1
|
Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases. Mol Ther 2019; 27:803-823. [PMID: 30905577 DOI: 10.1016/j.ymthe.2019.02.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Protein supplementation therapy using in vitro-transcribed (IVT) mRNA for genetic diseases contains huge potential as a new class of therapy. From the early ages of synthetic mRNA discovery, a great number of studies showed the versatile use of IVT mRNA as a novel approach to supplement faulty or absent protein and also as a vaccine. Many modifications have been made to produce high expressions of mRNA causing less immunogenicity and more stability. Recent advancements in the in vivo lung delivery of mRNA complexed with various carriers encouraged the whole mRNA community to tackle various genetic lung diseases. This review gives a comprehensive overview of cells associated with various lung diseases and recent advancements in mRNA-based protein replacement therapy. This review also covers a brief summary of developments in mRNA modifications and nanocarriers toward clinical translation.
Collapse
|
2
|
Gaczynska M, Karpowicz P, Stuart CE, Norton MG, Teckman JH, Marszal E, Osmulski PA. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor. PLoS One 2016; 11:e0151902. [PMID: 27008547 PMCID: PMC4805282 DOI: 10.1371/journal.pone.0151902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/04/2016] [Indexed: 12/17/2022] Open
Abstract
α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found in WT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo polymerization showing a surprising diversity of polymer topography.
Collapse
Affiliation(s)
- Maria Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Przemyslaw Karpowicz
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Christine E. Stuart
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Malgorzata G. Norton
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jeffrey H. Teckman
- Department of Pediatrics and Biochemistry, Saint Louis University School of Medicine, Cardinal Glennon Children’s Medical Center, St. Louis, Missouri, United States of America
| | - Ewa Marszal
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Pawel A. Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
3
|
Chanprasert S, Scaglia F. Adult liver disorders caused by inborn errors of metabolism: review and update. Mol Genet Metab 2015; 114:1-10. [PMID: 25467056 DOI: 10.1016/j.ymgme.2014.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
Inborn errors of metabolism (IEMs) are a group of genetic diseases that have protean clinical manifestations and can involve several organ systems. The age of onset is highly variable but IEMs afflict mostly the pediatric population. However, in the past decades, the advancement in management and new therapeutic approaches have led to the improvement in IEM patient care. As a result, many patients with IEMs are surviving into adulthood and developing their own set of complications. In addition, some IEMs will present in adulthood. It is important for internists to have the knowledge and be familiar with these conditions because it is predicted that more and more adult patients with IEMs will need continuity of care in the near future. The review will focus on Wilson disease, alpha-1 antitrypsin deficiency, citrin deficiency, and HFE-associated hemochromatosis which are typically found in the adult population. Clinical manifestations and pathophysiology, particularly those that relate to hepatic disease as well as diagnosis and management will be discussed in detail.
Collapse
Affiliation(s)
- Sirisak Chanprasert
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children Hospital, Houston, TX, USA.
| |
Collapse
|
4
|
Fan S, Xu Y, Li X, Tie L, Pan Y, Li X. Opposite angiogenic outcome of curcumin against ischemia and Lewis lung cancer models: in silico, in vitro and in vivo studies. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1742-54. [PMID: 24970744 DOI: 10.1016/j.bbadis.2014.06.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/30/2014] [Accepted: 06/17/2014] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the angiogenic effects of curcumin on an ischemia and lung cancer model. To induce ischemia combined with lung cancer models, unilateral femoral arteries of C57BL/6 mice were disconnected on one side of the mouse and Lewis lung carcinoma (LLC) cells were xenografted on the opposite side. Angiogenic effects and underlying mechanisms associated with curcumin were investigated. Molecular target(s), signaling cascades and binding affinities were detected by Western blot, two-dimensional gel electrophoresis (2-DE), computer simulations and surface plasmon resonance (SPR) techniques. Curcumin promoted post-ischemic blood recirculation and suppressed lung cancer progression in inbred C57BL/6 mice via regulation of the HIF1α/mTOR/VEGF/VEGFR cascade oppositely. Inflammatory stimulation induced by neutrophil elastase (NE) promoted angiogenesis in lung cancer tissues, but these changes were reversed by curcumin through directly reducing NE secretion and stimulating α1-antitrypsin (α1-AT) and insulin receptor substrate-1 (IRS-1) production. Meanwhile, curcumin dose-dependently influenced endothelial cells (EC) tube formation and chicken embryo chorioallantoic membrane (CAM) neovascularization. Curcumin had opposite effects on blood vessel regeneration under physiological and pathological angiogenesis, which was effected through negative or positive regulation of the HIF1α/mTOR/VEGF/VEGFR cascade. Curcumin had the promise as a new treatment modality for both ischemic conditions and lung cancer simultaneously in the clinic.
Collapse
Affiliation(s)
- Shengjun Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China.
| | - Yan Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China.
| | - Xin Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China.
| | - Lu Tie
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China.
| | - Yan Pan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China.
| | - Xuejun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China.
| |
Collapse
|
5
|
O'Reilly LP, Long OS, Cobanoglu MC, Benson JA, Luke CJ, Miedel MT, Hale P, Perlmutter DH, Bahar I, Silverman GA, Pak SC. A genome-wide RNAi screen identifies potential drug targets in a C. elegans model of α1-antitrypsin deficiency. Hum Mol Genet 2014; 23:5123-32. [PMID: 24838285 DOI: 10.1093/hmg/ddu236] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
α1-Antitrypsin deficiency (ATD) is a common genetic disorder that can lead to end-stage liver and lung disease. Although liver transplantation remains the only therapy currently available, manipulation of the proteostasis network (PN) by small molecule therapeutics offers great promise. To accelerate the drug-discovery process for this disease, we first developed a semi-automated high-throughput/content-genome-wide RNAi screen to identify PN modifiers affecting the accumulation of the α1-antitrypsin Z mutant (ATZ) in a Caenorhabditis elegans model of ATD. We identified 104 PN modifiers, and these genes were used in a computational strategy to identify human ortholog-ligand pairs. Based on rigorous selection criteria, we identified four FDA-approved drugs directed against four different PN targets that decreased the accumulation of ATZ in C. elegans. We also tested one of the compounds in a mammalian cell line with similar results. This methodology also proved useful in confirming drug targets in vivo, and predicting the success of combination therapy. We propose that small animal models of genetic disorders combined with genome-wide RNAi screening and computational methods can be used to rapidly, economically and strategically prime the preclinical discovery pipeline for rare and neglected diseases with limited therapeutic options.
Collapse
Affiliation(s)
| | | | - Murat C Cobanoglu
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC and Magee-Womens Hospital Research Institute, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | | | | | | | | | | | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC and Magee-Womens Hospital Research Institute, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | | | | |
Collapse
|
6
|
Li J, Pak SC, O’Reilly LP, Benson JA, Wang Y, Hidvegi T, Hale P, Dippold C, Ewing M, Silverman GA, Perlmutter DH. Fluphenazine reduces proteotoxicity in C. elegans and mammalian models of alpha-1-antitrypsin deficiency. PLoS One 2014; 9:e87260. [PMID: 24498058 PMCID: PMC3909079 DOI: 10.1371/journal.pone.0087260] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/27/2013] [Indexed: 12/15/2022] Open
Abstract
The classical form of α1-antitrypsin deficiency (ATD) is associated with hepatic fibrosis and hepatocellular carcinoma. It is caused by the proteotoxic effect of a mutant secretory protein that aberrantly accumulates in the endoplasmic reticulum of liver cells. Recently we developed a model of this deficiency in C. Elegans and adapted it for high-content drug screening using an automated, image-based array scanning. Screening of the Library of Pharmacologically Active Compounds identified fluphenazine (Flu) among several other compounds as a drug which reduced intracellular accumulation of mutant α1-antitrypsin Z (ATZ). Because it is representative of the phenothiazine drug class that appears to have autophagy enhancer properties in addition to mood stabilizing activity, and can be relatively easily re-purposed, we further investigated its effects on mutant ATZ. The results indicate that Flu reverses the phenotypic effects of ATZ accumulation in the C. elegans model of ATD at doses which increase the number of autophagosomes in vivo. Furthermore, in nanomolar concentrations, Flu enhances the rate of intracellular degradation of ATZ and reduces the cellular ATZ load in mammalian cell line models. In the PiZ mouse model Flu reduces the accumulation of ATZ in the liver and mediates a decrease in hepatic fibrosis. These results show that Flu can reduce the proteotoxicity of ATZ accumulation in vivo and, because it has been used safely in humans, this drug can be moved rapidly into trials for liver disease due to ATD. The results also provide further validation for drug discovery using C. elegans models that can be adapted to high-content drug screening platforms and used together with mammalian cell line and animal models.
Collapse
Affiliation(s)
- Jie Li
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Stephen C. Pak
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Linda P. O’Reilly
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Joshua A. Benson
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Yan Wang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Tunda Hidvegi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Pamela Hale
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Christine Dippold
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Michael Ewing
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Gary A. Silverman
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - David H. Perlmutter
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|