1
|
Zeng Q, Huang H, Tan Y, Chen G, Hao T. Emerging electrochemistry-based process for sludge treatment and resources recovery: A review. WATER RESEARCH 2022; 209:117939. [PMID: 34929476 DOI: 10.1016/j.watres.2021.117939] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The electrochemical process is gaining widespread interest as an emerging alternative for sludge treatment. Its potentials for sludge stabilization and resources recovery have been well proven to date. Despite the high effectiveness of the electrochemical process having been highlighted in several studies, concerns about the electrochemical sludge treatment, including energy consumption, scale-up feasibility, and electrode stability, have not yet been addressed. The present paper critically reviews the versatile uses of the electrochemical processes for sludge treatment and resource recovery, from the fundamentals to the practical applications. Particularly considered are the enhancement of the digestion of the anaerobic sludge and dewaterability, removal of pathogens and heavy metals, and control of sludge malodor. In addition, the opportunities and challenges of the sludge-based resource recovery (i.e., nitrogen, phosphorus, and volatile fatty acids) are discussed. Insights into the working mechanisms (e.g., electroporation, electrokinetics and electrooxidation) of electrochemical processes are reviewed, and perspectives and future research directions are proposed. This work is expected to provide an in-depth understanding and broaden the potential applications of electrochemical processes for sludge treatment and resource recovery.
Collapse
Affiliation(s)
- Qian Zeng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metals Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Huang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metals Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yunkai Tan
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metals Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| |
Collapse
|
2
|
Angenent LT, Usack JG, Xu J, Hafenbradl D, Posmanik R, Tester JW. Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion. BIORESOURCE TECHNOLOGY 2018; 247:1085-1094. [PMID: 28964600 DOI: 10.1016/j.biortech.2017.09.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Anaerobic digestion (AD) is a mature biotechnology-production platform with millions of installations at homes, farms, and industrial/municipal settings. Large-scale industrial, agricultural, and municipal waste-treatment systems may observe novel integration with electrochemical, biological, physical, and thermochemical process units to make AD more attractive. Without governmental subsidies, AD has often only a relatively low economic return or none at all. Diversification of products besides methane in biogas may help to change this. Here, several sections discuss different process units to: 1) upgrade biogas into biomethane; 2) convert carbon dioxide in biogas to more biomethane; 3) generate cooling power from process heat; 4) produce bio-crude oil (bio-oil) from organic matter; and 5) produce a liquid biochemical product from organic matter. This is not meant to be an exhaustive list, but rather a selection of particularly promising process units from a technological view, which are already integrated with AD or close to full-scale integration.
Collapse
Affiliation(s)
- Largus T Angenent
- Centrum for Applied GeoSciences, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany.
| | - Joseph G Usack
- Centrum for Applied GeoSciences, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Jiajie Xu
- Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, NY 14853, USA
| | | | - Roy Posmanik
- School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY 14853, USA; Cornell Energy Institute, Cornell University, 2160 Snee Hall, Ithaca, NY 14853, USA
| | - Jefferson W Tester
- School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY 14853, USA; Cornell Energy Institute, Cornell University, 2160 Snee Hall, Ithaca, NY 14853, USA; Atkinson Center for a Sustainable Future, Cornell University, 200 Rice Hall, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Grootscholten TIM, Steinbusch KJJ, Hamelers HVM, Buisman CJN. Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production. BIORESOURCE TECHNOLOGY 2013; 135:440-5. [PMID: 23228455 DOI: 10.1016/j.biortech.2012.10.165] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 05/21/2023]
Abstract
Recently, interest has regained for medium chain fatty acids (MCFAs) as a low cost feedstock for bio-based chemical and fuel production processes. To become cost-effective, the volumetric MCFA production rate by chain elongation should increase to comparable rates of other fermentation processes. We investigate the MCFA production process at a hydraulic retention time of 17 h in an upflow anaerobic filter to improve the volumetric MCFA production rate. This approach resulted in a MCFA production with a volumetric production rate of 16.6 g l(-1) d(-1), which is more than seven times higher than the current production rate. Moreover the rate is now in the range of other fermentation processes like methane, butanol and ethanol production. Increasing the ethanol load lead to higher volumetric production rates and a high MCFA selectivity of 91%. During operation, methane percentages lower than 0.1% were detected in the headspace of reactor.
Collapse
Affiliation(s)
- T I M Grootscholten
- Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | | | | | | |
Collapse
|