1
|
Zhang S, Li X, Zheng Y, Liu J, Hu H, Zhang S, Kuang W. Single cell and bulk transcriptome analysis identified oxidative stress response-related features of Hepatocellular Carcinoma. Front Cell Dev Biol 2023; 11:1191074. [PMID: 37842089 PMCID: PMC10568628 DOI: 10.3389/fcell.2023.1191074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Background: Hepatocellular Carcinoma (HCC) is a common lethal digestive system tumor. The oxidative stress mechanism is crucial in the HCC genesis and progression. Methods: Our study analyzed single-cell and bulk sequencing data to compare the microenvironment of non-tumor liver tissues and HCC tissues. Through these analyses, we aimed to investigate the effect of oxidative stress on cells in the HCC microenvironment and identify critical oxidative stress response-related genes that impact the survival of HCC patients. Results: Our results showed increased oxidative stress in HCC tissue compared to non-tumor tissue. Immune cells in the HCC microenvironment exhibited higher oxidative detoxification capacity, and oxidative stress-induced cell death of dendritic cells was attenuated. HCC cells demonstrated enhanced communication with immune cells through the MIF pathway in a highly oxidative hepatoma microenvironment. Meanwhile, using machine learning and Cox regression screening, we identified PRDX1 as a predictor of early occurrence and prognosis in patients with HCC. The expression level of PRDX1 in HCC was related to dysregulated ribosome biogenesis and positively correlated with the expression of immunological checkpoints (PDCD1LG2, CTLA4, TIGIT, LAIR1). High PRDX1 expression in HCC patients correlated with better sensitivity to immunotherapy agents such as sorafenib, IGF-1R inhibitor, and JAK inhibitor. Conclusion: In conclusion, our study unveiled variations in oxidative stress levels between non-tumor liver and HCC tissues. And we identified oxidative stress gene markers associated with hepatocarcinogenesis development, offering novel insights into the oxidative stress response mechanism in HCC.
Collapse
Affiliation(s)
- Shuqiao Zhang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinyu Li
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yilu Zheng
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiahui Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Hu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shijun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weihong Kuang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Chronic Inflammatory Diseases, School of Pharmacy, The First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
2
|
Huth S, Huth L, Heise R, Marquardt Y, Lopopolo L, Piecychna M, Boor P, Fingerle-Rowson G, Kapurniotu A, Yazdi AS, Bucala R, Bernhagen J, Baron JM. Macrophage migration inhibitory factor (MIF) and its homolog D-dopachrome tautomerase (D-DT) are significant promotors of UVB- but not chemically induced non-melanoma skin cancer. Sci Rep 2023; 13:11611. [PMID: 37464010 PMCID: PMC10354066 DOI: 10.1038/s41598-023-38748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most common cancer in Caucasians worldwide. We investigated the pathophysiological role of MIF and its homolog D-DT in UVB- and chemically induced NMSC using Mif-/-, D-dt-/- and Mif-/-/D-dt-/- mice on a hairless SKH1 background. Knockout of both cytokines showed similar attenuating effects on inflammation after acute UVB irradiation and tumor formation during chronic UVB irradiation, without additive protective effects noted in double knockout mice, indicating that both cytokines activate a similar signaling threshold. In contrast, genetic deletion of Mif and D-dt had no major effects on chemically induced skin tumors. To get insight into the contributing mechanisms, we used an in vitro 3D skin model with incorporated macrophages. Application of recombinant MIF and D-DT led to an accumulation of macrophages within the epidermal part that could be reversed by selective inhibitors of MIF and D-DT pathways. In summary, our data indicate that MIF and D-DT contribute to the development and progression of UVB- but not chemically induced NMSC, a role at least partially accounted by effects of both cytokines on epidermal macrophage accumulation. These data highlight that MIF and D-DT are both potential therapeutic targets for the prevention of photocarcinogenesis but not chemical carcinogenesis.
Collapse
Affiliation(s)
- Sebastian Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Laura Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ruth Heise
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Linda Lopopolo
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Marta Piecychna
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Peter Boor
- Institute of Pathology and Department of Nephrology and Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Günter Fingerle-Rowson
- Department I of Internal Medicine, Center of Integrated Oncology Köln Bonn, University Hospital of Cologne, Cologne, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Richard Bucala
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
3
|
Guevara-Gutiérrez E, Castro-Jonguitud MJ, De la Torre-Flores SE, Muñoz-Valle JF, Tlacuilo-Parra A, Salazar-Torres FJ, Valle Y, Padilla-Gutiérrez JR, Martínez-Fernández DE, Valdés-Alvarado E. Haplotypes of (-794(CATT) 5-8/-173G>C) MIF gene polymorphisms and its soluble levels in basal cell carcinoma in western Mexican population. J Investig Med 2020; 69:41-46. [PMID: 33046523 DOI: 10.1136/jim-2020-001414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 11/04/2022]
Abstract
Basal cell carcinoma (BCC) is the most common dermatological neoplasms in Caucasian populations. In Mexico, a prevalence of 3.9 per 1000 habitants is estimated. Recently, the macrophage migration inhibitory factor (MIF) has been related to different types of cancer. Therefore, this study aimed to investigate the genetic association of haplotypes of [-794(CATT)5-8/-173G>C]MIF gene polymorphisms and its soluble levels in BCC. A total of 360 individuals were recruited for the study, that is, 180 of the total amounts were patients with BCC histologically confirmed and the remaining 180 individuals were identified as control subjects (CS). Both polymorphisms were genotyped by PCR and PCR-RFLP (restriction fragment length polymorphism), and MIF serum levels were measured by ELISA kit. A borderline difference was found between the 55 genotype and the susceptibility to BCC (5.6% vs 1.7% in BCC and CS, respectively, OR=3.7 and p=0.04). Furthermore, the haplotype 7G showed a significant association with BCC (p=0.02, OR=1.99). Concerning MIF soluble levels, patients with BCC showed a media of 2.1 ng/mL and CS showed 4.4 ng/mL, the comparison between groups was significant (p<0.01). Our findings suggest that the 55 genotype and the haplotype 7G are associated with the susceptibility to BCC; furthermore, a significant difference was found between MIF soluble levels in both study groups.
Collapse
Affiliation(s)
- Elizabeth Guevara-Gutiérrez
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Secretaría de Salud Jalisco, Zapopan, Jalisco, México
| | - María José Castro-Jonguitud
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Secretaría de Salud Jalisco, Zapopan, Jalisco, México
| | | | | | - Alberto Tlacuilo-Parra
- División de Investigación, Unidad Médica de Alta Especialidad (UMAE), Hospital de Pediatría, Centro Médico Nacional de Occidente, IMSS, Guadalajara Jalisco, México
| | | | - Yeminia Valle
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | | | | |
Collapse
|
4
|
Di Nardo L, Pellegrini C, Di Stefani A, Del Regno L, Sollena P, Piccerillo A, Longo C, Garbe C, Fargnoli MC, Peris K. Molecular genetics of cutaneous squamous cell carcinoma: perspective for treatment strategies. J Eur Acad Dermatol Venereol 2020; 34:932-941. [PMID: 31747091 DOI: 10.1111/jdv.16098] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) represents 20% of all skin cancers. Although primary cSCCs can be successfully treated with surgery, a subset of highly aggressive lesions may progress to advanced disease, representing a public healthcare problem with significant cancer-related morbidity and mortality. A complex network of genes (TP53, CDKN2A, NOTCH1 and NOTCH2, EGFR and TERT) and molecular pathways (RAS/RAF/MEK/ERK and PI3K/AKT/mTOR) have been shown to play an important role in the pathogenesis of cSCC. The epigenetic regulation of TP53 and CDKN2A is an attractive therapeutic target for the treatment of cSCC, as well as NOTCH-activating agents capable to restore its tumour-suppressor function. EGFR inhibitors including both monoclonal antibodies (cetuximab and panitumumab) and tyrosine kinase inhibitors (erlotinib, gefitinib and dasatinib) have been used in clinical trials for the treatment of advanced cSCC, achieving only partial clinical benefit. Recently, an immune-modulatory drug (cemiplimab) has been introduced for the treatment of advanced cSCC with good clinical results and a favourable safety profile, while other PD1/PD-L1 inhibitors, either as monotherapy or in combination with targeted therapies, are currently under investigation. This review focuses on molecular findings involved in the pathogenesis of cSCC and their implications for the future development of new treatment strategies. In addition, current and ongoing treatments on targeted therapies and/or immunotherapy are illustrated.
Collapse
Affiliation(s)
- L Di Nardo
- Institute of Dermatology, Catholic University of Rome, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - C Pellegrini
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - A Di Stefani
- Institute of Dermatology, Catholic University of Rome, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - L Del Regno
- Institute of Dermatology, Catholic University of Rome, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - P Sollena
- Institute of Dermatology, Catholic University of Rome, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - A Piccerillo
- Institute of Dermatology, Catholic University of Rome, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - C Longo
- Centro Oncologico ad Alta Tecnologia Diagnostica, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - C Garbe
- Centre for Dermatooncology, Department of Dermatology, Eberhard-Karls University, Tuebingen, Germany
| | - M C Fargnoli
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - K Peris
- Institute of Dermatology, Catholic University of Rome, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
5
|
Karlsson I, Samuelsson K, Simonsson C, Stenfeldt AL, Nilsson U, Ilag LL, Jonsson C, Karlberg AT. The Fate of a Hapten - From the Skin to Modification of Macrophage Migration Inhibitory Factor (MIF) in Lymph Nodes. Sci Rep 2018; 8:2895. [PMID: 29440696 PMCID: PMC5811565 DOI: 10.1038/s41598-018-21327-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/31/2018] [Indexed: 12/02/2022] Open
Abstract
Skin (contact) allergy, the most prevalent form of immunotoxicity in humans, is caused by low molecular weight chemicals (haptens) that penetrate stratum corneum and modify endogenous proteins. The fate of haptens after cutaneous absorption, especially what protein(s) they react with, is largely unknown. In this study the fluorescent hapten tetramethylrhodamine isothiocyanate (TRITC) was used to identify hapten-protein conjugates in the local lymph nodes after topical application, as they play a key role in activation of the adaptive immune system. TRITC interacted with dendritic cells but also with T and B cells in the lymph nodes as shown by flow cytometry. Identification of the most abundant TRITC-modified protein in lymph nodes by tandem mass spectrometry revealed TRITC-modification of the N-terminal proline of macrophage migration inhibitory factor (MIF) – an evolutionary well-conserved protein involved in cell-mediated immunity and inflammation. This is the first time a hapten-modified protein has been identified in lymph nodes after topical administration of the hapten. Most haptens are electrophiles and can therefore modify the N-terminal proline of MIF, which has an unusually reactive amino group under physiological conditions; thus, modification of MIF by haptens may have an immunomodulating role in contact allergy as well as in other immunotoxicity reactions.
Collapse
Affiliation(s)
- Isabella Karlsson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.
| | - Kristin Samuelsson
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Carl Simonsson
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Lena Stenfeldt
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Nilsson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Leopold L Ilag
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Charlotte Jonsson
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Brocks T, Fedorchenko O, Schliermann N, Stein A, Moll UM, Seegobin S, Dewor M, Hallek M, Marquardt Y, Fietkau K, Heise R, Huth S, Pfister H, Bernhagen J, Bucala R, Baron JM, Fingerle-Rowson G. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin. FASEB J 2016; 31:526-543. [PMID: 27825106 DOI: 10.1096/fj.201600860r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/04/2016] [Indexed: 12/29/2022]
Abstract
The response of the skin to harmful environmental agents is shaped decisively by the status of the immune system. Keratinocytes constitutively express and secrete the chemokine-like mediator, macrophage migration inhibitory factor (MIF), more strongly than dermal fibroblasts, thereby creating a MIF gradient in skin. By using global and epidermis-restricted Mif-knockout (Mif-/- and K14-Cre+/tg; Miffl/fl) mice, we found that MIF both recruits and maintains antigen-presenting cells in the dermis/epidermis. The reduced presence of antigen-presenting cells in the absence of MIF was associated with accelerated and increased formation of nonmelanoma skin tumors during chemical carcinogenesis. Our results demonstrate that MIF is essential for maintaining innate immunity in skin. Loss of keratinocyte-derived MIF leads to a loss of control of epithelial skin tumor formation in chemical skin carcinogenesis, which highlights an unexpected tumor-suppressive activity of MIF in murine skin.-Brocks, T., Fedorchenko, O., Schliermann, N., Stein, A., Moll, U. M., Seegobin, S., Dewor, M., Hallek, M., Marquardt, Y., Fietkau, K., Heise, R., Huth, S., Pfister, H., Bernhagen, J., Bucala, R., Baron, J. M., Fingerle-Rowson, G. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin.
Collapse
Affiliation(s)
- Tania Brocks
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology Köln-Bonn, Cologne, Germany
| | - Oleg Fedorchenko
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology Köln-Bonn, Cologne, Germany
| | - Nicola Schliermann
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology Köln-Bonn, Cologne, Germany
| | - Astrid Stein
- Institute of Pathology and Cytology, University Hospital Cologne, Cologne, Germany
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA.,Department of Molecular Oncology, Georg-August University, Göttingen Center of Molecular Biosciences, Ernst-Caspari-Haus, Göttingen, Germany
| | - Seth Seegobin
- Department of Medical and Molecular Genetics, School of Medicine, Guy's Hospital, King's College London, London, United Kingdom
| | - Manfred Dewor
- Institute of Biochemistry and Molecular Cell Biology Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology Köln-Bonn, Cologne, Germany
| | - Yvonne Marquardt
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | - Katharina Fietkau
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | - Ruth Heise
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | - Sebastian Huth
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | - Herbert Pfister
- Institute of Virology, University Hospital Cologne, Cologne, Germany
| | - Juergen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology Rheinisch-Westfälische Technische Hochschule, Aachen, Germany.,Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; and
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jens M Baron
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | - Guenter Fingerle-Rowson
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany; .,Center for Integrated Oncology Köln-Bonn, Cologne, Germany
| |
Collapse
|
7
|
Kindt N, Journe F, Laurent G, Saussez S. Involvement of macrophage migration inhibitory factor in cancer and novel therapeutic targets. Oncol Lett 2016; 12:2247-2253. [PMID: 27698786 DOI: 10.3892/ol.2016.4929] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/16/2016] [Indexed: 12/18/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) was originally identified in 1966 by Bloom and Bennett as a pro-inflammatory cytokine involved in the inhibition of macrophage motility. Since then, studies have investigated the functional contribution of this pro-inflammatory cytokine in several immune diseases, including rheumatoid arthritis and lupus erythematous. Recently, MIF has been reported to be involved in a variety of neoplastic diseases. The present review discusses previous cancer research studies that have investigated the involvement of MIF in carcinogenesis, disease prognosis, tumor cell proliferation and invasion, and tumor-induced angiogenesis. Finally, potential therapeutic approaches based on the use of MIF antagonists and neutralizing antibodies are examined. The review concludes that MIF could be a good prognostic biomarker in several types of cancer, but also that the inhibition of MIF could represent a novel therapy against cancer.
Collapse
Affiliation(s)
- Nadège Kindt
- Laboratory of Anatomy and Cellular Biology, Faculty of Medicine and Pharmacy, University of Mons, Mons 7000, Belgium
| | - Fabrice Journe
- Laboratory of Anatomy and Cellular Biology, Faculty of Medicine and Pharmacy, University of Mons, Mons 7000, Belgium; Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Free University of Brussels, Brussels 1000, Belgium
| | - Guy Laurent
- Laboratory of Histology, Faculty of Medicine and Pharmacy, University of Mons, Mons 7000, Belgium
| | - Sven Saussez
- Laboratory of Anatomy and Cellular Biology, Faculty of Medicine and Pharmacy, University of Mons, Mons 7000, Belgium; Department of Otorhinolaryngology, Faculty of Medicine, Free University of Brussels, Brussels 1000, Belgium
| |
Collapse
|
8
|
Macrophage Migration Inhibitory Factor Secretion Is Induced by Ionizing Radiation and Oxidative Stress in Cancer Cells. PLoS One 2016; 11:e0146482. [PMID: 26741693 PMCID: PMC4704778 DOI: 10.1371/journal.pone.0146482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 12/17/2015] [Indexed: 12/22/2022] Open
Abstract
The macrophage migration inhibitory factor (MIF) has been increasingly implicated in cancer development and progression by promoting inflammation, angiogenesis, tumor cell survival and immune suppression. MIF is overexpressed in a variety of solid tumor types in part due to its responsiveness to hypoxia inducible factor (HIF) driven transcriptional activation. MIF secretion, however, is a poorly understood process owing to the fact that MIF is a leaderless polypeptide that follows a non-classical secretory pathway. Better understanding of MIF processing and release could have therapeutic implications. Here, we have discovered that ionizing radiation (IR) and other DNA damaging stresses can induce robust MIF secretion in several cancer cell lines. MIF secretion by IR appears independent of ABCA1, a cholesterol efflux pump that has been implicated previously in MIF secretion. However, MIF secretion is robustly induced by oxidative stress. Importantly, MIF secretion can be observed both in cell culture models as well as in tumors in mice in vivo. Rapid depletion of MIF from tumor cells observed immunohistochemically is coincident with elevated circulating MIF detected in the blood sera of irradiated mice. Given the robust tumor promoting activities of MIF, our results suggest that an innate host response to genotoxic stress may mitigate the beneficial effects of cancer therapy, and that MIF inhibition may improve therapeutic responses.
Collapse
|
9
|
Nagarajan P, Tober KL, Riggenbach JA, Kusewitt DF, Lehman AM, Sielecki T, Pruitt J, Satoskar AR, Oberyszyn TM. MIF antagonist (CPSI-1306) protects against UVB-induced squamous cell carcinoma. Mol Cancer Res 2014; 12:1292-302. [PMID: 24850900 DOI: 10.1158/1541-7786.mcr-14-0255-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UNLABELLED Macrophage migration inhibitory factor (MIF) is a homotrimeric proinflammatory cytokine implicated in chronic inflammatory diseases and malignancies, including cutaneous squamous cell carcinomas (SCC). To determine whether MIF inhibition could reduce UVB light-induced inflammation and squamous carcinogenesis, a small-molecule MIF inhibitor (CPSI-1306) was utilized that disrupts homotrimerization. To examine the effect of CPSI-1306 on acute UVB-induced skin changes, Skh-1 hairless mice were systemically treated with CPSI-1306 for 5 days before UVB exposure. In addition to decreasing skin thickness and myeloperoxidase (MPO) activity, CPSI-1306 pretreatment increased keratinocyte apoptosis and p53 expression, decreased proliferation and phosphohistone variant H2AX (γ-H2AX), and enhanced repair of cyclobutane pyrimidine dimers. To examine the effect of CPSI-1306 on squamous carcinogenesis, mice were exposed to UVB for 10 weeks, followed by CPSI-1306 treatment for 8 weeks. CPSI-1306 dramatically decreased the density of UVB-associated p53 foci in non-tumor-bearing skin while simultaneously decreasing the epidermal Ki67 proliferation index. In addition to slowing the rate of tumor development, CPSI-1306 decreased the average tumor burden per mouse. Although CPSI-1306-treated mice developed only papillomas, nearly a third of papillomas in vehicle-treated mice progressed to microinvasive SCC. Thus, MIF inhibition is a promising strategy for prevention of the deleterious cutaneous effects of acute and chronic UVB exposure. IMPLICATIONS Macrophage migration inhibitory factor is a viable target for the prevention of UVB-induced cutaneous SSCs.
Collapse
Affiliation(s)
| | - Kathleen L Tober
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Judith A Riggenbach
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Donna F Kusewitt
- Department of Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Amy M Lehman
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - James Pruitt
- Cytokine PharmaSciences, King of Prussia, Pennsylvania
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tatiana M Oberyszyn
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
10
|
Kivisaari A, Kähäri VM. Squamous cell carcinoma of the skin: Emerging need for novel biomarkers. World J Clin Oncol 2013; 4:85-90. [PMID: 24926428 PMCID: PMC4053710 DOI: 10.5306/wjco.v4.i4.85] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/26/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023] Open
Abstract
The incidence of non-melanoma skin cancers (NMSC) is rising worldwide resulting in demand for clinically useful prognostic biomarkers for these malignant tumors, especially for invasive and metastatic cutaneous squamous cell carcinoma (cSCC). Important risk factors for the development and progression of cSCC include ultraviolet radiation, chronic skin ulcers and immunosuppression. Due to the role of cumulative long-term sun exposure, cSCC is usually a disease of the elderly, but the incidence is also growing in younger individuals due to increased recreational exposure to sunlight. Although clinical diagnosis of cSCC is usually easy and treatment with surgical excision curable, it is responsible for the majority of NMSC related deaths. Clinicians treating skin cancer patients are aware that certain cSCCs grow rapidly and metastasize, but the underlying molecular mechanisms responsible for the aggressive progression of a subpopulation of cSCCs remain incompletely understood. Recently, new molecular markers for progression of cSCC have been identified.
Collapse
|
11
|
Pazyar N, Feily A, Yaghoobi R. Macrophage migration inhibitory factor as an incriminating agent in dermatological disorders. Indian J Dermatol 2013; 58:157. [PMID: 23716815 PMCID: PMC3657225 DOI: 10.4103/0019-5154.108068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a critical immunoregulatory pluripotent cytokine. It has been re-evaluated as a proinflammatory cytokine, pituitary hormone and glucocorticoid-induced immunoregulatory protein. MIF exists in human epidermis, especially in the basal layer and also is expressed constitutively by monocytes/macrophages, T cells, B cells, endocrine, and epithelial cells. In the field of dermatology, MIF is believed to be a detrimental factor in inflammatory dermatological diseases including atopic dermatitis (AD), psoriasis, vitiligo, pemphigus vulgaris, bullous pemphigoid (BP), alopecia areata (AA) as well as other conditions such as photoaging, and photocarcinigenesis. The objective of this review is to gather and summarize MIF related disorders in dermatology and present valuable information for readers and researchers.
Collapse
Affiliation(s)
- Nader Pazyar
- Department of Dermatology, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | |
Collapse
|
12
|
Berman B, Cockerell CJ. Pathobiology of actinic keratosis: ultraviolet-dependent keratinocyte proliferation. J Am Acad Dermatol 2013; 68:S10-9. [PMID: 23228301 DOI: 10.1016/j.jaad.2012.09.053] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 02/04/2023]
Abstract
Actinic keratoses are proliferations of transformed neoplastic keratinocytes in the epidermis that are the result of cumulative ultraviolet (UV) radiation from sun exposure. They are commonly found on sites of sun-exposed skin such as the face, balding scalp, and back of the hand. Although UV exposure does exert certain beneficial effects on the skin, excessive exposure to UV radiation induces multiple cascades of molecular signaling events at the cellular level that produce inflammation, immunosuppression, failure of apoptosis, and aberrant differentiation. Cumulatively, these actions result in mutagenesis and, ultimately, carcinogenesis. This article provides a brief overview of the key mediators that are implicated in the pathobiology of actinic keratosis. Three evolutionary possibilities exist for these keratoses in the absence of treatment: (1) spontaneous remission, which can be common; (2) remaining stable, without further progression; or (3) transformation to invasive squamous cell carcinoma, which may metastasize. Because the effects of UV radiation on the skin are complex, it is not yet fully clear how all of the mediators of actinic keratosis progression are interrelated. Nonetheless, some represent potential therapeutic targets, because it is clear that directing therapy to the effects of UV radiation at a number of different levels could interrupt and possibly reverse the mechanisms leading to malignant transformation.
Collapse
Affiliation(s)
- Brian Berman
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | |
Collapse
|