1
|
Turocy T, Crawford JM. Bacterial small molecule metabolites implicated in gastrointestinal cancer development. Nat Rev Microbiol 2024:10.1038/s41579-024-01103-4. [PMID: 39375475 DOI: 10.1038/s41579-024-01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/09/2024]
Abstract
Numerous associations have been identified between cancer and the composition and function of the human microbiome. As cancer remains the second leading global cause of mortality, investigating the carcinogenic contributions of microbiome members could advance our understanding of cancer risk and support potential therapeutic interventions. Although fluctuations in bacterial species have been associated with cancer progression, studying their small molecule metabolites offers one avenue to establish support for causal relationships and the molecular mechanisms governing host-microorganism interactions. In this Review, we explore the expanding repertoire of small molecule metabolites and their mechanisms implicated in the risk of developing gastrointestinal cancers.
Collapse
Affiliation(s)
- Tayah Turocy
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Gallo J, Villasante A. Recent Advances in Biomimetic Nanocarrier-Based Photothermal Therapy for Cancer Treatment. Int J Mol Sci 2023; 24:15484. [PMID: 37895165 PMCID: PMC10607206 DOI: 10.3390/ijms242015484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Nanomedicine presents innovative solutions for cancer treatment, including photothermal therapy (PTT). PTT centers on the design of photoactivatable nanoparticles capable of absorbing non-toxic near-infrared light, generating heat within target cells to induce cell death. The successful transition from benchside to bedside application of PTT critically depends on the core properties of nanoparticles responsible for converting light into heat and the surface properties for precise cell-specific targeting. Precisely targeting the intended cells remains a primary challenge in PTT. In recent years, a groundbreaking approach has emerged to address this challenge by functionalizing nanocarriers and enhancing cell targeting. This strategy involves the creation of biomimetic nanoparticles that combine desired biocompatibility properties with the immune evasion mechanisms of natural materials. This review comprehensively outlines various strategies for designing biomimetic photoactivatable nanocarriers for PTT, with a primary focus on its application in cancer therapy. Additionally, we shed light on the hurdles involved in translating PTT from research to clinical practice, along with an overview of current clinical applications.
Collapse
Affiliation(s)
- Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal;
| | - Aranzazu Villasante
- Nanobioengineering Lab, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Tomisch J, Busse V, Rosato F, Makshakova ON, Salavei P, Kittel AS, Gillon E, Lataster L, Imberty A, Meléndez AV, Römer W. A Shiga Toxin B-Subunit-Based Lectibody Boosts T Cell Cytotoxicity towards Gb3-Positive Cancer Cells. Cells 2023; 12:1896. [PMID: 37508560 PMCID: PMC10378424 DOI: 10.3390/cells12141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Aberrant glycosylation plays a crucial role in tumour progression and invasiveness. Tumour-associated carbohydrate antigens (TACAs) represent a valuable set of targets for immunotherapeutic approaches. The poor immunogenicity of glycan structures, however, requires a more effective and well-directed way of targeting TACAs on the surface of cancer cells than antibodies. The glycosphingolipid globotriaosylceramide (Gb3) is a well-established TACA present in a multitude of cancer types. Its overexpression has been linked to metastasis, invasiveness, and multidrug resistance. In the present study, we propose to use a dimeric fragment of the Shiga toxin B-subunit (StxB) to selectively target Gb3-positive cancer cells in a StxB-scFv UCHT1 lectibody. The lectibody, comprised of a lectin and the UCHT1 antibody fragment, was produced in E. coli and purified via Ni-NTA affinity chromatography. Specificity of the lectibody towards Gb3-positive cancer cell lines and specificity towards the CD3 receptor on T cells, was assessed using flow cytometry. We evaluated the efficacy of the lectibody in redirecting T cell cytotoxicity towards Gb3-overexpressing cancer cells in luciferase-based cytotoxicity in vitro assays. The StxB-scFv UCHT1 lectibody has proven specific for Gb3 and could induce the killing of up to 80% of Gb3-overexpressing cancer cells in haemorrhagic and solid tumours. The lectibody developed in this study, therefore, highlights the potential that lectibodies and lectins in general have for usage in immunotherapeutic approaches to boost the efficacy of established cancer treatments.
Collapse
Affiliation(s)
- Jana Tomisch
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Vincent Busse
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Francesca Rosato
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Olga N Makshakova
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Kazan Institute for Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
| | - Pavel Salavei
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Core Facility Signalling Factory & Robotics, University of Freiburg, 79104 Freiburg, Germany
| | - Anna-Sophia Kittel
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Emilie Gillon
- CNRS, CERMAV, Université Grenoble Alpes, 38000 Grenoble, France
| | - Levin Lataster
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Anne Imberty
- CNRS, CERMAV, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
4
|
Márquez-López A, Fanarraga ML. AB Toxins as High-Affinity Ligands for Cell Targeting in Cancer Therapy. Int J Mol Sci 2023; 24:11227. [PMID: 37446406 DOI: 10.3390/ijms241311227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Conventional targeted therapies for the treatment of cancer have limitations, including the development of acquired resistance. However, novel alternatives have emerged in the form of targeted therapies based on AB toxins. These biotoxins are a diverse group of highly poisonous molecules that show a nanomolar affinity for their target cell receptors, making them an invaluable source of ligands for biomedical applications. Bacterial AB toxins, in particular, are modular proteins that can be genetically engineered to develop high-affinity therapeutic compounds. These toxins consist of two distinct domains: a catalytically active domain and an innocuous domain that acts as a ligand, directing the catalytic domain to the target cells. Interestingly, many tumor cells show receptors on the surface that are recognized by AB toxins, making these high-affinity proteins promising tools for developing new methods for targeting anticancer therapies. Here we describe the structure and mechanisms of action of Diphtheria (Dtx), Anthrax (Atx), Shiga (Stx), and Cholera (Ctx) toxins, and review the potential uses of AB toxins in cancer therapy. We also discuss the main advances in this field, some successful results, and, finally, the possible development of innovative and precise applications in oncology based on engineered recombinant AB toxins.
Collapse
Affiliation(s)
- Ana Márquez-López
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain
| | - Mónica L Fanarraga
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
5
|
Yousefi MH, Afkhami H, Akbari A, Honari H. Expression, purification, characterization, and cytotoxic evaluation of the ML1-STxB fusion protein. Arch Microbiol 2023; 205:220. [PMID: 37148384 DOI: 10.1007/s00203-023-03563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
Targeted delivery of a toxin substance to cancer cells is one of the most recent cancer treatment options. Mistletoe Lectin-1 (ML1) in Viscum album L. is a Ribosome-inactivating proteins with anticancer properties. Therefore, it appears that a recombinant protein with selective permeability can be generated by fusing ML1 protein with Shiga toxin B, which can bind to Gb3 receptor that is abundantly expressed on cancer cells. In this study, we sought to produce and purify a fusion protein containing ML1 fused to STxB and evaluate its cytotoxic activities. The ML1-STxB fusion protein coding sequence was cloned into the pET28a plasmid, then was transformed into E. coli BL21-DE3 cells. Following induction of protein expression, Ni-NTA affinity chromatography was used to purify the protein. Using SDS-PAGE and western blotting, the expression and purification processes were validated. On the SkBr3 cell line, the cytotoxic effects of the recombinant proteins were evaluated. On SDS-PAGE and western blotting membrane, analysis of purified proteins revealed a band of approximately 41 kDa for rML1-STxB. Ultimately, statistical analysis demonstrated that rML1-STxB exerted significant cytotoxic effects on SkBr3 cells at 18.09 and 22.52 ng/L. The production, purification, and encapsulation of rML1-STxB fusion protein with potential cancer cell-specific toxicity were successful. However, additional research must be conducted on the cytotoxic effects of this fusion protein on other malignant cell lines and in vivo cancer models.
Collapse
Affiliation(s)
- Mohammad Hasan Yousefi
- Department of Cellular and Molecular Biology, Faculty of Basic Science, Imam Hossein University, Tehran, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Atefeh Akbari
- Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Honari
- Department of Cellular and Molecular Biology, Faculty of Basic Science, Imam Hossein University, Tehran, Iran.
| |
Collapse
|
6
|
Meléndez AV, Velasco Cárdenas RMH, Lagies S, Strietz J, Siukstaite L, Thomas OS, Tomisch J, Weber W, Kammerer B, Römer W, Minguet S. Novel lectin-based chimeric antigen receptors target Gb3-positive tumour cells. Cell Mol Life Sci 2022; 79:513. [PMID: 36097202 PMCID: PMC9468074 DOI: 10.1007/s00018-022-04524-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/19/2022] [Accepted: 07/31/2022] [Indexed: 11/05/2022]
Abstract
The link between cancer and aberrant glycosylation has recently become evident. Glycans and their altered forms, known as tumour-associated carbohydrate antigens (TACAs), are diverse, complex and difficult to target therapeutically. Lectins are naturally occurring glycan-binding proteins that offer a unique opportunity to recognise TACAs. T cells expressing chimeric antigen receptors (CARs) have proven to be a successful immunotherapy against leukaemias, but so far have shown limited success in solid tumours. We developed a panel of lectin-CARs that recognise the glycosphingolipid globotriaosylceramide (Gb3), which is overexpressed in various cancers, such as Burkitt's lymphoma, colorectal, breast and pancreatic. We have selected the following lectins: Shiga toxin's B-subunit from Shigella dysenteriae, LecA from Pseudomonas aeruginosa, and the engineered lectin Mitsuba from Mytilus galloprovincialis as antigen-binding domains and fused them to a well-known second-generation CAR. The Gb3-binding lectin-CARs have demonstrated target-specific cytotoxicity against Burkitt's lymphoma-derived cell lines as well as solid tumour cells from colorectal and triple-negative breast cancer. Our findings reveal the big potential of lectin-based CARs as therapeutical applications to target Gb3 and other TACAs expressed in haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Rubí M-H Velasco Cárdenas
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Simon Lagies
- Institute of Organic Chemistry, Albert-Ludwigs-University Freiburg, Albertstraße 21, 79102, Freiburg, Germany
| | | | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Oliver S Thomas
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Jana Tomisch
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Bernd Kammerer
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Institute of Organic Chemistry, Albert-Ludwigs-University Freiburg, Albertstraße 21, 79102, Freiburg, Germany
- Centre for Integrative Signalling Analysis, University of Freiburg, Habsburgerstraße 49, 79104, Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
- Center of Chronic Immunodeficiency (CCI), University Clinics and Medical Faculty, Freiburg, Germany.
| |
Collapse
|
7
|
Deville-Foillard S, Billet A, Dubuisson RM, Johannes L, Durand P, Schmidt F, Volk A. High-Relaxivity Molecular MRI Contrast Agent to Target Gb3-Expressing Cancer Cells. Bioconjug Chem 2022; 33:180-193. [PMID: 34986302 DOI: 10.1021/acs.bioconjchem.1c00531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Targeted contrast agents (CAs) can improve magnetic resonance imaging (MRI) for accurate cancer diagnosis. In this work, we used the Shiga toxin B-subunit (STxB) as a targeting agent, which binds to Gb3, a glycosphingolipid highly overexpressed on the surface of tumor cells. We developed STxB-targeted MRI probes from cyclic peptide scaffolds functionalized with six to nine monoamide DO3A[Gd(III)] chelates. The influence of structural constraints on the longitudinal relaxivity (r1) of the CAs has been studied. The cyclic peptide carrying nine monoamide DO3A[Gd(III)] exhibited a r1 per compound of 32 and 93 mM-1s-1 at 9.4 and 1.5 T, respectively. Its conjugation to the pentameric STxB protein led to a 70 kDa compound with a higher r1 of 150 and 475 mM-1 s-1 at 9.4 and 1.5 T, respectively. Specific accumulation and cellular distribution of this conjugate in Gb3-expressing cancer cells were demonstrated using immunofluorescence microscopy and quantified by an inductively coupled plasma-mass spectrometry dosage of Gd(III). Such an agent should enable the in vivo detection by MRI of tumors expressing Gb3 receptors.
Collapse
Affiliation(s)
- Stéphanie Deville-Foillard
- Institut Curie, PSL University Paris, CNRS UMR3666, INSERM U1143, Cellular and Chemical Biology, Paris 75005, France
- Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette 91198, France
| | - Anne Billet
- Institut Curie, PSL University Paris, CNRS UMR3666, INSERM U1143, Cellular and Chemical Biology, Paris 75005, France
- Université de Paris, Paris F-75005, France
| | - Rose-Marie Dubuisson
- Université Paris-Saclay, CEA, CNRS, INSERM, BioMaps, Service Hospitalier Frédéric Joliot, Orsay 91401, France
| | - Ludger Johannes
- Institut Curie, PSL University Paris, CNRS UMR3666, INSERM U1143, Cellular and Chemical Biology, Paris 75005, France
| | - Philippe Durand
- Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette 91198, France
| | - Frédéric Schmidt
- Institut Curie, PSL University Paris, CNRS UMR3666, INSERM U1143, Cellular and Chemical Biology, Paris 75005, France
| | - Andreas Volk
- Institut Curie, Université Paris-Saclay, CNRS, INSERM, CMIB, Orsay 91405, France
- Université Paris-Saclay, CEA, CNRS, INSERM, BioMaps, Institut Gustave Roussy, Villejuif 94800, France
| |
Collapse
|
8
|
Oloomi M, Moazzezy N, Bouzari S. Protein kinase signaling by Shiga Toxin subunits. JOURNAL OF MEDICAL SIGNALS & SENSORS 2022; 12:57-63. [PMID: 35265466 PMCID: PMC8804587 DOI: 10.4103/jmss.jmss_79_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Background: Escherichia coli produces Shiga toxin (Stx), a pentamer composed of one A subunit and four B subunits. The B subunit of Stx (StxB) mediated the attachment of the holotoxin to the cell surface while the A subunit (StxA) has N-glycosidase activity, resulting in protein synthesis and cell death inhibition. Stx-induced cytotoxicity and apoptosis have been observed in various cell lines, although the signaling effectors are not precisely defined. Activated by protein kinases (PK), the signaling pathway in human tumors plays an oncogenic role. Tumor proliferation, survival, and metastasis are promoted by kinase receptors. In this regard, PK regulatory effects on the cellular constituents of the tumor microenvironment can affect immunosuppressive purposes. Methods: In this study, kinase inhibitors were used to evaluate the influence of Stx and its subunits on HeLa and Vero cells. Selective inhibitors of protein kinase C (PKC), CaM kinase (calmodulin kinase), protein kinase A (PKA), and protein kinase G (PKG) were used to compare the signaling activity of each subunit. Results: The ribotoxic activity in the target cells will lead to rapid protein synthesis inhibition and cell death in the mammalian host. The expression of Bcl2 family members was also assessed. Protein kinase signaling by Stx and its A and B subunits was induced by PKA, PKG, and PKC in HeLa cells. CaM kinase induction was significant in Vero cells. StxB significantly induced the pro-apoptotic Bax signaling factor in HeLa cells. Conclusion: The assessment of different signaling pathways utilized by Stx and its subunits could help in a better understanding of various cell death responses. The use of inhibitors can block cell damage and disease progression and create therapeutic compounds for targeted cancer therapy. Inhibition of these pathways is the primary clinical goal.
Collapse
|
9
|
Targeting Nanomaterials to Head and Neck Cancer Cells Using a Fragment of the Shiga Toxin as a Potent Natural Ligand. Cancers (Basel) 2021; 13:cancers13194920. [PMID: 34638405 PMCID: PMC8507991 DOI: 10.3390/cancers13194920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/29/2022] Open
Abstract
Head and Neck Cancer (HNC) is the seventh most common cancer worldwide with a 5-year survival from diagnosis of 50%. Currently, HNC is diagnosed by a physical examination followed by an histological biopsy, with surgery being the primary treatment. Here, we propose the use of targeted nanotechnology in support of existing diagnostic and therapeutic tools to prevent recurrences of tumors with poorly defined or surgically inaccessible margins. We have designed an innocuous ligand-protein, based on the receptor-binding domain of the Shiga toxin (ShTxB), that specifically drives nanoparticles to HNC cells bearing the globotriaosylceramide receptor on their surfaces. Microscopy images show how, upon binding to the receptor, the ShTxB-coated nanoparticles cause the clustering of the globotriaosylceramide receptors, the protrusion of filopodia, and rippling of the membrane, ultimately allowing the penetration of the ShTxB nanoparticles directly into the cell cytoplasm, thus triggering a biomimetic cellular response indistinguishable from that triggered by the full-length Shiga toxin. This functionalization strategy is a clear example of how some toxin fragments can be used as natural biosensors for the detection of some localized cancers and to target nanomedicines to HNC lesions.
Collapse
|
10
|
Shiga Toxins as Antitumor Tools. Toxins (Basel) 2021; 13:toxins13100690. [PMID: 34678982 PMCID: PMC8538568 DOI: 10.3390/toxins13100690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga toxins (Stxs), also known as Shiga-like toxins (SLT) or verotoxins (VT), constitute a family of structurally and functionally related cytotoxic proteins produced by the enteric pathogens Shigella dysenteriae type 1 and Stx-producing Escherichia coli (STEC). Infection with these bacteria causes bloody diarrhea and other pathological manifestations that can lead to HUS (hemolytic and uremic syndrome). At the cellular level, Stxs bind to the cellular receptor Gb3 and inhibit protein synthesis by removing an adenine from the 28S rRNA. This triggers multiple cellular signaling pathways, including the ribotoxic stress response (RSR), unfolded protein response (UPR), autophagy and apoptosis. Stxs cause several pathologies of major public health concern, but their specific targeting of host cells and efficient delivery to the cytosol could potentially be exploited for biomedical purposes. Moreover, high levels of expression have been reported for the Stxs receptor, Gb3/CD77, in Burkitt's lymphoma (BL) cells and on various types of solid tumors. These properties have led to many attempts to develop Stxs as tools for biomedical applications, such as cancer treatment or imaging, and several engineered Stxs are currently being tested. We provide here an overview of these studies.
Collapse
|
11
|
Siukstaite L, Imberty A, Römer W. Structural Diversities of Lectins Binding to the Glycosphingolipid Gb3. Front Mol Biosci 2021; 8:704685. [PMID: 34381814 PMCID: PMC8350385 DOI: 10.3389/fmolb.2021.704685] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Glycolipids are present on the surfaces of all living cells and thereby represent targets for many protein receptors, such as lectins. Understanding the interactions between lectins and glycolipids is essential for investigating the functions of lectins and the dynamics of glycolipids in living membranes. This review focuses on lectins binding to the glycosphingolipid globotriaosylceramide (Gb3), an attractive host cell receptor, particularly for pathogens and pathogenic products. Shiga toxin (Stx), from Shigella dysenteriae or Escherichia coli, which is one of the most virulent bacterial toxins, binds and clusters Gb3, leading to local negative membrane curvature and the formation of tubular plasma membrane invaginations as the initial step for clathrin-independent endocytosis. After internalization, it is embracing the retrograde transport pathway. In comparison, the homotetrameric lectin LecA from Pseudomonas aeruginosa can also bind to Gb3, triggering the so-called lipid zipper mechanism, which results in membrane engulfment of the bacterium as an important step for its cellular uptake. Notably, both lectins bind to Gb3 but induce distinct plasma membrane domains and exploit mainly different transport pathways. Not only, several other Gb3-binding lectins have been described from bacterial origins, such as the adhesins SadP (from Streptococcus suis) and PapG (from E. coli), but also from animal, fungal, or plant origins. The variety of amino acid sequences and folds demonstrates the structural versatilities of Gb3-binding lectins and asks the question of the evolution of specificity and carbohydrate recognition in different kingdoms of life.
Collapse
Affiliation(s)
- Lina Siukstaite
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Anne Imberty
- CNRS, CERMAV, Université Grenoble Alpes, Grenoble, France
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Johannes L. The Cellular and Chemical Biology of Endocytic Trafficking and Intracellular Delivery-The GL-Lect Hypothesis. Molecules 2021; 26:3299. [PMID: 34072622 PMCID: PMC8198588 DOI: 10.3390/molecules26113299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
Lipid membranes are common to all forms of life. While being stable barriers that delimitate the cell as the fundamental organismal unit, biological membranes are highly dynamic by allowing for lateral diffusion, transbilayer passage via selective channels, and in eukaryotic cells for endocytic uptake through the formation of membrane bound vesicular or tubular carriers. Two of the most abundant fundamental fabrics of membranes-lipids and complex sugars-are produced through elaborate chains of biosynthetic enzymes, which makes it difficult to study them by conventional reverse genetics. This review illustrates how organic synthesis provides access to uncharted areas of membrane glycobiology research and its application to biomedicine. For this Special Issue on Chemical Biology Research in France, focus will be placed on synthetic approaches (i) to study endocytic functions of glycosylated proteins and lipids according to the GlycoLipid-Lectin (GL-Lect) hypothesis, notably that of Shiga toxin; (ii) to mechanistically dissect its endocytosis and intracellular trafficking with small molecule; and (iii) to devise intracellular delivery strategies for immunotherapy and tumor targeting. It will be pointed out how the chemical biologist's view on lipids, sugars, and proteins synergizes with biophysics and modeling to "look" into the membrane for atomistic scale insights on molecular rearrangements that drive the biogenesis of endocytic carriers in processes of clathrin-independent endocytosis.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Department, Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, CEDEX 05, 75248 Paris, France
| |
Collapse
|
13
|
The Protein Toxins Ricin and Shiga Toxin as Tools to Explore Cellular Mechanisms of Internalization and Intracellular Transport. Toxins (Basel) 2021; 13:toxins13060377. [PMID: 34070659 PMCID: PMC8227415 DOI: 10.3390/toxins13060377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022] Open
Abstract
Protein toxins secreted by bacteria and found in plants can be threats to human health. However, their extreme toxicity can also be exploited in different ways, e.g., to produce hybrid toxins directed against cancer cells and to study transport mechanisms in cells. Investigations during the last decades have shown how powerful these molecules are as tools in cell biological research. Here, we first present a partly historical overview, with emphasis on Shiga toxin and ricin, of how such toxins have been used to characterize processes and proteins of importance for their trafficking. In the second half of the article, we describe how one can now use toxins to investigate the role of lipid classes for intracellular transport. In recent years, it has become possible to quantify hundreds of lipid species using mass spectrometry analysis. Thus, it is also now possible to explore the importance of lipid species in intracellular transport. The detailed analyses of changes in lipids seen under conditions of inhibited toxin transport reveal previously unknown connections between syntheses of lipid classes and demonstrate the ability of cells to compensate under given conditions.
Collapse
|
14
|
Shilova O, Shramova E, Proshkina G, Deyev S. Natural and Designed Toxins for Precise Therapy: Modern Approaches in Experimental Oncology. Int J Mol Sci 2021; 22:ijms22094975. [PMID: 34067057 PMCID: PMC8124712 DOI: 10.3390/ijms22094975] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer cells frequently overexpress specific surface receptors providing tumor growth and survival which can be used for precise therapy. Targeting cancer cell receptors with protein toxins is an attractive approach widely used in contemporary experimental oncology and preclinical studies. Methods of targeted delivery of toxins to cancer cells, different drug carriers based on nanosized materials (liposomes, nanoparticles, polymers), the most promising designed light-activated toxins, as well as mechanisms of the cytotoxic action of the main natural toxins used in modern experimental oncology, are discussed in this review. The prospects of the combined therapy of tumors based on multimodal nanostructures are also discussed.
Collapse
Affiliation(s)
- Olga Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
- Correspondence: (O.S.); (S.D.)
| | - Elena Shramova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
| | - Galina Proshkina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
| | - Sergey Deyev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
- Center of Biomedical Engineering, Sechenov University, 119991 Moscow, Russia
- Research Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence: (O.S.); (S.D.)
| |
Collapse
|
15
|
Gao S, Ni C, Huang W, Hao H, Jiang H, Lv Q, Zheng Y, Liu P, Kong D, Jiang Y. The interaction between flagellin and the glycosphingolipid Gb3 on host cells contributes to Bacillus cereus acute infection. Virulence 2021; 11:769-780. [PMID: 32507026 PMCID: PMC7567440 DOI: 10.1080/21505594.2020.1773077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacillus cereus is an opportunistic pathogen that can cause emetic or diarrheal foodborne illness. Previous studies have identified multiple pathogenic B. cereus strains and characterized a variety of virulence factors. Here, we demonstrate that the virulence and lethality of B. cereus for mammalian cells and host animals involve the interaction of B. cereus flagellin proteins and the host-cell-surface-localized glycosphingolipid Gb3 (CD77, Galα1-4Galβ1-4Glcβ1-Cer). We initially found that B. cereus infection was less lethal for Gb3-deficiencient A4galt−/- mice than for wild-type mice. Subsequent experiments established that some factor other than secreted toxins must account of the observed differential lethality: Gb3-deficiencient A4galt−/- mice were equally susceptible to secreted-virulence-factor-mediated death as WT mice, and we observed no differences in the bacterial loads of spleens or livers of mice treated with B. cereus strain vs. mice infected with a mutant variant of incapable of producing many secreted toxins. A screen for host-interacting B. cereus cell wall components identified the well-known flagellin protein, and both flagellin knockout strain assays and Gb3 inhibitor studies confirmed that flagellin does interact with Gb3 in a manner that affects B. cereus infection of host cells. Finally, we show that treatment with polyclonal antibody against flagellin can protect mice against B. cereus infection. Thus, beyond demonstrating a previously unappreciated interaction between a bacterial motor protein and a mammalian cell wall glycosphingolipid, our study will provide useful information for the development of therapies to treat infection of B. cereus.
Collapse
Affiliation(s)
- Song Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Chengpei Ni
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Huaijie Hao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences , Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| |
Collapse
|
16
|
Potent in vitro antitumor activity of B-subunit of Shiga toxin conjugated to the diphtheria toxin against breast cancer. Eur J Pharmacol 2021; 899:174057. [PMID: 33753109 DOI: 10.1016/j.ejphar.2021.174057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 11/24/2022]
Abstract
Immunotoxins are protein-based drugs consist of a target-specific binding domain and a cytotoxic domain to eliminate target cells. Such compounds are potentially therapeutic to combat diseases such as cancer. Generally, the B-subunit of Shiga toxin (STXB) receptor, globotriaosylceramide (Gb3), is expressed in high amounts on a number of human tumors cancer cells. In this study, we evaluated a new antitumor candidate called DT389-STXB chimeric protein, which genetically fused the DT to B-subunit of Shiga-like toxin (STXB). First a chimeric protein, encoding DT389-STXB was synthesized. The optimized chimeric protein expressed in E.coli BL21 (DE3) and confirmed by anti-His Western blot analysis. T47D, SKBR3, 4T1 and MCF7 cell lines were treated separately with purified DT389-STXB recombinant protein and functional activity of DT389-STXB was analyzed by the cell enzyme-linked immunosorbentassay (ELISA), MTT, ICC, Western blot and apoptosis tests. The results indicated that the recombinant DT389-STXB fusion protein with a molecular weight of 53 kDa was successfully expressed in E.coli BL21 (DE3) and the anti-His western-blot was used to confirm the presence of the protein. The DT389-STXB fusion protein attached to T47D, SKBR3 and 4T1 cell lines with the proper affinity and induced dose-dependent cytotoxicity against GB3-expressing cancer cells in vitro. Our results showed that DT389-STXB fusion protein may be a promising candidate for antitumor therapy agent against breast cancer; however, further studies are required to explore its efficacy in vivo for therapeutic applications.
Collapse
|
17
|
Liu Y, Tian S, Thaker H, Dong M. Shiga Toxins: An Update on Host Factors and Biomedical Applications. Toxins (Basel) 2021; 13:222. [PMID: 33803852 PMCID: PMC8003205 DOI: 10.3390/toxins13030222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Shiga toxins (Stxs) are classic bacterial toxins and major virulence factors of toxigenic Shigella dysenteriae and enterohemorrhagic Escherichia coli (EHEC). These toxins recognize a glycosphingolipid globotriaosylceramide (Gb3/CD77) as their receptor and inhibit protein synthesis in cells by cleaving 28S ribosomal RNA. They are the major cause of life-threatening complications such as hemolytic uremic syndrome (HUS), associated with severe cases of EHEC infection, which is the leading cause of acute kidney injury in children. The threat of Stxs is exacerbated by the lack of toxin inhibitors and effective treatment for HUS. Here, we briefly summarize the Stx structure, subtypes, in vitro and in vivo models, Gb3 expression and HUS, and then introduce recent studies using CRISPR-Cas9-mediated genome-wide screens to identify the host cell factors required for Stx action. We also summarize the latest progress in utilizing and engineering Stx components for biomedical applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Songhai Tian
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Grenda A, Krawczyk P. Cancer trigger or remedy: two faces of the human microbiome. Appl Microbiol Biotechnol 2021; 105:1395-1405. [PMID: 33492450 DOI: 10.1007/s00253-021-11125-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
Currently, increasing attention cancer treatment has focused on molecularly targeted therapies and more recently on immunotherapies targeting immune checkpoints. However, even such advanced treatment may be ineffective. The reasons for this are sought, inter alia, in the human microbiome. In our intestines, there are bacteria that are beneficial to us, but pathogenic microorganisms may also be present. Microbial imbalance (dysbiosis) is now perceived as one of the gateways to cancer. However, it is feasible to use bacteria and their metabolites to restore the natural, beneficial microbiome during oncological treatment. Akkermansia mucinifila, Enterococcus hirae, or Faecalibacterium prausnitzii are bacteria that exhibit this beneficial potential. Greater benefits of therapy can be observed in cancer patients enriched in these bacterial species and treated with anti-PD-1, anti-PD-L1, or anti-CTLA-4 monoclonal antibodies. In this review, we present issues related to the role of bacteria in carcinogenesis and their therapeutic potential "supporting" modern anti-cancer therapies.Key Points• Bacteria can be directly or indirectly a cancer trigger.• Bacterial metabolites regulate the pathways associated with carcinogenesis.• Intestinal bacteria activate the immune system to fight cancer.
Collapse
Affiliation(s)
- Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| |
Collapse
|
19
|
Plavec TV, Zahirović A, Zadravec P, Sabotič J, Berlec A. Lectin-Mediated Binding of Engineered Lactococcus lactis to Cancer Cells. Microorganisms 2021; 9:microorganisms9020223. [PMID: 33499141 PMCID: PMC7911926 DOI: 10.3390/microorganisms9020223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/28/2022] Open
Abstract
Lectins have been increasingly utilized as carriers for targeted drug delivery based on their specific binding to glycans located on mammalian cells. This study employed two lectins, B subunit of bacterial Shiga holotoxin (Stx1B) and fungal Clitocybe nebularis lectin (CNL), for surface display on the lactic acid bacterium Lactococcus lactis. The specific adhesion of these engineered, lectin-displaying L. lactis to cancer cells was evaluated. The expression and surface display of both lectins on L. lactis were demonstrated by western blotting and flow cytometry, respectively. MTS assays revealed that recombinant Stx1B had no effect on Caco-2 cell viability at concentrations of ≤25 µg/mL, whereas CNL was non-toxic even at relatively high concentrations of ≤250 µg/mL. Stx1B bound to Caco-2, HT-29 and HeLa cells after 1 h of incubation. CNL bound to Caco-2 cells and recognized several glycoproteins in HT-29 and Caco-2 cell homogenates of which a 70 kDa protein predominated. Confocal microscopy revealed adhesion of Stx1B-displaying L. lactis to HeLa, Caco-2, and, to a lesser extent, HT-29 cells; CNL-displaying L. lactis showed a relatively similar level of adherence to HT-29 and Caco-2 cells. Thus, lectin-displaying L. lactis might serve as a carrier in targeted drug delivery when coupled to a therapeutic moiety.
Collapse
Affiliation(s)
- Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (T.V.P.); (A.Z.); (P.Z.); (J.S.)
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Abida Zahirović
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (T.V.P.); (A.Z.); (P.Z.); (J.S.)
| | - Petra Zadravec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (T.V.P.); (A.Z.); (P.Z.); (J.S.)
- Lek d.d., Kolodvorska 27, 1234 Mengeš, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (T.V.P.); (A.Z.); (P.Z.); (J.S.)
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (T.V.P.); (A.Z.); (P.Z.); (J.S.)
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
20
|
Deciphering the Importance of Glycosphingolipids on Cellular and Molecular Mechanisms Associated with Epithelial-to-Mesenchymal Transition in Cancer. Biomolecules 2021; 11:biom11010062. [PMID: 33418847 PMCID: PMC7824851 DOI: 10.3390/biom11010062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
Every living cell is covered with a dense and complex layer of glycans on the cell surface, which have important functions in the interaction between cells and their environment. Glycosphingolipids (GSLs) are glycans linked to lipid molecules that together with sphingolipids, sterols, and proteins form plasma membrane lipid rafts that contribute to membrane integrity and provide specific recognition sites. GSLs are subdivided into three major series (globo-, ganglio-, and neolacto-series) and are synthesized in a non-template driven process by enzymes localized in the ER and Golgi apparatus. Altered glycosylation of lipids are known to be involved in tumor development and metastasis. Metastasis is frequently linked with reversible epithelial-to-mesenchymal transition (EMT), a process involved in tumor progression, and the formation of new distant metastatic sites (mesenchymal-to-epithelial transition or MET). On a single cell basis, cancer cells lose their epithelial features to gain mesenchymal characteristics via mechanisms influenced by the composition of the GSLs on the cell surface. Here, we summarize the literature on GSLs in the context of reversible and cancer-associated EMT and discuss how the modification of GSLs at the cell surface may promote this process.
Collapse
|
21
|
Pinatih KJP, Suardana IW, Widiasih DA, Suharsono H. Shiga-Like Toxin Produced by Local Isolates of Escherichia coli O157:H7 Induces Apoptosis of the T47 Breast Cancer Cell Line. BREAST CANCER: BASIC AND CLINICAL RESEARCH 2021; 15:11782234211010120. [PMID: 35173438 PMCID: PMC8842367 DOI: 10.1177/11782234211010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose: It has been suggested that Shiga-like toxins produced by Escherichia coli O157:H7 could be used as novel therapeutic agents against malignant tumors. In addition, the antitumor potency of local isolates from Indonesia, which are known to be less toxic than the control isolate ATCC 43894, has not yet been tested. The study aimed to analyze local strains of E. coli O157:H7 as a proapoptosis agent on the T47 breast cancer cell line. Methods: As many as 30 culture cells of T47D breast cancer cell line were subjected to purified extracts of Shiga-like toxin originating from 5 local isolates of E. coli O157:H7: KL-48(2), SM-25(1), SM-7(1), DS-21(4), and 1 isolate ATCC 43894 which was used as a control. Toxin production of each isolate was detected using a sandwich enzyme-linked immunosorbent assay, and the treatment of cell lines was observed for 24 hours, with 2 replications; 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide tests and acridine orange/ethidium bromide double staining assays were used for detection and analyses of apoptosis. Results: The study showed 2 local strains of E. coli O157:H7 (codes KL-48(2) and SM-25(1)) had toxins positive at titer 5 and 10 μg/100 μL. These titers were lower than the control isolate ATCC 43894, but they had a necrosis effect higher (P < .05), ie, 80.3%, than control isolate, ie, 63.3%. Other local strain SM-25(1) also had a good necrosis effect. It has a nondifferent necrosis effect (P > .05) with the control isolate ATCC 43894, ie, 13.0% from 13.3%. Conclusion: This study concludes that the Shiga toxin produced by E. coli O157:H7 local isolate (Indonesia) has potential as a proapoptotic and/or necrotic agent for treating T47 breast cancer cell lines, as effectively as ATCC 43894 control isolates.
Collapse
Affiliation(s)
| | - I Wayan Suardana
- Laboratory of Veterinary Public Health, Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Udayana University, Denpasar, Indonesia
| | - Dyah Ayu Widiasih
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Hamong Suharsono
- Laboratory of Veterinary Biochemistry, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Udayana University, Denpasar, Indonesia
| |
Collapse
|
22
|
New opportunities and challenges of venom-based and bacteria-derived molecules for anticancer targeted therapy. Semin Cancer Biol 2020; 80:356-369. [PMID: 32846203 DOI: 10.1016/j.semcancer.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/24/2022]
Abstract
Due to advances in detection and treatment of cancer, especially the rise in the targeted therapy, the five-year relative survival rate of all cancers has increased significantly. However, according to the analysis of the survival rate of cancer patients in 2019, the survival rate of most cancers is still less than five years. Therefore, to combat complex cancer and further improve the 5-year survival rate of cancer patients, it is necessary to develop some new anticancer drugs. Because of the adaptive evolution of toxic species for millions of years, the venom sac is a "treasure bank", which has millions of biomolecules with high affinity and stability awaiting further development. Complete utilization of venom-based and bacteria-derived drugs in the market is still staggering because of incomplete understanding regarding their mode of action. In this review, we focused on the currently identified targets for anticancer effects based on venomous and bacterial biomolecules, such as ion channels, membrane non-receptor molecules, integrins, and other related target molecules. This review will serve as the key for exploring the molecular mechanisms behind the anticancer potential of venom-based and bacteria-derived drugs and will also lay the path for the development of anticancer targeted therapy.
Collapse
|
23
|
Mobilizing Toxins for Cancer Treatment: Historical Perspectives and Current Strategies. Toxins (Basel) 2020; 12:toxins12060416. [PMID: 32585926 PMCID: PMC7354444 DOI: 10.3390/toxins12060416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/02/2022] Open
|
24
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
25
|
Abstract
Several studies have demonstrated interactions between the two leaflets in membrane bilayers and the importance of specific lipid species for such interaction and membrane function. We here discuss these investigations with a focus on the sphingolipid and cholesterol-rich lipid membrane domains called lipid rafts, including the small flask-shaped invaginations called caveolae, and the importance of such membrane structures in cell biology and cancer. We discuss the possible interactions between the very long-chain sphingolipids in the outer leaflet of the plasma membrane and the phosphatidylserine species PS 18:0/18:1 in the inner leaflet and the importance of cholesterol for such interactions. We challenge the view that lipid rafts contain a large fraction of lipids with two saturated fatty acyl groups and argue that it is important in future studies of membrane models to use asymmetric membrane bilayers with lipid species commonly found in cellular membranes. We also discuss the need for more quantitative lipidomic studies in order to understand membrane function and structure in general, and the importance of lipid rafts in biological systems. Finally, we discuss cancer-related changes in lipid rafts and lipid composition, with a special focus on changes in glycosphingolipids and the possibility of using lipid therapy for cancer treatment.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Ullernchausséen 70, 0379, Oslo, Norway
| | - Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Ullernchausséen 70, 0379, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Ullernchausséen 70, 0379, Oslo, Norway.
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
| |
Collapse
|
26
|
Verotoxin-1-Induced ER Stress Triggers Apoptotic or Survival Pathways in Burkitt Lymphoma Cells. Toxins (Basel) 2020; 12:toxins12050316. [PMID: 32403276 PMCID: PMC7291219 DOI: 10.3390/toxins12050316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Shiga toxins (Stxs) expressed by the enterohaemorrhagic Escherichia coli and enteric Shigella dysenteriae 1 pathogens are protein synthesis inhibitors. Stxs have been shown to induce apoptosis via the activation of extrinsic and intrinsic pathways in many cell types (epithelial, endothelial, and B cells) but the link between the protein synthesis inhibition and caspase activation is still unclear. Endoplasmic reticulum (ER) stress induced by the inhibition of protein synthesis may be this missing link. Here, we show that the treatment of Burkitt lymphoma (BL) cells with verotoxin-1 (VT-1 or Stx1) consistently induced the ER stress response by activation of IRE1 and ATF6-two ER stress sensors-followed by increased expression of the transcription factor C/REB homologous protein (CHOP). However, our data suggest that, although ER stress is systematically induced by VT-1 in BL cells, its role in cell death appears to be cell specific and can be the opposite: ER stress may enhance VT-1-induced apoptosis through CHOP or play a protective role through ER-phagy, depending on the cell line. Several engineered Stxs are currently under investigation as potential anti-cancer agents. Our results suggest that a better understanding of the signaling pathways induced by Stxs is needed before using them in the clinic.
Collapse
|
27
|
Lingwood C. Verotoxin Receptor-Based Pathology and Therapies. Front Cell Infect Microbiol 2020; 10:123. [PMID: 32296648 PMCID: PMC7136409 DOI: 10.3389/fcimb.2020.00123] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/05/2020] [Indexed: 12/22/2022] Open
Abstract
Verotoxin, VT (aka Shiga toxin,Stx) is produced by enterohemorrhagic E. coli (EHEC) and is the key pathogenic factor in EHEC-induced hemolytic uremic syndrome (eHUS-hemolytic anemia/thrombocytopenia/glomerular infarct) which can follow gastrointestinal EHEC infection, particularly in children. This AB5 subunit toxin family bind target cell globotriaosyl ceramide (Gb3), a glycosphingolipid (GSL) (aka CD77, pk blood group antigen) of the globoseries of neutral GSLs, initiating lipid raft-dependent plasma membrane Gb3 clustering, membrane curvature, invagination, scission, endosomal trafficking, and retrograde traffic via the TGN to the Golgi, and ER. In the ER, A/B subunits separate and the A subunit hijacks the ER reverse translocon (dislocon-used to eliminate misfolded proteins-ER associated degradation-ERAD) for cytosolic access. This property has been used to devise toxoid-based therapy to temporarily block ERAD and rescue the mutant phenotype of several genetic protein misfolding diseases. The A subunit avoids cytosolic proteosomal degradation, to block protein synthesis via its RNA glycanase activity. In humans, Gb3 is primarily expressed in the kidney, particularly in the glomerular endothelial cells. Here, Gb3 is in lipid rafts (more ordered membrane domains which accumulate GSLs/cholesterol) whereas renal tubular Gb3 is in the non-raft membrane fraction, explaining the basic pathology of eHUS (glomerular endothelial infarct). Females are more susceptible and this correlates with higher renal Gb3 expression. HUS can be associated with encephalopathy, more commonly following verotoxin 2 exposure. Gb3 is expressed in the microvasculature of the brain. All members of the VT family bind Gb3, but with varying affinity. VT2e (pig edema toxin) binds Gb4 preferentially. Verotoxin-specific therapeutics based on chemical analogs of Gb3, though effective in vitro, have failed in vivo. While some analogs are effective in animal models, there are no good rodent models of eHUS since Gb3 is not expressed in rodent glomeruli. However, the mouse mimics the neurological symptoms more closely and provides an excellent tool to assess therapeutics. In addition to direct cytotoxicity, other factors including VT–induced cytokine release and aberrant complement cascade, are now appreciated as important in eHUS. Based on atypical HUS therapy, treatment of eHUS patients with anticomplement antibodies has proven effective in some cases. A recent switch using stem cells to try to reverse, rather than prevent VT induced pathology may prove a more effective methodology.
Collapse
Affiliation(s)
- Clifford Lingwood
- Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
28
|
Xu H, Peng L, Shen M, Xia Y, Li Z, He N. Shiga-like toxin I exerts specific and potent anti-tumour efficacy against gastric cancer cell proliferation when driven by tumour-preferential Frizzled-7 promoter. Cell Prolif 2019; 52:e12607. [PMID: 30955216 DOI: 10.1111/cpr.12607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES Tumour-targeted gene therapy is a promising approach for effective control of gastric cancer cell proliferation. Our study aims to develop a cancer therapy which combines tumour-targeting promoters with cytotoxins. METHODS The expression of globotriaosylceramide (Gb3), which is a Shiga-like toxin I (Stx1) receptor, was verified in gastric cancer compared with normal stomach tissues as assessed by flow cytometry and immunohistochemical analysis. We therefore constructed the recombinant pFZD7-Stx1 plasmid vectors with tumour-preferential Frizzled-7 promoter and Stx1. pFZD7-Stx1 was used to treat gastric cancer in vitro and in vivo. The gastric cancer cell proliferation and tumour growth were identified after the transfection with the pFZD7-Stx1. RESULTS Globotriaosylceramide was obviously increased in gastric cancer compared with normal stomach. The gastric cancer cell proliferation and tumour growth decreased significantly after the transfection with the pFZD7-Stx1. CONCLUSION Frizzled-7 promoter is preferentially active, and Gb3 is abundant in gastric cancer cells. Frizzled-7 promoter and Stx1 may be used to determine a novel and relatively specific and potent gastric cancer therapeutic strategy.
Collapse
Affiliation(s)
- Hongpan Xu
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lijun Peng
- Department of Clinical Laboratory, Drum Tower Clinical College of Nanjing Medical University, Nanjing, China
| | - Mengjiao Shen
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yanyan Xia
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| |
Collapse
|
29
|
Tobola F, Sylvander E, Gafko C, Wiltschi B. 'Clickable lectins': bioorthogonal reactive handles facilitate the directed conjugation of lectins in a modular fashion. Interface Focus 2019; 9:20180072. [PMID: 30842873 DOI: 10.1098/rsfs.2018.0072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 01/07/2023] Open
Abstract
Lectins are carbohydrate-binding proteins with specificity for their target ligands. They play diverse roles in cellular recognition and signalling processes, as well as in infections and cancer metastasis. Owing to their specificity, lectins find application in biotechnology and medicine, e.g. for blood group typing, purification of glycoproteins or lipids and as markers that target cancer cells. For some applications, lectins are immobilized on a solid support, or they are conjugated with other molecules. Classical protein conjugation reactions at nucleophilic amino acids such as cysteine or lysine are often non-selective, and the site of conjugation is difficult to pre-define. Random conjugation, however, can interfere with protein function. Therefore, we sought to equip lectins with a unique reactive handle, which can be conjugated with other molecules in a pre-defined manner. We site-specifically introduced non-canonical amino acids carrying bioorthogonal reactive groups into several lectins. As a proof of principle, we conjugated these 'clickable lectins' with small molecules. Furthermore, we conjugated lectins with different ligand specificities with one another to produce superlectins. The 'clickable lectins' might be useful for any process where lectins shall be conjugated with another module in a selective, pre-defined and site-specific manner.
Collapse
Affiliation(s)
- Felix Tobola
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Elise Sylvander
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Claudia Gafko
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.,Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Birgit Wiltschi
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
30
|
Abstract
In the Review Article entitled “An Emerging Role of Endometrial Inflammasome in Reproduction: New Therapeutic Approaches” published in Protein & Peptides Letters, 2018, Vol. 26, No. 5, the affiliations of authors are revised due to recent restructuring that took place within the Institution for which the authors work for. The revised affiliation is as follows: </p><p> Fiorella Di Nicuoloa,b,*, Monia Specchiac, Lorenza Trentavizic, Alfredo Pontecorvid, Giovanni Scambiacc,e and Nicoletta Di Simoneb,c </p><p> aIstituto Scientifico Internazionale Paolo VI, ISI, Università Cattolica del Sacro Cuore, Rome, Italia; bFondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna e del Bambino, Roma, Italia; cUniversità Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Roma, Italia; dFondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze Gastroenterologiche, Endocrino- Metaboliche e Nefro-Urologiche, Roma, Italia; eFondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna e del Bambino, Roma, Italia
Collapse
|
31
|
Chauhan V, Chauhan R, Sonkar P, Dhaked RK. Biochemical Characterization of In vitro Reconstituted Biologically Active Recombinant Shiga Toxin. Protein Pept Lett 2019; 26:227-234. [DOI: 10.2174/0929866526666181228161834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 11/22/2022]
Abstract
Background:Shiga toxins comprise a family of related proteins produced by bacteria Shigella dysenteriae and some strains of Escherichia coli that cause severe clinical manifestations. Severe Shiga toxin intoxication results in Haemolytic-Uremic Syndrome (HUS), up to 50% of HUS patients manifest some degree of renal failure and ~10% of such cases develop permanent renal failure or death. </P><P> Objective: In present research work production of biologically active rStx from non-toxic rStxA and rStxB subunits were established that can be used in many biomedical applications.Methods:Purification of Shiga toxin from bacteria is a multistep time consuming process resulting in low yield. To overcome this problem, the rStxA and rStxB protein were separately cloned and expressed in E. coli host and purified through affinity chromatography. GST pull-down assay was performed for interaction study between rStxA and pentameric rStxB. The affinity between A and B subunits of reconstituted recombinant Shiga toxin (AB5) was determined by SPR. The biological activity of the toxin was confirmed in Vero cells and mouse lethality assay.Results:The yield of GST-StxA and His6X-StxB obtained after affinity chromatography was estimated to 2 and 5 mg/l, respectively. Samples analyzed in pull down assay revealed two bands of ~58 kDa (rStxA) and ~7.7 kDa (rStxB) on SDS-PAGE. Affinity was confirmed through SPR with KD of 0.85 pM. This rStx produced from 1:5 molar ratio found to be cytotoxic in Vero cell line and resulted lethality in mouse.Conclusions:Large scale production of rStx using the method can facilitate screening and evaluation of small molecule inhibitors for therapeutics development.
Collapse
Affiliation(s)
- Vinita Chauhan
- Biotechnology Division, Defence Research & Development Establishment, Gwalior-474002, MP, India
| | - Ritika Chauhan
- Biotechnology Division, Defence Research & Development Establishment, Gwalior-474002, MP, India
| | - Priyanka Sonkar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior-474002, MP, India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research & Development Establishment, Gwalior-474002, MP, India
| |
Collapse
|
32
|
Anti-tumor activity of Escherichia coli Shiga toxin A subunit delivered by SF9 insect cells. J Pharmacol Sci 2018; 138:71-75. [PMID: 30293960 DOI: 10.1016/j.jphs.2018.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023] Open
Abstract
Cancer remains a major health problem around the world. A Shiga toxin is a bacterial toxin often produced by Shigella dysenteriae and Escherichia coli. A subunit of the Shiga toxin (StxA) is a cytotoxic agent which could be used to induce death in cancer cells. StxA expressed from baculovirus was evaluated in a pTriEx™ expression vector. The baculovirus vector was used for the A subunit delivery of StxA. StxA cell cytotoxicity was induced by the virus and assessed in the MCF7 and HeLa cell lines. In addition, the breast cancer cytotoxicity of the expressed StxA was also assessed in a cancer induced in mice. The cytotoxicity of the recombinant StxA baculovirus with different multiplicities of infection (MOI) was measured. The results showed that significant cytotoxicity can be induced on the mammalian epithelial breast cancer cell lines, MCF7 and HeLa cells with MOI ≥ 2. The results also showed that a malignant tumor induced by MCF7 could be inhibited in a mouse cancer model. Therefore, it can be concluded that StxA, expressed by baculovirus, could be used for in vitro and in vivo gene delivery. In this study StxA, delivered by the baculovirus inhibited cell proliferation, and eliminated HeLa and MCF7 cells, in vitro. In conclusion, this method can be used as a safe alternative for anticancer drug delivery inside cancer cells.
Collapse
|
33
|
Mohammadi-Farsani A, Habibi-Roudkenar M, Golkar M, Shokrgozar MA, Jahanian-Najafabadi A, KhanAhmad H, Valiyari S, Bouzari S. A-NGR fusion protein induces apoptosis in human cancer cells. EXCLI JOURNAL 2018; 17:590-597. [PMID: 30108463 PMCID: PMC6088213 DOI: 10.17179/excli2018-1120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/04/2018] [Indexed: 12/28/2022]
Abstract
The NGR peptide is one of the well-known peptides for targeting tumor cells. It has the ability to target aminopeptidase N (CD13) on tumor cells or the tumor vascular endothelium. In this study, the NGR peptide was used for targeting A subunit of the Shiga toxin to cancer cells. The cytotoxic effect of the A-NGR fusion protein was assessed on HT1080, U937, HT29 cancer cells and MRC-5 normal cells. For this purpose, cells were treated with different concentrations of A-NGR (0.5-40 µg/ml). The evaluation of cell viability was achieved by MTT assay. Apoptosis was determined by annexin-V/PI double staining flow cytometry. Alterations in the mRNA expression of apoptosis - related genes were assessed by real time RT- PCR. The results showed that A-NGR fusion protein effectively inhibited the growth of HT1080 and U937 cancer cells in comparison to negative control (PBS) but for CD13-negative HT-29 cancer cells, only at high concentrations of fusion protein was inhibited growth recorded. On the other hand, A-NGR had little cytotoxic effect on MRC-5 normal cells. The flow cytometry results showed that A-NGR induces apoptosis. Furthermore, the results of real time RT-PCR revealed that A-NGR significantly increases the mRNA expression of caspase 3 and caspase 9. Conclusively, A-NGR fusion protein has the ability of targeting CD13-positive cancer cells, the cytotoxic effect on CD13-positive cancer cells as well as has low cytotoxic effect on normal cells.
Collapse
Affiliation(s)
| | - Mehryar Habibi-Roudkenar
- Medical Biotechnology Department, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Majid Golkar
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein KhanAhmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samira Valiyari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
34
|
Luginbuehl V, Meier N, Kovar K, Rohrer J. Intracellular drug delivery: Potential usefulness of engineered Shiga toxin subunit B for targeted cancer therapy. Biotechnol Adv 2018; 36:613-623. [PMID: 29432805 DOI: 10.1016/j.biotechadv.2018.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Abstract
A treasure trove of intracellular cancer drug targets remains hidden behind cell membranes. However, engineered pathogen-derived toxins such as Shiga toxins can deliver small or macromolecular drugs to specific intracellular organelles. After binding to ganglioglobotriaosylceramide (Gb3, CD77), the non-toxic subunit B (StxB) of the Shiga-holotoxin is endocytosed and delivers its payload by a unique retrograde trafficking pathway via the endoplasmic reticulum to the cytosol. This review provides an overview of biomedical applications of StxB-based drug delivery systems in targeted cancer diagnosis and therapy. Biotechnological production of the Stx-material is discussed from the perspective of developing efficacious and safe therapeutics.
Collapse
Affiliation(s)
- Vera Luginbuehl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grueental, P.O.X. 335, CH-8820 Waedenswil, Switzerland
| | - Nicolas Meier
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grueental, P.O.X. 335, CH-8820 Waedenswil, Switzerland
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grueental, P.O.X. 335, CH-8820 Waedenswil, Switzerland
| | - Jack Rohrer
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grueental, P.O.X. 335, CH-8820 Waedenswil, Switzerland.
| |
Collapse
|
35
|
Shiga Toxin Glycosphingolipid Receptors in Human Caco-2 and HCT-8 Colon Epithelial Cell Lines. Toxins (Basel) 2017; 9:toxins9110338. [PMID: 29068380 PMCID: PMC5705953 DOI: 10.3390/toxins9110338] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
Shiga toxins (Stxs) released by enterohemorrhagic Escherichia coli (EHEC) into the human colon are the causative agents for fatal outcome of EHEC infections. Colon epithelial Caco-2 and HCT-8 cells are widely used for investigating Stx-mediated intestinal cytotoxicity. Only limited data are available regarding precise structures of their Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), and lipid raft association. In this study we identified Gb3Cer and Gb4Cer lipoforms of serum-free cultivated Caco-2 and HCT-8 cells, chiefly harboring ceramide moieties composed of sphingosine (d18:1) and C16:0, C22:0 or C24:0/C24:1 fatty acid. The most significant difference between the two cell lines was the prevalence of Gb3Cer with C16 fatty acid in HCT-8 and Gb4Cer with C22–C24 fatty acids in Caco-2 cells. Lipid compositional analysis of detergent-resistant membranes (DRMs), which were used as lipid raft-equivalents, indicated slightly higher relative content of Stx receptor Gb3Cer in DRMs of HCT-8 cells when compared to Caco-2 cells. Cytotoxicity assays revealed substantial sensitivity towards Stx2a for both cell lines, evidencing little higher susceptibility of Caco-2 cells versus HCT-8 cells. Collectively, Caco-2 and HCT-8 cells express a plethora of different receptor lipoforms and are susceptible towards Stx2a exhibiting somewhat lower sensitivity when compared to Vero cells.
Collapse
|
36
|
Routes for Drug Translocation Across the Blood-Brain Barrier: Exploiting Peptides as Delivery Vectors. J Pharm Sci 2017; 106:2326-2334. [DOI: 10.1016/j.xphs.2017.04.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 01/17/2023]
|
37
|
Battistella C, Klok HA. Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/03/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Claudia Battistella
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| |
Collapse
|
38
|
Kavaliauskiene S, Dyve Lingelem AB, Skotland T, Sandvig K. Protection against Shiga Toxins. Toxins (Basel) 2017; 9:E44. [PMID: 28165371 PMCID: PMC5331424 DOI: 10.3390/toxins9020044] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 12/12/2022] Open
Abstract
Shiga toxins consist of an A-moiety and five B-moieties able to bind the neutral glycosphingolipid globotriaosylceramide (Gb3) on the cell surface. To intoxicate cells efficiently, the toxin A-moiety has to be cleaved by furin and transported retrogradely to the Golgi apparatus and to the endoplasmic reticulum. The enzymatically active part of the A-moiety is then translocated to the cytosol, where it inhibits protein synthesis and in some cell types induces apoptosis. Protection of cells can be provided either by inhibiting binding of the toxin to cells or by interfering with any of the subsequent steps required for its toxic effect. In this article we provide a brief overview of the interaction of Shiga toxins with cells, describe some compounds and conditions found to protect cells against Shiga toxins, and discuss whether they might also provide protection in animals and humans.
Collapse
Affiliation(s)
- Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway.
- Center for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, N-0379 Oslo, Norway.
| | - Anne Berit Dyve Lingelem
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway.
- Center for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, N-0379 Oslo, Norway.
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway.
- Center for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, N-0379 Oslo, Norway.
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway.
- Center for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, N-0379 Oslo, Norway.
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway.
| |
Collapse
|
39
|
Johannes L, Wunder C, Shafaq-Zadah M. Glycolipids and Lectins in Endocytic Uptake Processes. J Mol Biol 2016; 428:S0022-2836(16)30453-3. [PMID: 27984039 DOI: 10.1016/j.jmb.2016.10.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 01/04/2023]
Abstract
A host of endocytic processes has been described at the plasma membrane of eukaryotic cells. Their categorization has most commonly referenced cytosolic machinery, of which the clathrin coat has occupied a preponderant position. In what concerns intra-membrane constituents, the focus of interest has been on phosphatidylinositol lipids and their capacity to orchestrate endocytic events on the cytosolic leaflet of the membrane. The contribution of extracellular determinants to the construction of endocytic pits has received much less attention, depite the fact that (glyco)sphingolipids are exoplasmic leaflet fabric of membrane domains, termed rafts, whose contributions to predominantly clathrin-independent internalization processes is well recognized. Furthermore, sugar modifications on extracellular domains of proteins, and sugar-binding proteins, termed lectins, have also been linked to the uptake of endocytic cargoes at the plasma membrane. In this review, we first summarize these contributions by extracellular determinants to the endocytic process. We thus propose a molecular hypothesis - termed the GL-Lect hypothesis - on how GlycoLipids and Lectins drive the formation of compositional nanoenvrionments from which the endocytic uptake of glycosylated cargo proteins is operated via clathrin-independent carriers. Finally, we position this hypothesis within the global context of endocytic pathway proposals that have emerged in recent years.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | - Christian Wunder
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Massiullah Shafaq-Zadah
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
40
|
Abstract
Post-infectious hemolytic uremic syndrome (HUS) is caused by specific pathogens in patients with no identifiable HUS-associated genetic mutation or autoantibody. The majority of episodes is due to infections by Shiga toxin (Stx) producing Escherichia coli (STEC). This chapter reviews the epidemiology and pathogenesis of STEC-HUS, including bacterial-derived factors and host responses. STEC disease is characterized by hematological (microangiopathic hemolytic anemia), renal (acute kidney injury) and extrarenal organ involvement. Clinicians should always strive for an etiological diagnosis through the microbiological or molecular identification of Stx-producing bacteria and Stx or, if negative, serological assays. Treatment of STEC-HUS is supportive; more investigations are needed to evaluate the efficacy of putative preventive and therapeutic measures, such as non-phage-inducing antibiotics, volume expansion and anti-complement agents. The outcome of STEC-HUS is generally favorable, but chronic kidney disease, permanent extrarenal, mainly cerebral complication and death (in less than 5 %) occur and long-term follow-up is recommended. The remainder of this chapter highlights rarer forms of (post-infectious) HUS due to S. dysenteriae, S. pneumoniae, influenza A and HIV and discusses potential interactions between these pathogens and the complement system.
Collapse
Affiliation(s)
- Denis F. Geary
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
41
|
Surendran-Nair M, Kollanoor-Johny A, Ananda-Baskaran S, Norris C, Lee JY, Venkitanarayanan K. Selenium reduces enterohemorrhagic Escherichia coli O157:H7 verotoxin production and globotriaosylceramide receptor expression on host cells. Future Microbiol 2016; 11:745-56. [DOI: 10.2217/fmb.16.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study investigated the efficacy of selenium (Se) in reducing Escherichia coli O157:H7 verotoxin production and toxin gene expression. Additionally, the effect of Se on globotriaosylceramide (Gb3) receptor in human lymphoma cells was determined. Materials & methods: The effect of Se on verotoxin synthesis was determined by standard ELISA, whereas its effect on Gb3 receptor was determined by flow cytometry and real-time quantitative PCR. Results & conclusions: Se reduced extracellular and intracellular verotoxin concentration by 40–60% and 80–90%, respectively (p < 0.05), and downregulated verotoxin genes (p < 0.05). Se reduced Gb3 receptor synthesis in lymphoma cells, and real-time quantitative PCR data revealed a significant downregulation of LacCer synthase gene (GalT2) involved in Gb3 synthesis. Further studies are warranted to validate these results in an appropriate animal model.
Collapse
Affiliation(s)
| | - Anup Kollanoor-Johny
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Animal Science, University of Minnesota, St Paul, MN, USA
| | | | - Carol Norris
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
42
|
Abedi Jafari F, Oloomi M, Bouzari S. Comparative Effect of Recombinant Shiga Toxin in Induction of Pro- and Anti-Apoptotic Markers and Inflammatory Cytokines in Epithelial and Monocytic Cells. Jundishapur J Microbiol 2016; 9:e24758. [PMID: 27127585 PMCID: PMC4841980 DOI: 10.5812/jjm.24758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 10/10/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022] Open
Abstract
Background: Shiga toxins (Stxs, also referred to as verotoxins) are a family of bacterial protein toxins generated by Stx producing-Escherichia coli (STEC), such as E. coli serotype O157:H7. Objectives: The aim of this study was to investigate the effect of recombinant and native Shiga toxin (Stx) in induction of pro- and anti-apoptosis factors and stimulation of immune response to HeLa and THP-1 cells. Materials and Methods: The HeLa and THP-1 cells were used to study the effect of native and recombinant Shiga toxin. For this purpose, 106 cells were cultured overnight in six-well plates and different concentrations of Stx were added to each well. The cells were then collected after 24 hours of incubation. Total RNA and protein was extracted. Firstly, the total RNA was used in reverse transcription-polymerase chain reaction (RT-PCR) for detection of interleukin (IL)-1α, IL-1β, IL-8, tumor necrosis factor (TNF)-α, B-cell lymphoma (Bcl)-2 and Bcl-xl transcript. Protein expression of pro- and anti-apoptotic factors was also confirmed by western blot analysis. Results: The IL-1α and IL-8 were increased by recombinant and native Stx. Interleukin-1β was detected in THP-1, while TNF-α was detected HeLa cells. Furthermore, Bcl-2 and Bcl-xl expression was observed in HeLa cells. However, expression of Bak was reduced by recombinant Stx and native toxin at the protein level, while Bcl-xl expression was increased. Conclusions: These results suggest that toxins induce inflammatory responses, particularly through expression of chemokine. Recombinant Stx and native toxin induced apoptosis by balancing between different pro- and anti-apoptotic Bcl-2 family-factors in epithelial cells. In this study, for the first time, recombinant and native Stx induction of apoptotic factors and stimulation of immune response to HeLa and THP-1 cells were compared.
Collapse
Affiliation(s)
| | - Mana Oloomi
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding author: Mana Oloomi, Molecular Biology Department, Pasteur Institute of Iran, Tehran, IR Iran. Tel: +98-2166953311, Fax: +98-2166492619, E-mail:
| | - Saeid Bouzari
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, IR Iran
| |
Collapse
|
43
|
Shiga Toxins as Multi-Functional Proteins: Induction of Host Cellular Stress Responses, Role in Pathogenesis and Therapeutic Applications. Toxins (Basel) 2016; 8:toxins8030077. [PMID: 26999205 PMCID: PMC4810222 DOI: 10.3390/toxins8030077] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
Shiga toxins (Stxs) produced by Shiga toxin-producing bacteria Shigella dysenteriae serotype 1 and select serotypes of Escherichia coli are primary virulence factors in the pathogenesis of hemorrhagic colitis progressing to potentially fatal systemic complications, such as hemolytic uremic syndrome and central nervous system abnormalities. Current therapeutic options to treat patients infected with toxin-producing bacteria are limited. The structures of Stxs, toxin-receptor binding, intracellular transport and the mode of action of the toxins have been well defined. However, in the last decade, numerous studies have demonstrated that in addition to being potent protein synthesis inhibitors, Stxs are also multifunctional proteins capable of activating multiple cell stress signaling pathways, which may result in apoptosis, autophagy or activation of the innate immune response. Here, we briefly present the current understanding of Stx-activated signaling pathways and provide a concise review of therapeutic applications to target tumors by engineering the toxins.
Collapse
|
44
|
Akbari A, Farahnejad Z, Akhtari J, Abastabar M, Mobini GR, Mehbod ASA. Staphylococcus aureus Enterotoxin B Down-Regulates the Expression of Transforming Growth Factor-Beta (TGF-β) Signaling Transducers in Human Glioblastoma. Jundishapur J Microbiol 2016; 9:e27297. [PMID: 27540448 PMCID: PMC4976063 DOI: 10.5812/jjm.27297] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 08/08/2015] [Accepted: 10/19/2015] [Indexed: 11/30/2022] Open
Abstract
Background It has been revealed that Staphylococcus aureus enterotoxin B (SEB) may feature anti-cancer and anti-metastatic advantages due to its ability to modify cell immunity processes and signaling pathways. Glioblastoma is one of the most aggressive human cancers; it has a high mortality nature, which makes it an attractive area for the development of novel therapies. Objectives We examined whether the SEB could exert its growth inhibitory effects on glioblastoma cells partially through the manipulation of a key tumor growth factor termed transforming growth factor-beta (TGF-β). Materials and Methods A human primary glioblastoma cell line, U87, was treated with different concentrations of SEB. The cell quantity was measured by the MTT assay at different exposure times. For molecular assessments, total ribonucleic acid (RNA) was extracted from either non-treated or SEB-treated cells. Subsequently, the gene expression of TGF-β transducers, smad2/3, at the messenger RNA (mRNA) level, was analyzed via a quantitative real-time polymerase chain reaction (qPCR) using the SYBR Green method. Significant differences between cell viability and gene expression levels were determined (Prism 5.0 software) using one-way analyses of variance (ANOVA) test. Results We reported that SEB could effectively down-regulate smad2/3 expression in glioblastoma cells at concentrations as quantity as 1 μg/mL and 2 μg/mL (P < 0.05 and P < 0.01, respectively). The SEB concentrations effective at regulating smad2/3 expression were correlated with those used to inhibit the proliferation of glioblastoma cells. Our results also showed that SEB was able to decrease smad2/3 expression at the mRNA level in a concentration- and time-dependent manner. Conclusions We suggested that SEB could represent an agent that can significantly decrease smad2/3 expression in glioblastoma cells, leading to moderate TGF-β growth signaling and the reduction of tumor cell proliferation.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, IR Iran
| | - Zohreh Farahnejad
- Department of Medical Mycology, AJA University of Medical Sciences, Tehran, IR Iran
| | - Javad Akhtari
- Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Mahdi Abastabar
- Department of Medical Mycology and Parasitology, Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Gholam Reza Mobini
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, IR Iran
| | - Amir Seied Ali Mehbod
- Department of Medical Mycology, AJA University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Amir Seied Ali Mehbod, Department of Medical Mycology, AJA University of Medical Sciences, Tehran, IR Iran. Tel: +98-2188028350, Fax: +98-2188028350, E-mail:
| |
Collapse
|
45
|
Klokk TI, Kavaliauskiene S, Sandvig K. Cross-linking of glycosphingolipids at the plasma membrane: consequences for intracellular signaling and traffic. Cell Mol Life Sci 2016; 73:1301-16. [PMID: 26407609 PMCID: PMC11108300 DOI: 10.1007/s00018-015-2049-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022]
Abstract
Glycosphingolipids (GSLs) are predominantly found in the outer leaflet of the plasma membrane, where they play a role in important processes such as cell adhesion, migration and signaling. However, by which mechanisms GSLs regulate these processes remains elusive. In this study, we therefore took advantage of the fact that some GSLs also serve as receptors for certain protein toxins, which rely on receptor binding for internalization and intoxication. Here, we demonstrate that Shiga and cholera toxins, which both possess multivalent GSL-binding capacity, induce dissociation of the cytosolic cPLA2α-AnxA1 complex in HeLa and HMEC-1 cells. The dissociation is mediated through an increase in cytosolic calcium levels and activation of the tyrosine kinase Syk. Ricin, a protein toxin that does not cross-link surface molecules, has no effect on the same complex. Importantly, we find that antibody-mediated cross-linking of Gb3 and GM1, the GSL receptors for Shiga and cholera toxin, respectively, also induces dissociation. These data demonstrate that cross-linking of GSLs at the plasma membrane mediates the intracellular signaling events resulting in dissociation of the complex. After dissociation, cPLA2α and AnxA1 are translocated to intracellular membranes where they are known to function in regulating membrane transport processes. In conclusion, we have characterized a novel mechanism for cell surface-induced initiation of intracellular signaling and transport events.
Collapse
Affiliation(s)
- Tove Irene Klokk
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379, Oslo, Norway.
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0316, Oslo, Norway.
| | - Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0316, Oslo, Norway
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0316, Oslo, Norway
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
46
|
Chan YS, Ng TB. Shiga toxins: from structure and mechanism to applications. Appl Microbiol Biotechnol 2015; 100:1597-1610. [PMID: 26685676 DOI: 10.1007/s00253-015-7236-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 01/03/2023]
Abstract
Shiga toxins are a group of type 2 ribosome-inactivating proteins (RIPs) produced in several types of bacteria. The toxins possess an AB5 structure, which comprises a catalytic A chain with N-glycosidase activity, and five identical B chains and recognize and bind to the target cells with specific carbohydrate moieties. In humans, the major molecular target which recognizes the Shiga toxins is the Gb3 receptor, which is mainly expressed on the cell surface of endothelial cells of the intestine, kidney, and the brain. This causes these organs to be susceptible to the toxicity of Shiga toxins. When a person is infected by Shiga toxin-producing bacteria, the toxin is produced in the gut, translocated to the circulatory system, and carried to the target cells. Toxicity of the toxin causes inflammatory responses and severe cell damages in the intestine, kidneys, and brain, bringing about the hemolytic uremic syndrome (HUS), which can be fatal. The Shiga toxin requires a couple of steps to exert its toxicity to the target cells. After binding with the target cell surface receptor, the toxin requires a complicated process to be transported into the cytosol of the cell before it can approach the ribosomes. The mechanisms for the interactions of the toxin with the cells are described in this review. The consequences of the toxin on the cells are also discussed. It gives an overview of the steps for the toxin to be produced and transported, expression of catalytic activity, and the effects of the toxin on the target cells, as well as effects on the human body.
Collapse
Affiliation(s)
- Yau Sang Chan
- School of Biomedical Sciences, Lo Kwee Seong Integrated Biomedical Sciences Building, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Lo Kwee Seong Integrated Biomedical Sciences Building, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
47
|
Akbari A, Mobini GR, Maghsoudi R, Akhtari J, Faghihloo E, Farahnejad Z. Modulation of transforming growth factor‑β signaling transducers in colon adenocarcinoma cells induced by staphylococcal enterotoxin B. Mol Med Rep 2015; 13:909-14. [PMID: 26647993 DOI: 10.3892/mmr.2015.4596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 09/09/2015] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is a notable cause of cancer‑associated mortality worldwide, making it a pertinent topic for the study of cancer and its treatment. Staphylococcal enterotoxin B (SEB), an enterotoxin produced by Staphylococcus aureus, has been demonstrated to exert anticancer and antimetastatic effects due to its ability to modify cell immunity and cellular signaling pathways. In the current study, SEB was investigated, including whether it exerts its growth inhibitory effects on colon adenocarcinoma cells. This may occur through the manipulation of a key tumor growth factor, termed transforming growth factor‑β (TGF‑β), and its signaling pathway transducer, Smad2/3. The human colon adenocarcinoma HCT116 cell line was treated with different concentrations of SEB, and cell number was measured using MTT assay at different treatment times. Smad2/3 RNA expression level was analyzed in untreated or SEB‑treated cells using quantitative polymerase chain reaction, which indicated significant differences between cell viability and Smad2/3 expression levels. SEB effectively downregulated Smad2/3 expression in the HCT116 cells at concentrations of 1 and 2 µg/ml (P=0.0021 and P=0.0017, respectively). SEB concentrations that were effective at inhibiting Smad2/3 expression were correlated with those able to inhibit the proliferation of the cancer cells. SEB inhibited Smad2/3 expression at the mRNA level in a concentration‑ and time‑dependent manner. The present study thus proposed SEB as an agent able to significantly reduce Smad2/3 expression in colon cancer cells, provoking moderate TGF‑β growth signaling and the reduction of tumor cell proliferation.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran 1313114456, Iran
| | - Gholam Reza Mobini
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Reza Maghsoudi
- Department of Microbiology and Immunology, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Javad Akhtari
- Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48175866, Iran
| | - Ebrahim Faghihloo
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1313114456, Iran
| | - Zohreh Farahnejad
- Department of Medical Mycology, AJA University of Medical Sciences, Tehran 1917793164, Iran
| |
Collapse
|
48
|
Kostova V, Dransart E, Azoulay M, Brulle L, Bai SK, Florent JC, Johannes L, Schmidt F. Targeted Shiga toxin-drug conjugates prepared via Cu-free click chemistry. Bioorg Med Chem 2015; 23:7150-7. [PMID: 26507432 DOI: 10.1016/j.bmc.2015.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022]
Abstract
The main drawback of the anticancer chemotherapy consists in the lack of drug selectivity causing severe side effects. The targeted drug delivery appears to be a very promising strategy for controlling the biodistribution of the cytotoxic agent only on malignant tissues by linking it to tumor-targeting moiety. Here we exploit the natural characteristics of Shiga toxin B sub-unit (STxB) as targeting carrier on Gb3-positive cancer cells. Two cytotoxic conjugates STxB-doxorubicin (STxB-Doxo) and STxB-monomethyl auristatin F (STxB-MMAF) were synthesised using copper-free 'click' chemistry. Both conjugates were obtained in very high yield and demonstrated strong tumor inhibition activity in a nanomolar range on Gb3-positive cells.
Collapse
Affiliation(s)
- Vesela Kostova
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France
| | - Estelle Dransart
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France
| | - Michel Azoulay
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France
| | - Laura Brulle
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France
| | - Siau-Kun Bai
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France
| | - Jean-Claude Florent
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France
| | - Ludger Johannes
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France
| | - Frédéric Schmidt
- Institut Curie, CNRS, UMR 3666/INSERM U1143, 26 rue d'Ulm, 75248 Cedex 05 Paris, France.
| |
Collapse
|
49
|
Kymre L, Simm R, Skotland T, Sandvig K. Different roles of the C-terminal end of Stx1A and Stx2A for AB5 complex integrity and retrograde transport of Stx in HeLa cells. Pathog Dis 2015; 73:ftv083. [PMID: 26443836 DOI: 10.1093/femspd/ftv083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2015] [Indexed: 11/14/2022] Open
Abstract
Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) differ regarding receptor affinity, cellular toxicity and clinical outcome. To this date, it is not clarified in detail why the subtypes display these differences. Even though the crystal structures of Stx1 and Stx2 share overall similarities, significant differences were found in the C-terminal end of the A-subunits. The aim of this study was to investigate the role of the C-terminal end of the A-subunit in complex stability and retrograde transport by generating truncated mutants where 2, 4, 6 and 8 amino acids were removed from the C-terminal end of Stx1A and Stx2A. The results obtained show that removal of 6 or 8 amino acids from the Stx1A C-terminus abolishes the AB5 complex integrity, while removing up to 8 amino acids from Stx2A does not affect the complex in vivo (in the bacteria). We also present results showing different levels of A1-subunit in HeLa cells after exposure to Stx1, Stx2 and their truncated mutants.
Collapse
Affiliation(s)
- Linn Kymre
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Roger Simm
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
50
|
Zhan C, Li C, Wei X, Lu W, Lu W. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy. Adv Drug Deliv Rev 2015; 90:101-18. [PMID: 25959429 DOI: 10.1016/j.addr.2015.04.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/13/2023]
Abstract
Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed.
Collapse
Affiliation(s)
- Changyou Zhan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University & Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 400716, PR China
| | - Xiaoli Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|