1
|
Atazadegan MA, Bagherniya M, Askari G, Tasbandi A, Sahebkar A. The Effects of Medicinal Plants and Bioactive Natural Compounds on Homocysteine. Molecules 2021; 26:3081. [PMID: 34064073 PMCID: PMC8196702 DOI: 10.3390/molecules26113081] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Among non-communicable diseases, cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity in global communities. By 2030, CVD-related deaths are projected to reach a global rise of 25 million. Obesity, smoking, alcohol, hyperlipidemia, hypertension, and hyperhomocysteinemia are several known risk factors for CVDs. Elevated homocysteine is tightly related to CVDs through multiple mechanisms, including inflammation of the vascular endothelium. The strategies for appropriate management of CVDs are constantly evolving; medicinal plants have received remarkable attention in recent researches, since these natural products have promising effects on the prevention and treatment of various chronic diseases. The effects of nutraceuticals and herbal products on CVD/dyslipidemia have been previously studied. However, to our knowledge, the association between herbal bioactive compounds and homocysteine has not been reviewed in details. Thus, the main objective of this study is to review the efficacy of bioactive natural compounds on homocysteine levels according to clinical trials and animal studies. RESULTS Based on animal studies, black and green tea, cinnamon, resveratrol, curcumin, garlic extract, ginger, and soy significantly reduced the homocysteine levels. According to the clinical trials, curcumin and resveratrol showed favorable effects on serum homocysteine. In conclusion, this review highlighted the beneficial effects of medicinal plants as natural, inexpensive, and accessible agents on homocysteine levels based on animal studies. Nevertheless, the results of the clinical trials were not uniform, suggesting that more well-designed trials are warranted.
Collapse
Affiliation(s)
- Mohammad Amin Atazadegan
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Gholamreza Askari
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
2
|
Subramanian MS, Nandagopal MS G, Amin Nordin S, Thilakavathy K, Joseph N. Prevailing Knowledge on the Bioavailability and Biological Activities of Sulphur Compounds from Alliums: A Potential Drug Candidate. Molecules 2020; 25:molecules25184111. [PMID: 32916777 PMCID: PMC7570905 DOI: 10.3390/molecules25184111] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/15/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022] Open
Abstract
Allium sativum (garlic) is widely known and is consumed as a natural prophylactic worldwide. It produces more than 200 identified chemical compounds, with more than 20 different kinds of sulfide compounds. The sulfide compounds particularly are proven to contribute to its various biological roles and pharmacological properties such as antimicrobial, antithrombotic, hypoglycemic, antitumour, and hypolipidemic. Therefore, it is often referred as disease-preventive food. Sulphur-containing compounds from A. sativum are derivatives of S-alkenyl-l-cysteine sulfoxides, ajoene molecules, thiosulfinates, sulfides, and S-allylcysteine. This review presents an overview of the water-soluble and oil-soluble sulphur based phytochemical compounds present in garlic, highlighting their mechanism of action in treating various health conditions. However, its role as a therapeutic agent should be extensively studied as it depends on factors such as the effective dosage and the suitable method of preparation.
Collapse
Affiliation(s)
- Murugan Sesha Subramanian
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.S.S.); (S.A.N.)
| | - Giri Nandagopal MS
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India;
| | - Syafinaz Amin Nordin
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.S.S.); (S.A.N.)
| | - Karuppiah Thilakavathy
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Narcisse Joseph
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.S.S.); (S.A.N.)
- Correspondence:
| |
Collapse
|
3
|
Natural Hydrogen Sulfide Donors from Allium sp. as a Nutraceutical Approach in Type 2 Diabetes Prevention and Therapy. Nutrients 2019; 11:nu11071581. [PMID: 31336965 PMCID: PMC6682899 DOI: 10.3390/nu11071581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
Type 2 diabetes mellitus (DM) is a socially relevant chronic disease with high prevalence worldwide. DM may lead to several vascular, macrovascular, and microvascular complications (cerebrovascular, coronary artery, and peripheral arterial diseases, retinopathy, neuropathy, and nephropathy), often accelerating the progression of atherosclerosis. Dietary therapy is generally considered to be the first step in the treatment of diabetic patients. Among the current therapeutic options, such as insulin therapy and hypoglycemic drugs, in recent years, attention has been shifting to the effects and properties-that are still not completely known-of medicinal plants as valid and inexpensive therapeutic supports with limited side effects. In this review, we report the relevant effects of medicinal plants and nutraceuticals in diabetes. In particular, we paid attention to the organosulfur compounds (OSCs) present in plant extracts that due to their antioxidant, hypoglycemic, anti-inflammatory, and immunomodulatory effects, can contribute as cardioprotective agents in type 2 DM. OSCs derived from garlic (Allium sp.), due to their properties, can represent a valuable support to the diet in type 2 DM, as outlined in this manuscript based on both in vitro and in vivo studies. Moreover, a relevant characteristic of garlic OSCs is their ability to produce the gasotransmitter H2S, and many of their effects can be explained by this property. Indeed, in recent years, several studies have demonstrated the relevant effects of endogenous and exogenous H2S in human DM, including by in vitro and in vivo experiments and clinical trials; therefore, here, we summarize the effects and the underlying molecular mechanisms of H2S and natural H2S donors.
Collapse
|
4
|
Salehi B, Zucca P, Orhan IE, Azzini E, Adetunji CO, Mohammed SA, Banerjee SK, Sharopov F, Rigano D, Sharifi-Rad J, Armstrong L, Martorell M, Sureda A, Martins N, Selamoğlu Z, Ahmad Z. Allicin and health: A comprehensive review. Trends Food Sci Technol 2019; 86:502-516. [DOI: 10.1016/j.tifs.2019.03.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Mohammed A, Islam MS. Spice-Derived Bioactive Ingredients: Potential Agents or Food Adjuvant in the Management of Diabetes Mellitus. Front Pharmacol 2018; 9:893. [PMID: 30186162 PMCID: PMC6113848 DOI: 10.3389/fphar.2018.00893] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/23/2018] [Indexed: 01/31/2023] Open
Abstract
Spices possess tremendous therapeutic potential including hypoglycemic action, attributed to their bioactive ingredients. However, there is no study that critically reviewed the hypoglycemic potency, safety and the bioavailability of the spice-derived bioactive ingredients (SDBI). Therefore, the aim of the study was to comprehensively review all published studies regarding the hypoglycemic action of SDBI with the purpose to assess whether the ingredients are potential hypoglycemic agents or adjuvant. Factors considered were concentration/dosages used, the extent of blood glucose reduction, the IC50 values, and the safety concern of the SDBI. From the results, cinnamaldehyde, curcumin, diosgenin, thymoquinone (TQ), and trigonelline were showed the most promising effects and hold future potential as hypoglycemic agents. Conclusively, future studies should focus on improving the tissue and cellular bioavailability of the promising SDBI to achieve greater potency. Additionally, clinical trials and toxicity studies are with these SDBI are warranted.
Collapse
Affiliation(s)
- Aminu Mohammed
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Selected Phyto and Marine Bioactive Compounds: Alternatives for the Treatment of Type 2 Diabetes. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64068-0.00004-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Zeng Y, Li Y, Yang J, Pu X, Du J, Yang X, Yang T, Yang S. Therapeutic Role of Functional Components in Alliums for Preventive Chronic Disease in Human Being. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:9402849. [PMID: 28261311 PMCID: PMC5316450 DOI: 10.1155/2017/9402849] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/11/2017] [Indexed: 12/13/2022]
Abstract
Objectives. Functional components in alliums have long been maintained to play a key role in modifying the major risk factors for chronic disease. To obtain a better understanding of alliums for chronic disease prevention, we conducted a systematic review for risk factors and prevention strategies for chronic disease of functional components in alliums, based on a comprehensive English literature search that was conducted using various electronic search databases, especially the PubMed, ISI Web of Science, and CNKI for the period 2007-2016. Allium genus especially garlic, onion, and Chinese chive is rich in organosulfur compounds, quercetin, flavonoids, saponins, and others, which have anticancer, preventive cardiovascular and heart diseases, anti-inflammation, antiobesity, antidiabetes, antioxidants, antimicrobial activity, neuroprotective and immunological effects, and so on. These results support Allium genus; garlic and onion especially may be the promising dietotherapeutic vegetables and organopolysulfides as well as quercetin mechanism in the treatment of chronic diseases. This review may be used as scientific basis for the development of functional food, nutraceuticals, and alternative drugs to improve the chronic diseases.
Collapse
Affiliation(s)
- Yawen Zeng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Yuping Li
- Yuxi Agriculture Vocation-Technical College, Yunnan, Yuxi 653106, China
| | - Jiazhen Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
- Kunming Tiankang Science & Technology Limited Company, Yunnan, Kunming 650231, China
| | - Xiaoying Pu
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Juan Du
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Xiaomeng Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Tao Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Shuming Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| |
Collapse
|
8
|
Mikaili P, Maadirad S, Moloudizargari M, Aghajanshakeri S, Sarahroodi S. Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2013; 16:1031-48. [PMID: 24379960 PMCID: PMC3874089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE(S) Garlic (Allium sativum L. family Liliaceae) is well known in Iran and its leaves, flowers, and cloves have been used in traditional medicine for a long time. Research in recent decades has shown widespread pharmacological effects of A. sativum and its organosulfur compounds especially Allicin. Studies carried out on the chemical composition of the plant show that the most important constituents of this plant are organosulfur compounds such as allicin, diallyl disulphide, S-allylcysteine, and diallyl trisulfide. Allicin represents one of the most studied among these naturally occurring compounds. In addition to A. sativum, these compounds are also present in A. hirtifolium (shallot) and have been used to treat various diseases. This article reviews the pharmacological effects and traditional uses of A. sativum, A. hirtifolium, and their active constituents to show whether or not they can be further used as potential natural sources for the development of novel drugs. MATERIALS AND METHODS For this purpose, the authors went through a vast number of sources and articles and all needed data was gathered. The findings were reviewed and classified on the basis of relevance to the topic and a summary of all effects were reported as tables. CONCLUSION Garlic and shallots are safe and rich sources of biologically active compounds with low toxicity. Further studies are needed to confirm the safety and quality of the plants to be used by clinicians as therapeutic agents.
Collapse
Affiliation(s)
- Peyman Mikaili
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Surush Maadirad
- Urmia University, Faculty of Veterinary Medicine, Urmia, Iran
| | - Milad Moloudizargari
- * Corresponding author: Milad Moloudizargari.Urmia University, Faculty of Veterinary Medicine, Urmia, Iran.
| | | | - Shadi Sarahroodi
- Department of Physiology and Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
9
|
Garlic (Allium sativum) down-regulates the expression of angiotensin II AT1 receptor in adrenal and renal tissues of streptozotocin-induced diabetic rats. Inflammopharmacology 2012; 21:147-59. [DOI: 10.1007/s10787-012-0139-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 05/16/2012] [Indexed: 01/11/2023]
|
10
|
Berginc K, Kristl A. The effect of garlic supplements and phytochemicals on the ADMET properties of drugs. Expert Opin Drug Metab Toxicol 2012; 8:295-310. [PMID: 22313151 DOI: 10.1517/17425255.2012.659662] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Garlic supplements have received wide public attention because of their health-beneficial effects. Although these products are considered as innocuous, several case reports and studies have shown the capacity of individual garlic phytochemicals/supplements to interfere with drug pharmacokinetics. AREAS COVERED This review covers recently published literature on garlic chemistry and composition, and provides a thorough review of published studies evaluating drug-garlic interactions. The authors illustrate the mechanisms underlying pharmacokinetic interactions, which could serve as important highlights in further research to explain results for drugs with narrow therapeutic indices or for drugs, utilizing multiple absorption, distribution and metabolism pathways. EXPERT OPINION To increase the relevance of further research on safety and efficacy of garlic supplements and phytochemicals, their composition should be addressed before conducting in vitro or in vivo research. It is also strongly recommended to characterize in vitro formulation performance to assess the rate and extent of garlic phytochemical release in order to anticipate the in vivo impact on the pharmacokinetics of concomitantly consumed drugs. The main conclusion of this review is that the impact of garlic on different stages of pharmacokinetics, especially on drug absorption and metabolism, is drug specific and dependent on the type/quality of utilized supplement.
Collapse
Affiliation(s)
- Katja Berginc
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
11
|
Rosenthal T, Younis F, Alter A. Combating Combination of Hypertension and Diabetes in Different Rat Models. Pharmaceuticals (Basel) 2010; 3:916-939. [PMID: 27713282 PMCID: PMC4034014 DOI: 10.3390/ph3040916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/04/2010] [Accepted: 03/18/2010] [Indexed: 12/18/2022] Open
Abstract
Rat experimental models are used extensively for studying physiological mechanisms and treatments of hypertension and diabetes co-existence. Each one of these conditions is a major risk factor for cardiovascular disease (CVD), and the combination of the two conditions is a potent enhancer of CVD. Five major animal models that advanced our understanding of the mechanisms and therapeutic approaches in humans are discussed in this review: Zucker, Goto-Kakizaki, SHROB, SHR/NDmcr-cp and Cohen Rosenthal diabetic hypertensive (CRDH) rats. The use of various drugs, such as angiotensin-converting enzyme (ACE) inhibitors (ACEIs), various angiotensin receptor blockers (ARBs), and calcium channel blockers (CCBs), to combat the effects of concomitant pathologies on the combination of diabetes and hypertension, as well as the non-pharmacological approach are reviewed in detail for each rat model. Results from experiments on these models indicate that classical factors contributing to the pathology of hypertension and diabetes combination—Including hypertension, hyperglycemia, hyperinsulinemia and hyperlipidemia—can now be treated, although these treatments do not completely prevent renal complications. Animal studies have focused on several mechanisms involved in hypertension/diabetes that remain to be translated into clinical medicine, including hypoxia, oxidative stress, and advanced glycation. Several target molecules have been identified that need to be incorporated into a treatment modality. The challenge continues to be the identification and interpretation of the clinical evidence from the animal models and their application to human treatment.
Collapse
Affiliation(s)
- Talma Rosenthal
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Israel.
| | - Firas Younis
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Israel.
| | - Ariela Alter
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Israel.
| |
Collapse
|