract
The medicinal mushroom Ganoderma lucidum is traditionally used for treating multiple diseases, including cancer. This study examined skin cancer preventive activity of a commercial product containing spore and fruiting body in 30:8 ratio (GLSF). Extracts of GLSF and spore component (GLS) were prepared using artificial gastrointestinal juice and examined on JB6 cells. GLSF and GLS dose-dependently inhibited epidermal growth factor-induced JB6 transformation at non-toxic concentrations. SKH-1 mice which were fed with diets containing GLSF (1.25%), GLS (0.99%) or the fruiting body (GLF) (0.26%) were exposed to chronic low-dose ultraviolet (UV) radiation to assess their effects on skin carcinogenesis. GLSF, but not GLS or GLF, reduced skin tumor incidence and multiplicity. In non-tumor skin tissues of mice, GLSF attenuated UV-induced epidermal thickening, expression of Ki-67, COX-2 and NF-κB, while in tumor tissues, GLSF increased expression of CD8 and Granzyme B. To examine the effects of GLSF on UV-induced immunosuppression, mice which were fed with GLSF were evaluated for the contact hypersensitivity (CHS) response to dinitrofluorobenzene (DNFB). GLSF significantly reversed UV-mediated suppression of DNFB-induced CHS by increasing CD8+ and decreasing CD4+ and FoxP3+ T-cells in mouse ears. Therefore, GLSF prevents skin cancer probably via attenuating UV-induced immunosuppression.
Collapse
|
6
|
Frommeyer TC, Gilbert MM, Brittain GV, Wu T, Nguyen TQ, Rohan CA, Travers JB. UVB-Induced Microvesicle Particle Release and Its Effects on the Cutaneous Microenvironment. Front Immunol 2022; 13:880850. [PMID: 35603177 PMCID: PMC9120817 DOI: 10.3389/fimmu.2022.880850] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Ultraviolet B radiation (UVB) has profound effects on human skin that results in a broad spectrum of immunological local and systemic responses and is the major cause of skin carcinogenesis. One important area of study in photobiology is how UVB is translated into effector signals. As the skin is exposed to UVB light, subcellular microvesicle particles (MVP), a subtype of bioactive extracellular vesicles, are released causing a variety of local and systemic immunological effects. In this review, we highlight keratinocyte MVP release in keratinocytes in response to UVB. Specifically, Platelet-activating factor receptor agonists generated by UVB result in MVP released from keratinocytes. The downstream effects of MVP release include the ability of these subcellular particles to transport agents including the glycerophosphocholine-derived lipid mediator Platelet-activating factor (PAF). Moreover, even though UVB is only absorbed in the epidermis, it appears that PAF release from MVPs also mediates systemic immunosuppression and enhances tumor growth and metastasis. Tumor cells expressing PAF receptors can use this mechanism to evade chemotherapy responses, leading to treatment resistance for advanced cancers such as melanoma. Furthermore, novel pharmacological agents provide greater insight into the UVB-induced immune response pathway and a potential target for pharmacological intervention. This review outlines the need to more clearly elucidate the mechanism linking UVB-irradiation with the cutaneous immune response and its pathological manifestations. An improved understanding of this process can result in new insights and treatment strategies for UVB-related disorders from carcinogenesis to photosensitivity.
Collapse
Affiliation(s)
- Timothy C. Frommeyer
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Michael M. Gilbert
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Garrett V. Brittain
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Tongfan Wu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Trang Q. Nguyen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Craig A. Rohan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Jeffrey B. Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, United States
- *Correspondence: Jeffrey B. Travers,
| |
Collapse
|
7
|
Thapa P, Bhadri S, Borchers C, Liu L, Chen Y, Rapp CM, Travers JB. Low UVB Fluences Augment Microvesicle Particle Generation in Keratinocytes. Photochem Photobiol 2022; 98:248-253. [PMID: 34324709 PMCID: PMC8799755 DOI: 10.1111/php.13495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023]
Abstract
Microvesicle particles (MVP) are bioactive subcellular particles which have been recently implicated in the keratinocyte response to many environmental stressors including ultraviolet B radiation (UVB). Previous studies have demonstrated that UVB generates high levels of MVP in a process involving the platelet-activating factor receptor (PAFR) and the enzyme acid sphingomyelinase (aSMase). Yet the fluences of UVB needed to generate MVP are usually above those commonly encountered. Using models including human epithelial cell lines in vitro, human skin explants ex vivo and murine studies in vivo, the present studies indicate that pretreatment of epithelial cells/skin with PAFR agonist/phorbol ester can synergize with low fluences of UVB to generate high levels of MVP. These studies indicate the possibility that MVP could play a role in combinatorial pathologic processes involving UVB.
Collapse
Affiliation(s)
- Pariksha Thapa
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Shweta Bhadri
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Christina Borchers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Langni Liu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Christine M. Rapp
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Jeffrey B. Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435,Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435,The Dayton V.A. Medical Center, Dayton, OH 45428.,Corresponding author: (Jeffrey B. Travers)
| |
Collapse
|
8
|
Bhadri S, Thapa P, Chen Y, Rapp CM, Travers JB. Evidence for microvesicle particles in UVB-mediated IL-8 generation in keratinocytes. JOURNAL OF CLINICAL AND INVESTIGATIVE DERMATOLOGY 2021; 9. [PMID: 34950767 DOI: 10.13188/2373-1044.1000076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent studies have implicated bioactive microvesicle particles (MVP) in the keratinocyte response to many environmental stressors, in partricular ultraviolet B radiation (UVB). The generation of MVP in response to UVB involves the Platelet-activating factor receptor (PAFR) and the enzyme acid sphingomyelinase (aSMase). As UVB generates some cytokines such as interleukin-8 (IL-8) in a PAFR-dependent manner, one question is if the production and release of IL-8 and MVP could be linked. Using the human keratinocyte-derived cell line HaCaT, the present in vitro studies indicate that pretreatment of HaCaT keratinocytes with PAFR agonist ester can synergize with low fluences of UVB to generate high levels of MVP as well as IL-8 protein. Treatment of cells with an aSMase pharmacologic inhibitor blocked both processes. These studies indicate the possibility that MVP could be involved in pathologic processes involving UVB-generated production of pro-inflammatory cytokines such as IL-8.
Collapse
Affiliation(s)
- Shweta Bhadri
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Pariksha Thapa
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Christine M Rapp
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435.,Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435.,The Dayton V.A. Medical Center, Dayton, OH 45428
| |
Collapse
|
9
|
Travers JB, Rohan JG, Sahu RP. New Insights Into the Pathologic Roles of the Platelet-Activating Factor System. Front Endocrinol (Lausanne) 2021; 12:624132. [PMID: 33796070 PMCID: PMC8008455 DOI: 10.3389/fendo.2021.624132] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Described almost 50 years ago, the glycerophosphocholine lipid mediator Platelet-activating factor (PAF) has been implicated in many pathologic processes. Indeed, elevated levels of PAF can be measured in response to almost every type of pathology involving inflammation and cell damage/death. In this review, we provide evidence for PAF involvement in pathologic processes, with focus on cancer, the nervous system, and in photobiology. Importantly, recent insights into how PAF can generate and travel via bioactive extracellular vesicles such as microvesicle particles (MVP) are presented. What appears to be emerging from diverse pathologies in different organ systems is a common theme where pro-oxidative stressors generate oxidized glycerophosphocholines with PAF agonistic effects, which then trigger more enzymatic PAF synthesis via the PAF receptor. A downstream consequence of PAF receptor activation is the generation and release of MVP which provide a mechanism to transmit PAF as well as other bioactive agents. The knowledge gaps which when addressed could result in novel therapeutic strategies are also discussed. Taken together, an enhanced understanding of the PAF family of lipid mediators is essential in our improved comprehension of the relationship amongst the diverse cutaneous, cancerous, neurologic and systemic pathologic processes.
Collapse
Affiliation(s)
- Jeffrey B. Travers
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
- *Correspondence: Jeffrey B. Travers, ; orcid.org/0000-0001-7232-1039
| | - Joyce G. Rohan
- Naval Medical Research Unit Dayton, Environmental Health Effects Directorate, Wright Patterson Air Force Base, OH, United States
| | - Ravi P. Sahu
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| |
Collapse
|
10
|
Abstract
Environmental stressors exert a profound effect on humans. Many environmental stressors have in common the ability to induce reactive oxygen species. The goal of this chapter is to present evidence that the potent lipid mediator platelet-activating factor (PAF) is involved in the effects of many stressors ranging from cigarette smoke to ultraviolet B radiation. These environmental stressors can generate PAF enzymatically as well as PAF-like lipids produced by free radical-mediated attack of glycerophosphocholines. Inasmuch as PAF exerts both acute inflammation and delayed immunosuppressive effects, involvement of the PAF system can provide an explanation for many consequences of environmental stressor exposures.
Collapse
Affiliation(s)
- Jeffrey B Travers
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, USA.
- Dayton Veterans Administration Medical Center, Dayton, OH, USA.
| |
Collapse
|
11
|
Thyagarajan A, Sahu RP. Potential Contributions of Antioxidants to Cancer Therapy: Immunomodulation and Radiosensitization. Integr Cancer Ther 2017. [PMID: 28627256 PMCID: PMC6041931 DOI: 10.1177/1534735416681639] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Antioxidants play important roles in the maintenance of cellular integrity and thus are critical in maintaining the homeostasis of the host immune system. A balance between the levels of pro-oxidants and antioxidants defines the cellular fate of genomic integrity via maintaining the redox status of the cells. An aberration in this balance modulates host immunity that affects normal cellular signaling pathways resulting in uncontrolled proliferation of cells leading to neocarcinogenesis. For decades, there have been scientific debates on the use of antioxidants for the treatment of human cancers. This review is focused on current updates on the implications of antioxidant use as adjuncts in cancer therapy with an emphasis on immunomodulation and radiosensitization.
Collapse
Affiliation(s)
| | - Ravi P. Sahu
- Wright State University, Dayton, OH, USA
- Ravi P. Sahu, Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, 230 Health Sciences Building, 3640 Colonel Glenn Highway, Dayton, OH 45435-0001, USA.
| |
Collapse
|
12
|
Damiani E, Ullrich SE. Understanding the connection between platelet-activating factor, a UV-induced lipid mediator of inflammation, immune suppression and skin cancer. Prog Lipid Res 2016; 63:14-27. [PMID: 27073146 DOI: 10.1016/j.plipres.2016.03.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/16/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
Lipid mediators of inflammation play important roles in several diseases including skin cancer, the most prevalent type of cancer found in the industrialized world. Ultraviolet (UV) radiation is a complete carcinogen and is the primary cause of skin cancer. UV radiation is also a potent immunosuppressive agent, and UV-induced immunosuppression is a well-known risk factor for skin cancer induction. An essential mediator in this process is the glyercophosphocholine 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine commonly referred to as platelet-activating factor (PAF). PAF is produced by keratinocytes in response to diverse stimuli and exerts its biological effects by binding to a single specific G-protein-coupled receptor (PAF-R) expressed on a variety of cells. This review will attempt to describe how this lipid mediator is involved in transmitting the immunosuppressive signal from the skin to the immune system, starting from its production by keratinocytes, to its role in activating mast cell migration in vivo, and to the mechanisms involved that ultimately lead to immune suppression. Recent findings related to its role in regulating DNA repair and activating epigenetic mechanisms, further pinpoint the importance of this bioactive lipid, which may serve as a critical molecular mediator that links the environment (UVB radiation) to the immune system and the epigenome.
Collapse
Affiliation(s)
- Elisabetta Damiani
- Dipartimento di Scienze della Vita e dell'Ambiente, Universita' Politecnica delle Marche, Ancona, Italy
| | - Stephen E Ullrich
- Department of Immunology and The Center for Cancer Immunology Research, The University of Texas Graduate School for Biomedical Sciences at Houston, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Systemic chemotherapy is modulated by platelet-activating factor-receptor agonists. Mediators Inflamm 2015; 2015:820543. [PMID: 25922565 PMCID: PMC4398925 DOI: 10.1155/2015/820543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy is used to treat numerous cancers including melanoma. However, its effectiveness in clinical settings is often hampered by various mechanisms. Previous studies have demonstrated that prooxidative stressor-mediated generation of oxidized lipids with platelet-activating factor-receptor (PAF-R) agonistic activity induces systemic immunosuppression that augments the growth of experimental melanoma tumors. We have recently shown that treatment of murine B16F10 melanoma cells in vitro or tumors implanted into syngeneic mice and treated intratumorally with various chemotherapeutic agents generated PAF-R agonists in a process blocked by antioxidants. Notably, these intratumoral chemotherapy-generated PAF-R agonists augmented the growth of secondary (untreated) tumors in a PAF-R dependent manner. As both localized and systemic chemotherapies are used based on tumor localization/stage and metastases, the current studies were sought to determine effects of PAF-R agonists on systemic chemotherapy against experimental melanoma. Here, we show that systemic chemotherapy with etoposide (ETOP) attenuates the growth of melanoma tumors when given subsequent to the tumor cell implantation. Importantly, this ETOP-mediated suppression of melanoma tumor growth was blocked by exogenous administration of a PAF-R agonist, CPAF. These findings indicate that PAF-R agonists not only negatively affect the ability of localized chemotherapy but also compromise the efficacy of systemic chemotherapy against murine melanoma.
Collapse
|
14
|
Sahu RP, Rezania S, Ocana JA, DaSilva-Arnold SC, Bradish JR, Richey JD, Warren SJ, Rashid B, Travers JB, Konger RL. Topical application of a platelet activating factor receptor agonist suppresses phorbol ester-induced acute and chronic inflammation and has cancer chemopreventive activity in mouse skin. PLoS One 2014; 9:e111608. [PMID: 25375862 PMCID: PMC4222871 DOI: 10.1371/journal.pone.0111608] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 10/02/2014] [Indexed: 12/21/2022] Open
Abstract
Platelet activating factor (PAF) has long been associated with acute edema and inflammatory responses. PAF acts by binding to a specific G-protein coupled receptor (PAF-R, Ptafr). However, the role of chronic PAF-R activation on sustained inflammatory responses has been largely ignored. We recently demonstrated that mice lacking the PAF-R (Ptafr-/- mice) exhibit increased cutaneous tumorigenesis in response to a two-stage chemical carcinogenesis protocol. Ptafr-/- mice also exhibited increased chronic inflammation in response to phorbol ester application. In this present study, we demonstrate that topical application of the non-hydrolysable PAF mimetic (carbamoyl-PAF (CPAF)), exerts a potent, dose-dependent, and short-lived edema response in WT mice, but not Ptafr -/- mice or mice deficient in c-Kit (c-KitW-sh/W-sh mice). Using an ear inflammation model, co-administration of topical CPAF treatment resulted in a paradoxical decrease in both acute ear thickness changes associated with a single PMA application, as well as the sustained inflammation associated with chronic repetitive PMA applications. Moreover, mice treated topically with CPAF also exhibited a significant reduction in chemical carcinogenesis. The ability of CPAF to suppress acute and chronic inflammatory changes in response to PMA application(s) was PAF-R dependent, as CPAF had no effect on basal or PMA-induced inflammation in Ptafr-/- mice. Moreover, c-Kit appears to be necessary for the anti-inflammatory effects of CPAF, as CPAF had no observable effect in c-KitW-sh/W-sh mice. These data provide additional evidence that PAF-R activation exerts complex immunomodulatory effects in a model of chronic inflammation that is relevant to neoplastic development.
Collapse
Affiliation(s)
- Ravi P. Sahu
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Samin Rezania
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Jesus A. Ocana
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Sonia C. DaSilva-Arnold
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Joshua R. Bradish
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Justin D. Richey
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Simon J. Warren
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Badri Rashid
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Jeffrey B. Travers
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, United States of America
| | - Raymond L. Konger
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- * E-mail:
| |
Collapse
|