1
|
López-Carrasco A, Vieco-Martí I, Granados-Aparici S, Acevedo-León D, Estañ-Capell N, Portugal R, Huerta-Aragonés J, Cañete A, Navarro S, Noguera R. Vitronectin Levels in the Plasma of Neuroblastoma Patients and Culture Media of 3D Models: A Prognostic Circulating Biomarker? Int J Mol Sci 2024; 25:8733. [PMID: 39201421 PMCID: PMC11354570 DOI: 10.3390/ijms25168733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Vitronectin is a glycoprotein present in plasma and the extracellular matrix that is implicated in cell migration. The high amount of vitronectin found in neuroblastoma biopsies has been associated with poor prognosis. Moreover, increased vitronectin levels have been described in the plasma of patients with different cancers. Our aim was to assess vitronectin as a potential circulating biomarker of neuroblastoma prognosis. Vitronectin concentration was quantified using ELISA in culture media of four neuroblastoma cell lines grown in a monolayer and in 3D models, and in the plasma of 114 neuroblastoma patients. Three of the neuroblastoma cell lines secreted vitronectin to culture media when cultured in a monolayer and 3D models. Vitronectin release was higher by neuroblastoma cells cultured in 3D models than in the monolayer and was still elevated when cells were grown in 3D scaffolds with cross-linked vitronectin. Vitronectin secretion occurred independently of cell numbers in cultures. Its concentration in the plasma of neuroblastoma patients ranged between 52.4 and 870 µg/mL (median, 218 µg/mL). A ROC curve was used to establish a cutoff of 361 µg/mL, above which patients over 18 months old had worse prognosis (p = 0.0018). Vitronectin could be considered a new plasma prognostic biomarker in neuroblastoma and warrants confirmation in collaborative studies. Drugs inhibiting vitronectin interactions with cells and/or the extracellular matrix could represent a significant improvement in survival for neuroblastoma patients.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Isaac Vieco-Martí
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Sofía Granados-Aparici
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
| | | | | | | | | | - Adela Cañete
- Politechnic and University Hospital La Fe, 46026 Valencia, Spain
| | - Samuel Navarro
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
- Pathology Department, Medical School, University of Valencia, 46010 Valencia, Spain
| | - Rosa Noguera
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
- Pathology Department, Medical School, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
2
|
Hsu CN, Liao WT, Chen WL, Chang-Chien GP, Lin S, Tain YL. Plasma and Urinary Platelet Factor 4 as Biomarkers for Cardiovascular Risk in Children with Chronic Kidney Disease. Biomedicines 2023; 11:3318. [PMID: 38137539 PMCID: PMC10741387 DOI: 10.3390/biomedicines11123318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Children suffering from chronic kidney disease (CKD) have a high risk of cardiovascular disease (CVD). The early detection and diagnosis of subclinical CVD in pediatric CKD can reduce mortality later in life. Plasma factor 4 (PF4) is a chemokine released by activated platelets. We examined whether or not PF4 in the plasma and urine, its kidney function normalized ratio, and fractional excretion have differential associations with CVD risk markers in 139 youths aged 3 to 18 years old with CKD stages G1-G4. Significant negative correlations were observed between plasma PF4 and cardiovascular surrogate markers, such as the left ventricular mass index (LVMI), carotid intima-media thickness (cIMT), and pulse wave velocity (PWV). The plasma PF4/creatinine (Cr) ratio was lower in CKD children with a high daytime BP and 24 h BP, high BP load, and nocturnal non-dipping status. After adjusting for confounders, the plasma PF4 and plasma PF4/Cr ratio still independently predicted an abnormal ABPM profile. In addition, both the plasma PF4 and plasma PF4/Cr ratio presented a negative correlation with the L-arginine and asymmetric dimethylarginine ratio. These findings provide convincing evidence supporting the link between PF4 and CVD markers in pediatric CKD. Our study highlights the importance of further research to assess the performance of PF4-related biomarkers in predicting CVD events and CKD progression in children with CKD.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Ting Liao
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (W.-T.L.); (W.-L.C.)
| | - Wei-Ling Chen
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (W.-T.L.); (W.-L.C.)
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (W.-T.L.); (W.-L.C.)
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
3
|
Ngo AT, Skidmore A, Oberg J, Yarovoi I, Sarkar A, Levine N, Bochenek V, Zhao G, Rauova L, Kowalska MA, Eckart K, Mangalmurti NS, Rux A, Cines DB, Poncz M, Gollomp K. Platelet factor 4 limits neutrophil extracellular trap- and cell-free DNA-induced thrombogenicity and endothelial injury. JCI Insight 2023; 8:e171054. [PMID: 37991024 PMCID: PMC10721321 DOI: 10.1172/jci.insight.171054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/02/2023] [Indexed: 11/23/2023] Open
Abstract
Plasma cell-free DNA (cfDNA), a marker of disease severity in sepsis, is a recognized driver of thromboinflammation and a potential therapeutic target. In sepsis, plasma cfDNA is mostly derived from neutrophil extracellular trap (NET) degradation. Proposed NET-directed therapeutic strategies include preventing NET formation or accelerating NET degradation. However, NET digestion liberates pathogens and releases cfDNA that promote thrombosis and endothelial cell injury. We propose an alternative strategy of cfDNA and NET stabilization with chemokine platelet factor 4 (PF4, CXCL4). We previously showed that human PF4 (hPF4) enhances NET-mediated microbial entrapment. We now show that hPF4 interferes with thrombogenicity of cfDNA and NETs by preventing their cleavage to short-fragment and single-stranded cfDNA that more effectively activates the contact pathway of coagulation. In vitro, hPF4 also inhibits cfDNA-induced endothelial tissue factor surface expression and von Willebrand factor release. In vivo, hPF4 expression reduced plasma thrombin-antithrombin (TAT) levels in animals infused with exogenous cfDNA. Following lipopolysaccharide challenge, Cxcl4-/- mice had significant elevation in plasma TAT, cfDNA, and cystatin C levels, effects prevented by hPF4 infusion. These results show that hPF4 interacts with cfDNA and NETs to limit thrombosis and endothelial injury, an observation of potential clinical benefit in the treatment of sepsis.
Collapse
Affiliation(s)
- Anh T.P. Ngo
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Abigail Skidmore
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jenna Oberg
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Irene Yarovoi
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amrita Sarkar
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nate Levine
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Veronica Bochenek
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Guohua Zhao
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lubica Rauova
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M. Anna Kowalska
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Institute of Medical Biology, Polish Academy of Science, Lodz, Poland
| | | | | | - Ann Rux
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas B. Cines
- Department of Medicine, and
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mortimer Poncz
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kandace Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Ngo ATP, Sarkar A, Yarovoi I, Levine ND, Bochenek V, Zhao G, Rauova L, Kowalska MA, Eckart K, Mangalmurti NS, Rux A, Cines DB, Poncz M, Gollomp K. Neutrophil extracellular trap stabilization by platelet factor 4 reduces thrombogenicity and endothelial cell injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.522931. [PMID: 36711969 PMCID: PMC9881987 DOI: 10.1101/2023.01.09.522931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neutrophil extracellular traps (NETs) are abundant in sepsis, and proposed NET-directed therapies in sepsis prevent their formation or accelerate degradation. Yet NETs are important for microbial entrapment, as NET digestion liberates pathogens and NET degradation products (NDPs) that deleteriously promote thrombosis and endothelial cell injury. We proposed an alternative strategy of NET-stabilization with the chemokine, platelet factor 4 (PF4, CXCL4), which we have shown enhances NET-mediated microbial entrapment. We now show that NET compaction by PF4 reduces their thrombogenicity. In vitro, we quantified plasma thrombin and fibrin generation by intact or degraded NETs and cell-free (cf) DNA fragments, and found that digested NETs and short DNA fragments were more thrombogenic than intact NETs and high molecular weight genomic DNA, respectively. PF4 reduced the thrombogenicity of digested NETs and DNA by interfering, in part, with contact pathway activation. In endothelial cell culture studies, short DNA fragments promoted von Willebrand factor release and tissue factor expression via a toll-like receptor 9-dependent mechanism. PF4 blocked these effects. Cxcl4-/- mice infused with cfDNA exhibited higher plasma thrombin anti-thrombin (TAT) levels compared to wild-type controls. Following challenge with bacterial lipopolysaccharide, Cxcl4-/- mice had similar elevations in plasma TAT and cfDNA, effects prevented by PF4 infusion. Thus, NET-stabilization by PF4 prevents the release of short fragments of cfDNA, limiting the activation of the contact coagulation pathway and reducing endothelial injury. These results support our hypothesis that NET-stabilization reduces pathologic sequelae in sepsis, an observation of potential clinical benefit.
Collapse
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amrita Sarkar
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Irene Yarovoi
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nate D. Levine
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Veronica Bochenek
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guohua Zhao
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lubica Rauova
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - M. Anna Kowalska
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kaitlyn Eckart
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nilam S. Mangalmurti
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ann Rux
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas B. Cines
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mortimer Poncz
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kandace Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Chok R, Turley E, Bruce A. Screening and diagnosis of heparin-induced thrombocytopenia in the pediatric population: A tertiary centre experience. Thromb Res 2021; 207:1-6. [PMID: 34482163 DOI: 10.1016/j.thromres.2021.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/31/2021] [Accepted: 08/19/2021] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Heparin-induced thrombocytopenia (HIT) is a life-threatening side effect of heparin necessitating immediate heparin discontinuation. A missed diagnosis of HIT carries significant morbidity and mortality, while overdiagnosis may result in unnecessary and potentially harmful use of alternative anticoagulants in the pediatric population. We aimed to determine the proportion of HIT screening tests at our pediatric tertiary care centre ultimately leading to a diagnosis of HIT by functional assay (either lumi-aggregometry or serotonin-release assay). We hypothesized that the frequency of HIT at our centre would be lower than that reported in the literature. MATERIALS AND METHODS We conducted a retrospective review including children aged 0 to 18 years who had HIT testing performed at our centre between 2010 and 2018 (N = 189; 51% female). A screening enzyme immunoassay, if positive, is followed by a functional assay which must be positive to establish the diagnosis of HIT. Data were analyzed to establish trends in demographic and clinical features of patients with a positive HIT screening test. Our primary outcome was the rate of HIT confirmed by functional testing amongst children screened for HIT from 2010 to 2018. RESULTS AND CONCLUSIONS There were 233 screening tests performed on 189 distinct patients. Only one patient (0.4%) received a diagnosis of HIT based on functional assay. This patient was a 16-year-old female later found to have a JAK2 mutation. The false positive rate of the enzyme immunoassay was 9.4% (N = 22). There were no positive enzyme immunoassay tests in the neonatal age group (N = 49). These results reinforce that HIT is rare in children.
Collapse
Affiliation(s)
- Rozalyn Chok
- Department of Pediatrics, University of Alberta, 11405-87th Avenue, Edmonton, Alberta T6G 1C9, Canada.
| | - Elona Turley
- Department of Laboratory Medicine and Pathology, Division of Hematological Pathology, University of Alberta Hospital and University of Alberta, 4B1. 19 Walter Mackenzie Centre, 8440-112 Street, Edmonton, Alberta T6G 2B7, Canada.
| | - Aisha Bruce
- Department of Pediatrics, Division of Hematology/Oncology, Stollery Children's Hospital and University of Alberta, 11405-87th Avenue, Edmonton, Alberta T6G 1C9, Canada.
| |
Collapse
|
6
|
|
7
|
Gollomp K, Sarkar A, Harikumar S, Seeholzer SH, Arepally GM, Hudock K, Rauova L, Kowalska MA, Poncz M. Fc-modified HIT-like monoclonal antibody as a novel treatment for sepsis. Blood 2020; 135:743-754. [PMID: 31722003 PMCID: PMC7059515 DOI: 10.1182/blood.2019002329] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/03/2019] [Indexed: 12/19/2022] Open
Abstract
Sepsis is characterized by multiorgan system dysfunction that occurs because of infection. It is associated with high morbidity and mortality and is in need of improved therapeutic interventions. Neutrophils play a crucial role in sepsis, releasing neutrophil extracellular traps (NETs) composed of DNA complexed with histones and toxic antimicrobial proteins that ensnare pathogens, but also damage host tissues. At presentation, patients often have a significant NET burden contributing to the multiorgan damage. Therefore, interventions that inhibit NET release would likely be ineffective at preventing NET-based injury. Treatments that enhance NET degradation may liberate captured bacteria and toxic NET degradation products (NDPs) and likely be of limited therapeutic benefit as well. We propose that interventions that stabilize NETs and sequester NDPs may be protective in sepsis. We showed that platelet factor 4 (PF4), a platelet-associated chemokine, binds and compacts NETs, increasing their resistance to DNase I. We now show that PF4 increases NET-mediated bacterial capture, reduces the release of NDPs, and improves outcome in murine models of sepsis. A monoclonal antibody KKO which binds to PF4-NET complexes, further enhances DNase resistance. However, the Fc portion of this antibody activates the immune response and increases thrombotic risk, negating any protective effects in sepsis. Therefore, we developed an Fc-modified KKO that does not induce these negative outcomes. Treatment with this antibody augmented the effects of PF4, decreasing NDP release and bacterial dissemination and increasing survival in murine sepsis models, supporting a novel NET-targeting approach to improve outcomes in sepsis.
Collapse
Affiliation(s)
- Kandace Gollomp
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Amrita Sarkar
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sanjiv Harikumar
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Steven H Seeholzer
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | - Kristin Hudock
- Department of Internal Medicine, University of Cincinnati School of Medicine, Cincinnati, OH; and
| | - Lubica Rauova
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - M Anna Kowalska
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Institute of Medical Biology, Polish Academy of Science, Lodz, Poland
| | - Mortimer Poncz
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
8
|
Sobczak AIS, Pitt SJ, Stewart AJ. Glycosaminoglycan Neutralization in Coagulation Control. Arterioscler Thromb Vasc Biol 2018; 38:1258-1270. [PMID: 29674476 PMCID: PMC5965931 DOI: 10.1161/atvbaha.118.311102] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/05/2018] [Indexed: 01/22/2023]
Abstract
The glycosaminoglycans (GAGs) heparan sulfate, dermatan sulfate, and heparin are important anticoagulants that inhibit clot formation through interactions with antithrombin and heparin cofactor II. Unfractionated heparin, low-molecular-weight heparin, and heparin-derived drugs are often the main treatments used clinically to handle coagulatory disorders. A wide range of proteins have been reported to bind and neutralize these GAGs to promote clot formation. Such neutralizing proteins are involved in a variety of other physiological processes, including inflammation, transport, and signaling. It is clear that these interactions are important for the control of normal coagulation and influence the efficacy of heparin and heparin-based therapeutics. In addition to neutralization, the anticoagulant activities of GAGs may also be regulated through reduced synthesis or by degradation. In this review, we describe GAG neutralization, the proteins involved, and the molecular processes that contribute to the regulation of anticoagulant GAG activity.
Collapse
Affiliation(s)
- Amélie I S Sobczak
- From the School of Medicine, University of St Andrews, Fife, United Kingdom
| | - Samantha J Pitt
- From the School of Medicine, University of St Andrews, Fife, United Kingdom
| | - Alan J Stewart
- From the School of Medicine, University of St Andrews, Fife, United Kingdom.
| |
Collapse
|
9
|
Patricia Massicotte M, Bauman ME. Developmental hemostasis and ventricular assist devices: A troubled relationship. PROGRESS IN PEDIATRIC CARDIOLOGY 2017. [DOI: 10.1016/j.ppedcard.2017.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Hepponstall M, Chan A, Monagle P. Anticoagulation therapy in neonates, children and adolescents. Blood Cells Mol Dis 2017; 67:41-47. [DOI: 10.1016/j.bcmd.2017.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 01/29/2023]
|
11
|
Poole-Smith BK, Gilbert A, Gonzalez AL, Beltran M, Tomashek KM, Ward BJ, Hunsperger EA, Ndao M. Discovery and characterization of potential prognostic biomarkers for dengue hemorrhagic fever. Am J Trop Med Hyg 2014; 91:1218-26. [PMID: 25349378 DOI: 10.4269/ajtmh.14-0193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Half a million patients are hospitalized with severe dengue every year, many of whom would die without timely, appropriate clinical intervention. The majority of dengue cases are uncomplicated; however, 2-5% progress to severe dengue. Severe dengue cases have been reported with increasing frequency over the last 30 years. To discover biomarkers for severe dengue, we used surface-enhanced laser desorption/ionization time-of-flight mass spectrometry to analyze dengue virus positive serum samples from the acute phase of infection. Using this method, 16 proteins were identified as candidate biomarkers for severe dengue. From these 16 biomarkers, three candidates were selected for confirmation by enzyme-linked immunosorbent assay and Western blot: vitronectin (Vtn, 55.1 kDa), hemopexin (Hx, 52.4 kDa), and serotransferrin (Tf, 79.2 kDa). Vitronectin, Hx, and Tf best differentiated between dengue and severe dengue.
Collapse
Affiliation(s)
- B Katherine Poole-Smith
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Alexa Gilbert
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Andrea L Gonzalez
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Manuela Beltran
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Kay M Tomashek
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Brian J Ward
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Elizabeth A Hunsperger
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Momar Ndao
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| |
Collapse
|
12
|
Yip C, García A. Exploring the potential of platelet proteomics in children. Proteomics Clin Appl 2014; 8:807-12. [PMID: 25090967 DOI: 10.1002/prca.201400048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/04/2014] [Accepted: 07/31/2014] [Indexed: 01/04/2023]
Abstract
Proteomics is a rapidly evolving ''post-genomic'' science utilizing advanced technologies in protein separation, identification, quantitation and heavily relying on bioinformatics. Proteomic research in pediatrics is important and most of the successes thus far are seen in research that utilize samples that require less invasive procedures and focus on prevailing childhood diseases such as acute lymphoblastic leukaemia and neuroblastoma. Recent advances in proteomics are helping to elucidate platelet processes that are relevant to bleeding and clotting disorders, as well as other important roles of platelets such as in angiogenesis and inflammation. Nevertheless, most of platelet proteome data obtained to date are derived from the adult population and the potential of platelet proteomic application in children has not yet been explored. As it happens in all research fields, there are additional challenges in studying children such as procuring sufficient biological samples and access to less common disease cohorts as compared to in adults. Furthermore, many of the prevalent platelet-mediated diseases in adults, such as coronary heart disease and atherosclerotic lesions, are believed to have origins during childhood. Hence, platelet proteomic research in children may reveal some important information on how platelet plays a role in the pathogenesis of disease. In this article, we refer to the current knowledge from platelet proteomic research strategies in adults and address the specific concerns in the study of pediatric samples.
Collapse
Affiliation(s)
- Christina Yip
- Department of Laboratory Medicine, Division of Haematology, National University Hospital, Singapore
| | | |
Collapse
|
13
|
Abstract
Thromboembolic episodes are disorders encountered in both children and adults, but relatively more common in adults. However, the occurrence of venous thromboembolism and use of anticoagulants in pediatrics are increasing. Unfractionated Heparin (UH) is used as a treatment and prevention of thrombosis in adults and critically ill children. Heparin utilization in pediatric is limited by many factors and the most important ones are Heparin Induced Thrombocytopenia (HIT) and anaphylaxis. However, Low Molecular Weight Heparin (LMWH) appears to be an effective and safe alternative treatment. Hence, it is preferred over than UH due to favorable pharmacokinetic and side effect profile. Direct Thrombin Inhibitors (DTI) is a promising class over the other anticoagulants since it offers potential advantages. The aim of this review is to discuss the differences between adult and pediatric thromboembolism and to review the current anticoagulants in terms of pharmacological action, doses, drug reactions, pharmacokinetics, interactions, and parameters. This review also highlights the differences between old and new anticoagulant therapy in pediatrics.
Collapse
Affiliation(s)
- Mariam K Dabbous
- Department of Pharmacy Practice, School of Pharmacy, Lebanese International University, Beirut, Lebanon
| | - Fouad R Sakr
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Beirut, Lebanon
| | - Diana N Malaeb
- Department of PharmD, School of Pharmacy, Lebanese International University, Beirut, Lebanon
| |
Collapse
|
14
|
Aslan S, Ikitimur B, Cakmak HA, Karadag B, Tufekcioglu EY, Ekmekci H, Yuksel H. Prognostic utility of serum vitronectin levels in acute myocardial infarction. Herz 2014; 40:685-9. [PMID: 24823429 DOI: 10.1007/s00059-014-4105-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/19/2014] [Accepted: 04/12/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Vitronectin (VN) functions as a regulator of platelet adhesion and aggregation, coagulation, and fibrinolysis. The aim of this study was to assess the prognostic significance of serum VN levels in patients with acute myocardial infarction (MI). METHODS In this study 62 patients admitted with ST-elevation myocardial infarction (STEMI), or non-ST-elevation myocardial infarction (NSTEMI) were enrolled. Serum VN levels were measured within 6 h after onset of chest pains. RESULTS The VN serum levels were higher in MI patients with a mean of 2.257 µg/ml (range 1.541-4.493 µg/ml) in the STEMI group, 1.785 µg/ml (range 1.372-4.113 µg/ml) in the NSTEMI group, and 1.222 µg/ml (range 1.033-1.466 µg/ml) in the controls (p = 0.012). Major adverse cardiovascular events could be predicted at 6 months using VN levels independently of other variables [odds ratio (OR) 9.87, 95 % confidence interval (CI) 2.54-47.37, p = 0.001]. There was a significant positive correlation between VN levels and the Gensini score in NSTEMI patients (r = 0.436, p = 0.013). CONCLUSION The VN level may be relevant as a clinical biomarker for adverse cardiovascular outcomes not only in patients with ischemic heart disease undergoing coronary interventions, as previously reported, but also in coronary artery disease patients presenting with acute MI.
Collapse
Affiliation(s)
- S Aslan
- Cerrahpasa Medical Faculty, Department of Cardiology, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
15
|
Avila ML, Shah V, Brandão LR. Systematic review on heparin-induced thrombocytopenia in children: a call to action. J Thromb Haemost 2013; 11:660-9. [PMID: 23350790 DOI: 10.1111/jth.12153] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 01/20/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND Heparin-induced thrombocytopenia (HIT) has increasingly been reported in children as an indication for use of new alternative anticoagulant drugs (NAADs). OBJECTIVES To systematically review the literature regarding: (i) the incidence and prevalence of seroconversion and HIT and (ii) the clinical/laboratory findings and management of HIT in children. DESIGN/METHODS MEDLINE and EMBASE databases were searched for studies that reported pediatric cases of HIT. Methodological reliability assessment of studies was performed with the Loney scale. RESULTS The incidence of seroconversion in neonates ranged between 0% and 1.7%. There were no cases of neonatal HIT in the included cohorts. The incidence range of seroconversion in the non-neonatal population was 1.3-52%. The incidence of HIT in non-neonates after cardiopulmonary bypass was 0.33% (95%CI, < 0.01-2.04). Whereas more than half of pediatric cases labeled as HIT (30/52) did not include pivotal features of this syndrome, 80% of them received NAADs. CONCLUSION The incidence of HIT is likely to have been overestimated in children, leading to potential misuse of NAADs in many cases. Clinical findings and laboratory assessment of pediatric cases are poorly described in the literature at present. Thorough laboratory investigation, proper reporting of cases and adequate design of studies are mandatory to elucidate the clinical/laboratory picture of pediatric HIT.
Collapse
Affiliation(s)
- M L Avila
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | |
Collapse
|
16
|
Serum vitronectin levels in patients with Behçet’s disease. Inflamm Res 2012; 61:1241-6. [DOI: 10.1007/s00011-012-0521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/06/2012] [Accepted: 06/22/2012] [Indexed: 11/26/2022] Open
|
17
|
Monagle P, Chan AKC, Goldenberg NA, Ichord RN, Journeycake JM, Nowak-Göttl U, Vesely SK. Antithrombotic therapy in neonates and children: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141:e737S-e801S. [PMID: 22315277 DOI: 10.1378/chest.11-2308] [Citation(s) in RCA: 1014] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Neonates and children differ from adults in physiology, pharmacologic responses to drugs, epidemiology, and long-term consequences of thrombosis. This guideline addresses optimal strategies for the management of thrombosis in neonates and children. METHODS The methods of this guideline follow those described in the Methodology for the Development of Antithrombotic Therapy and Prevention of Thrombosis Guidelines: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. RESULTS We suggest that where possible, pediatric hematologists with experience in thromboembolism manage pediatric patients with thromboembolism (Grade 2C). When this is not possible, we suggest a combination of a neonatologist/pediatrician and adult hematologist supported by consultation with an experienced pediatric hematologist (Grade 2C). We suggest that therapeutic unfractionated heparin in children is titrated to achieve a target anti-Xa range of 0.35 to 0.7 units/mL or an activated partial thromboplastin time range that correlates to this anti-Xa range or to a protamine titration range of 0.2 to 0.4 units/mL (Grade 2C). For neonates and children receiving either daily or bid therapeutic low-molecular-weight heparin, we suggest that the drug be monitored to a target range of 0.5 to 1.0 units/mL in a sample taken 4 to 6 h after subcutaneous injection or, alternatively, 0.5 to 0.8 units/mL in a sample taken 2 to 6 h after subcutaneous injection (Grade 2C). CONCLUSIONS The evidence supporting most recommendations for antithrombotic therapy in neonates and children remains weak. Studies addressing appropriate drug target ranges and monitoring requirements are urgently required in addition to site- and clinical situation-specific thrombosis management strategies.
Collapse
Affiliation(s)
- Paul Monagle
- Haematology Department, The Royal Children's Hospital, Department of Paediatrics, The University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Anthony K C Chan
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Neil A Goldenberg
- Department of Pediatrics, Section of Hematology/Oncology/Bone Marrow Transplantation and Mountain States Regional Hemophilia and Thrombosis Center, University of Colorado, Aurora, CO
| | - Rebecca N Ichord
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Janna M Journeycake
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Ulrike Nowak-Göttl
- Thrombosis and Hemostasis Unit, Institute of Clinical Chemistry, University Hospital Kiel, Kiel, Germany
| | - Sara K Vesely
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK.
| |
Collapse
|
18
|
Abstract
Abstract
The diagnosis and management of heparin-induced thrombocytopenia (HIT) in pediatric patients poses significant challenges. The cardinal findings in HIT, thrombocytopenia and thrombosis with heparin exposure, are seen commonly in critically ill children, but are most often secondary to etiologies other than HIT. However, without prompt diagnosis, discontinuation of heparin, and treatment with an alternative anticoagulant such as a direct thrombin inhibitor (DTI), HIT can result in life- and limb-threatening thrombotic complications. Conversely, DTIs are associated with higher bleeding risks than heparin in adults and their anticoagulant effects are not rapidly reversible; furthermore, the experience with their use in pediatrics is limited. Whereas immunoassays are widely available to aid in diagnosis, they carry a significant false positive rate. Age-dependent differences in the coagulation and immune system may potentially affect manifestations of HIT in children, but have not been extensively examined. In this chapter, diagnostic approaches and management strategies based on a synthesis of the available pediatric studies and adult literature on HIT are discussed.
Collapse
|
19
|
Monagle P, Newall F, Campbell J. Anticoagulation in neonates and children: Pitfalls and dilemmas. Blood Rev 2010; 24:151-62. [PMID: 20663595 DOI: 10.1016/j.blre.2010.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anticoagulation in children is problematic for many reasons, related to the patient population as well as the anticoagulant drugs themselves. This paper describes the multitude of reasons why providing anticoagulation therapy in children is different from anticoagulation therapy in adults, and hence why dedicated paediatric anticoagulant services are the ideal structure to provide this service. The paper then describes the three most common anticoagulants used in children, and details specifically what is and is not known about them in the paediatric population. Finally the paper addresses the issue of how best to introduce newer anticoagulant drugs into the paediatric population. There remains much research to be done in this field, in the meantime clinicians need to carefully consider the evidence available to them and manage each individual patient accordingly.
Collapse
Affiliation(s)
- Paul Monagle
- Department of Clinical Haematology, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | | | | |
Collapse
|
20
|
Titz B, Dietrich S, Sadowski T, Beck C, Petersen A, Sedlacek R. Activity of MMP-19 inhibits capillary-like formation due to processing of nidogen-1. Cell Mol Life Sci 2004; 61:1826-33. [PMID: 15241558 PMCID: PMC11138908 DOI: 10.1007/s00018-004-4105-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinase 19 (MMP-19) is able to process various proteins of the basement membrane. To investigate the impact of MMP-19 activity on endothelial cells in the context of tumor extracellular matrix (ECM), we treated Matrigel matrix with an active recombinant MMP-19 and analyzed its effect on capillary-like formation. Human microvascular endothelial cells (HMEC-1) could not form capillary-like formation on Matrigel treated with recombinant MMP-19. Analyzing the Matrigel proteins, we found that MMP-19 preferentially cleaved nidogen-1. The cleavage site of nidogen-1 was mapped to Thr867-Leu868. This cleavage separates the G3 globular domain containing the binding site for the gamma1 chain of laminin-1 and collagen IV and thus abolishes the capacity of nidogen-1 to cross-link ECM proteins. Anti-nidogen antibodies directed against the G3 domain of nidogen-1 inhibited the capillary-like structure formation to a similar extent as MMP-19. Since nidogen-1 is thought to stabilize microvessels, MMP-19 might be one of the enzymes that interferes with stabilization or maturation of nascent vasculature.
Collapse
Affiliation(s)
- B. Titz
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - S. Dietrich
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - T. Sadowski
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - C. Beck
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - A. Petersen
- Biochemische und Molekulare Allergologie, Forschungszentrum Borstel, Parkallee 22, 23848 Borstel, Germany
| | - R. Sedlacek
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| |
Collapse
|