1
|
Branco C, Kanellou M, González-Martín A, Arenas M. Consequences of the Last Glacial Period on the Genetic Diversity of Southeast Asians. Genes (Basel) 2022; 13:genes13020384. [PMID: 35205429 PMCID: PMC8871837 DOI: 10.3390/genes13020384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
The last glacial period (LGP) promoted a loss of genetic diversity in Paleolithic populations of modern humans from diverse regions of the world by range contractions and habitat fragmentation. However, this period also provided some currently submersed lands, such as the Sunda shelf in Southeast Asia (SEA), that could have favored the expansion of our species. Concerning the latter, still little is known about the influence of the lowering sea level on the genetic diversity of current SEA populations. Here, we applied approximate Bayesian computation, based on extensive spatially explicit computer simulations, to evaluate the fitting of mtDNA data from diverse SEA populations with alternative evolutionary scenarios that consider and ignore the LGP and migration through long-distance dispersal (LDD). We found that both the LGP and migration through LDD should be taken into consideration to explain the currently observed genetic diversity in these populations and supported a rapid expansion of first populations throughout SEA. We also found that temporarily available lands caused by the low sea level of the LGP provided additional resources and migration corridors that favored genetic diversity. We conclude that migration through LDD and temporarily available lands during the LGP should be considered to properly understand and model the first expansions of modern humans.
Collapse
Affiliation(s)
- Catarina Branco
- Centro de Investigaciones Biomédicas (CINBIO), University of Vigo, 36310 Vigo, Spain; (C.B.); (M.K.)
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Marina Kanellou
- Centro de Investigaciones Biomédicas (CINBIO), University of Vigo, 36310 Vigo, Spain; (C.B.); (M.K.)
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonio González-Martín
- Department of Biodiversity, Ecology and Evolution, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Miguel Arenas
- Centro de Investigaciones Biomédicas (CINBIO), University of Vigo, 36310 Vigo, Spain; (C.B.); (M.K.)
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Correspondence: ; Tel.: +34-986-130-047
| |
Collapse
|
2
|
Ferreiro D, Núñez-Estévez B, Canedo M, Branco C, Arenas M. Evaluating Causes of Current Genetic Gradients of Modern Humans of the Iberian Peninsula. Genome Biol Evol 2021; 13:6219947. [PMID: 33837782 PMCID: PMC8086631 DOI: 10.1093/gbe/evab071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
The history of modern humans in the Iberian Peninsula includes a variety of population arrivals sometimes presenting admixture with resident populations. Genetic data from current Iberian populations revealed an overall east–west genetic gradient that some authors interpreted as a direct consequence of the Reconquista, where Catholic Kingdoms expanded their territories toward the south while displacing Muslims. However, this interpretation has not been formally evaluated. Here, we present a qualitative analysis of the causes of the current genetic gradient observed in the Iberian Peninsula using extensive spatially explicit computer simulations based on a variety of evolutionary scenarios. Our results indicate that the Neolithic range expansion clearly produces the orientation of the observed genetic gradient. Concerning the Reconquista (including political borders among Catholic Kingdoms and regions with different languages), if modeled upon a previous Neolithic expansion, it effectively favored the orientation of the observed genetic gradient and shows local isolation of certain regions (i.e., Basques and Galicia). Despite additional evolutionary scenarios could be evaluated to more accurately decipher the causes of the Iberian genetic gradient, here we show that this gradient has a more complex explanation than that previously hypothesized.
Collapse
Affiliation(s)
- David Ferreiro
- CINBIO, Universidade de Vigo, Spain.,Universidade de Vigo, Departamento de Bioquímica, Xenética e Immunoloxía, Spain
| | - Bernabé Núñez-Estévez
- CINBIO, Universidade de Vigo, Spain.,Universidade de Vigo, Departamento de Bioquímica, Xenética e Immunoloxía, Spain
| | - Mateo Canedo
- CINBIO, Universidade de Vigo, Spain.,Universidade de Vigo, Departamento de Bioquímica, Xenética e Immunoloxía, Spain
| | - Catarina Branco
- CINBIO, Universidade de Vigo, Spain.,Universidade de Vigo, Departamento de Bioquímica, Xenética e Immunoloxía, Spain
| | - Miguel Arenas
- CINBIO, Universidade de Vigo, Spain.,Universidade de Vigo, Departamento de Bioquímica, Xenética e Immunoloxía, Spain
| |
Collapse
|
3
|
Currat M, Arenas M, Quilodràn CS, Excoffier L, Ray N. SPLATCHE3: simulation of serial genetic data under spatially explicit evolutionary scenarios including long-distance dispersal. Bioinformatics 2020; 35:4480-4483. [PMID: 31077292 PMCID: PMC6821363 DOI: 10.1093/bioinformatics/btz311] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 01/25/2023] Open
Abstract
SUMMARY SPLATCHE3 simulates genetic data under a variety of spatially explicit evolutionary scenarios, extending previous versions of the framework. The new capabilities include long-distance migration, spatially and temporally heterogeneous short-scale migrations, alternative hybridization models, simulation of serial samples of genetic data and a large variety of DNA mutation models. These implementations have been applied independently to various studies, but grouped together in the current version. AVAILABILITY AND IMPLEMENTATION SPLATCHE3 is written in C++ and is freely available for non-commercial use from the website http://www.splatche.com/splatche3. It includes console versions for Linux, MacOs and Windows and a user-friendly GUI for Windows, as well as detailed documentation and ready-to-use examples.
Collapse
Affiliation(s)
- Mathias Currat
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva 1205, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva 1211, Switzerland
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, Vigo 36310, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo 36310, Spain
| | - Claudio S Quilodràn
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva 1205, Switzerland
| | - Laurent Excoffier
- Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, University of Bern, Bern 3012, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Nicolas Ray
- Institute of Global Health, GeoHealth Group, University of Geneva, Geneva 1205, Switzerland.,Institute for Environmental Sciences, University of Geneva, Geneva 1205, Switzerland
| |
Collapse
|
4
|
Branco C, Ray N, Currat M, Arenas M. Influence of Paleolithic range contraction, admixture and long-distance dispersal on genetic gradients of modern humans in Asia. Mol Ecol 2020; 29:2150-2159. [PMID: 32436243 DOI: 10.1111/mec.15479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Cavalli-Sforza and coauthors originally explored the genetic variation of modern humans throughout the world and observed an overall east-west genetic gradient in Asia. However, the specific environmental and population genetics processes causing this gradient were not formally investigated and promoted discussion in recent studies. Here we studied the influence of diverse environmental and population genetics processes on Asian genetic gradients and identified which could have produced the observed gradient. To do so, we performed extensive spatially-explicit computer simulations of genetic data under the following scenarios: (a) variable levels of admixture between Paleolithic and Neolithic populations, (b) migration through long-distance dispersal (LDD), (c) Paleolithic range contraction induced by the last glacial maximum (LGM), and (d) Neolithic range expansions from one or two geographic origins (the Fertile Crescent and the Yangzi and Yellow River Basins). Next, we estimated genetic gradients from the simulated data and we found that they were sensible to the analysed processes, especially to the range contraction induced by LGM and to the number of Neolithic expansions. Some scenarios were compatible with the observed east-west genetic gradient, such as the Paleolithic expansion with a range contraction induced by the LGM or two Neolithic range expansions from both the east and the west. In general, LDD increased the variance of genetic gradients among simulations. We interpreted the obtained gradients as a consequence of both allele surfing caused by range expansions and isolation by distance along the vast east-west geographic axis of this continent.
Collapse
Affiliation(s)
- Catarina Branco
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Nicolas Ray
- GeoHealth Group, Institute of Global Health, University of Geneva, Geneva, Switzerland.,Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Mathias Currat
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| |
Collapse
|
5
|
del Valle JC, Herman JA, Whittall JB. Genome skimming and microsatellite analysis reveal contrasting patterns of genetic diversity in a rare sandhill endemic (Erysimum teretifolium, Brassicaceae). PLoS One 2020; 15:e0227523. [PMID: 32459825 PMCID: PMC7252598 DOI: 10.1371/journal.pone.0227523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/28/2020] [Indexed: 11/19/2022] Open
Abstract
Barriers between islands often inhibit gene flow creating patterns of isolation by distance. In island species, the majority of genetic diversity should be distributed among isolated populations. However, a self-incompatible mating system leads to higher genetic variation within populations and very little between-population subdivision. We examine these two contrasting predictions in Erysimum teretifolium, a rare self-incompatible plant endemic to island-like sandhill habitats in Santa Cruz County, California. We used genome skimming and nuclear microsatellites to assess the distribution of genetic diversity within and among eight of the 13 remaining populations. Phylogenetic analyses of the chloroplast genomes revealed a deep separation of three of the eight populations. The nuclear ribosomal DNA cistron showed no genetic subdivision. Nuclear microsatellites suggest 83% of genetic variation resides within populations. Despite this, 18 of 28 between-population comparisons exhibited significant population structure (mean FST = 0.153). No isolation by distance existed among all populations, however when one outlier population was removed from the analysis due to uncertain provenance, significant isolation by distance emerged (r2 = 0.5611, p = 0.005). Population census size did not correlate with allelic richness as predicted on islands. Bayesian population assignment detected six genetic groupings with substantial admixture. Unique genetic clusters were concentrated at the periphery of the species’ range. Since the overall distribution of nuclear genetic diversity reflects E. tereifolium’s self-incompatible mating system, the vast majority of genetic variation could be sampled within any individual population. Yet, the chloroplast genome results suggest a deep split and some of the nuclear microsatellite analyses indicate some island-like patterns of genetic diversity. Restoration efforts intending to maximize genetic variation should include representatives from both lineages of the chloroplast genome and, for maximum nuclear genetic diversity, should include representatives of the smaller, peripheral populations.
Collapse
Affiliation(s)
- José Carlos del Valle
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Julie A. Herman
- Department of Biology, Santa Clara University, Santa Clara, CA, United States of America
| | - Justen B. Whittall
- Department of Biology, Santa Clara University, Santa Clara, CA, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
Range expansions lead to distinctive patterns of genetic variation in populations, even in the absence of selection. These patterns and their genetic consequences have been well studied for populations advancing through successive short-ranged migration events. However, most populations harbor some degree of long-range dispersal, experiencing rare yet consequential migration events over arbitrarily long distances. Although dispersal is known to strongly affect spatial genetic structure during range expansions, the resulting patterns and their impact on neutral diversity remain poorly understood. Here, we systematically study the consequences of long-range dispersal on patterns of neutral variation during range expansion in a class of dispersal models which spans the extremes of local (effectively short-ranged) and global (effectively well-mixed) migration. We find that sufficiently long-ranged dispersal leaves behind a mosaic of monoallelic patches, whose number and size are highly sensitive to the distribution of dispersal distances. We develop a coarse-grained model which connects statistical features of these spatial patterns to the evolution of neutral diversity during the range expansion. We show that growth mechanisms that appear qualitatively similar can engender vastly different outcomes for diversity: Depending on the tail of the dispersal distance distribution, diversity can be either preserved (i.e., many variants survive) or lost (i.e., one variant dominates) at long times. Our results highlight the impact of spatial and migratory structure on genetic variation during processes as varied as range expansions, species invasions, epidemics, and the spread of beneficial mutations in established populations.
Collapse
|
7
|
Abstract
Despite the efforts made to reconstruct the history of modern humans, there are still poorly explored regions that are key for understanding the phylogeography of our species. One of them is the Philippines, which is crucial to unravel the colonization of Southeast Asia and Oceania but where little is known about when and how the first humans arrived. In order to shed light into this settlement, we collected samples from 157 individuals of the Philippines with the four grandparents belonging to the same region and mitochondrial variants older than 20,000 years. Next, we analyzed the hypervariable I mtDNA region by approximate Bayesian computation based on extensive spatially explicit computer simulations to select among several migration routes towards the Philippines and to estimate population genetic parameters of this colonization. We found that the colonization of the Philippines occurred more than 60,000 years ago, with long-distance dispersal and from both north and south migration routes. Our results also suggest an environmental scenario especially optimal for humans, with large carrying capacity and population growth, in comparison to other regions of Asia. In all, our study suggests a rapid expansion of modern humans towards the Philippines that could be associated with the establisment of maritime technologies and favorable environmental conditions.
Collapse
|
8
|
Illera JC, Arenas M, López-Sánchez CA, Obeso JR, Laiolo P. Gradual Distance Dispersal Shapes the Genetic Structure in an Alpine Grasshopper. Genes (Basel) 2019; 10:E590. [PMID: 31387238 PMCID: PMC6724060 DOI: 10.3390/genes10080590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022] Open
Abstract
The location of the high mountains of southern Europe has been crucial in the phylogeography of most European species, but how extrinsic (topography of sky islands) and intrinsic features (dispersal dynamics) have interacted to shape the genetic structure in alpine restricted species is still poorly known. Here we investigated the mechanisms explaining the colonisation of Cantabrian sky islands in an endemic flightless grasshopper. We scrutinised the maternal genetic variability and haplotype structure, and we evaluated the fitting of two migration models to understand the extant genetic structure in these populations: Long-distance dispersal (LDD) and gradual distance dispersal (GDD). We found that GDD fits the real data better than the LDD model, with an onset of the expansion matching postglacial expansions after the retreat of the ice sheets. Our findings suggest a scenario with small carrying capacity, migration rates, and population growth rates, being compatible with a slow dispersal process. The gradual expansion process along the Cantabrian sky islands found here seems to be conditioned by the suitability of habitats and the presence of alpine corridors. Our findings shed light on our understanding about how organisms which have adapted to live in alpine habitats with limited dispersal abilities have faced new and suitable environmental conditions.
Collapse
Affiliation(s)
- Juan Carlos Illera
- Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Oviedo University, 33600 Mieres, Spain.
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
| | - Carlos A López-Sánchez
- Department of Biology, Organisms and Systems, GIS-Forest Group, Oviedo University, 33600 Mieres, Spain
| | - José Ramón Obeso
- Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Oviedo University, 33600 Mieres, Spain
| | - Paola Laiolo
- Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Oviedo University, 33600 Mieres, Spain
| |
Collapse
|
9
|
Braga RT, Rodrigues JFM, Diniz-Filho JAF, Rangel TF. Genetic Population Structure and Allele Surfing During Range Expansion in Dynamic Habitats. AN ACAD BRAS CIENC 2019; 91:e20180179. [PMID: 31038531 DOI: 10.1590/0001-3765201920180179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022] Open
Abstract
Expanding populations may loss genetic diversity because sequential founder events throughout a wave of demographic expansion may cause "allele surfing", as the alleles of founder individuals may propagate rapidly through space. The spatial components of allele surfing have been studied by geneticists, but have never been investigate on dynamic and shifting habitats. Here we used an individual-based-model (IBM) to study how interactions between different habitat restoration scenarios and biological characteristics (dispersal capacity) affect the spatial patterns of the genetic structure of a population during demographic expansion. We found that both habitat dynamics and dispersal capacity, as well as their interaction, were the drivers of emergent pattern of genetic diversity and allele surfing. Specifically, allele surfing is more common when a species with low dispersal capacity colonizes a large geographic area with slow restoration (low carrying capacity). Despite this, we showed that allele surfing can be reduced, or even avoided, by dispersal management through suitable habitat restoration. Thus, investigating how colonization generates a spatial variation in genetic diversity, and which parameters control the emergent genetic pattern, are essential steps to planning assisted gene flow, which is fundamental for an effective planning of habitat restoration.
Collapse
Affiliation(s)
- Rosana T Braga
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, 74001-970 Goiânia, GO, Brazil
| | - João F M Rodrigues
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, 74001-970 Goiânia, GO, Brazil
| | - José A F Diniz-Filho
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, 74001-970 Goiânia, GO, Brazil
| | - Thiago F Rangel
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, 74001-970 Goiânia, GO, Brazil
| |
Collapse
|
10
|
Nazareno AG, Dick CW, Lohmann LG. Tangled banks: A landscape genomic evaluation of Wallace's Riverine barrier hypothesis for three Amazon plant species. Mol Ecol 2019; 28:980-997. [PMID: 30450714 DOI: 10.1111/mec.14948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 08/18/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
Wallace's Riverine Barrier hypothesis is one of the earliest biogeographic explanations for Amazon speciation, but it has rarely been tested in plants. In this study, we used three woody Amazonian plant species to evaluate Wallace's Hypothesis using tools of landscape genomics. We generated unlinked single-nucleotide polymorphism (SNP) data from the nuclear genomes of 234 individuals (78 for each plant species) across 13 sampling sites along the Rio Branco, Brazil, for Amphirrhox longifolia (8,075 SNPs), Psychotria lupulina (9,501 SNPs) and Passiflora spinosa (14,536 SNPs). Although significantly different migration rates were estimated between species, the population structure data do not support the hypothesis that the Rio Branco-an allopatric barrier for primates and birds-is a significant genetic barrier for Amphirrhox longifolia, Passiflora spinosa or Psychotria lupulina. Overall, we demonstrated that medium-sized rivers in the Amazon Basin, such as the Rio Branco, are permeable barriers to gene flow for animal-dispersed and animal-pollinated plant species.
Collapse
Affiliation(s)
- Alison G Nazareno
- Departamento de Botânica, Universidade de São Paulo, São Paulo, Brazil
| | - Christopher W Dick
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Lúcia G Lohmann
- Departamento de Botânica, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Whole-Genome Analysis of Introgression Between the Spotted Owl and Barred Owl ( Strix occidentalis and Strix varia, Respectively; Aves: Strigidae) in Western North America. G3-GENES GENOMES GENETICS 2018; 8:3945-3952. [PMID: 30355766 PMCID: PMC6288836 DOI: 10.1534/g3.118.200754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the barred owl (Strix varia; Aves: Strigiformes: Strigidae) expands throughout western North America, hybridization between barred and spotted owls (Strix varia and S. occidentalis, respectively), if abundant, may lead to genetic swamping of the endangered spotted owl. We analyzed low-coverage, whole-genome sequence data from fifty-one barred and spotted owls to investigate recent introgression between these two species. Although we obtained genomic confirmation that these species can and do hybridize and backcross, we found no evidence of widespread introgression. Plumage characteristics of western S. varia that suggested admixture with S. occidentalis appear unrelated to S. occidentalis ancestry and may instead reflect local selection.
Collapse
|
12
|
Hedrén M, Olofsson SN, Paun O. Orchid colonization: multiple parallel dispersal events and mosaic genetic structure in Dactylorhiza majalis ssp. lapponica on the Baltic island of Gotland. ANNALS OF BOTANY 2018; 122:1019-1032. [PMID: 29955767 PMCID: PMC6266126 DOI: 10.1093/aob/mcy111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Background and Aims The island of Gotland in the Baltic Sea has had no contact with surrounding continental areas since the withdrawal of the Weichselian ice sheet at approx. 17 ka BP. Plants present on Gotland must have arrived by long-distance dispersal, so populations are expected to exhibit reduced levels of genetic diversity compared with populations on surrounding mainlands. However, orchids have very small seeds, which appear well adapted to long-distance dispersal, and they should therefore be less affected than other plant species by colonization bottlenecks. The aim of this study was to analyse the genetic structure of orchids colonizing isolated islands, using the marsh orchid Dactylorhiza majalis ssp. lapponica as a case study. Methods More than 500 samples from 27 populations were analysed for 15 plastid and eight nuclear marker loci. Population diversity and differentiation patterns were compared for nuclear and plastid marker systems and analysed in relation to geographical location. Key Results We found high genetic diversity but no clear geographical structure of genetic differentiation between populations on Gotland. However, the between-population differentiation in plastid and nuclear markers were correlated and the greatest diversity was found at sites at comparatively high elevations, which were the first to emerge above the water after the Ice Age. Conclusions The regional population on Gotland has been established by a minimum of four dispersal events from continental regions. Subsequent gene flow between sites has not yet homogenized the differentiation pattern originating from initial colonization. We conclude that long-distance seed dispersal in orchids has a strong impact on structuring genetic diversity during periods of expansion and colonization, but contributes less to gene flow between populations once a stable population structure has been achieved.
Collapse
Affiliation(s)
- Mikael Hedrén
- Department of Biology, University of Lund, Lund, Sweden
| | | | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Selecting among Alternative Scenarios of Human Evolution by Simulated Genetic Gradients. Genes (Basel) 2018; 9:genes9100506. [PMID: 30340387 PMCID: PMC6210830 DOI: 10.3390/genes9100506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022] Open
Abstract
Selecting among alternative scenarios of human evolution is nowadays a common methodology to investigate the history of our species. This strategy is usually based on computer simulations of genetic data under different evolutionary scenarios, followed by a fitting of the simulated data with the real data. A recent trend in the investigation of ancestral evolutionary processes of modern humans is the application of genetic gradients as a measure of fitting, since evolutionary processes such as range expansions, range contractions, and population admixture (among others) can lead to different genetic gradients. In addition, this strategy allows the analysis of the genetic causes of the observed genetic gradients. Here, we review recent findings on the selection among alternative scenarios of human evolution based on simulated genetic gradients, including pros and cons. First, we describe common methodologies to simulate genetic gradients and apply them to select among alternative scenarios of human evolution. Next, we review previous studies on the influence of range expansions, population admixture, last glacial period, and migration with long-distance dispersal on genetic gradients for some regions of the world. Finally, we discuss this analytical approach, including technical limitations, required improvements, and advice. Although here we focus on human evolution, this approach could be extended to study other species.
Collapse
|
14
|
Branco C, Velasco M, Benguigui M, Currat M, Ray N, Arenas M. Consequences of diverse evolutionary processes on american genetic gradients of modern humans. Heredity (Edinb) 2018; 121:548-556. [PMID: 30022169 DOI: 10.1038/s41437-018-0122-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 11/09/2022] Open
Abstract
European genetic gradients of modern humans were initially interpreted as a consequence of the demic diffusion of expanding Neolithic farmers. However, recent studies showed that these gradients may also be influenced by other evolutionary processes such as population admixture or range contractions. Genetic gradients were observed in the Americas, although their specific evolutionary causes were not investigated. Here we extended the approach used to study genetic gradients in Europe to analyze the influence of diverse evolutionary scenarios on American genetic gradients. Using extensive computer simulations, we evaluated the impact of (i) admixture between expansion waves of modern humans, (ii) the presence of ice-sheets during the last glacial maximum (LGM) and (iii) long-distance dispersal (LDD) events, on the genetic gradients (detected by principal component analysis) of the entire continent, North America and South America. The specific simulation of North and South America showed that genetic gradients are usually orthogonal to the direction of range expansions-either expansions from Bering or posterior re-expansions to recolonize northern regions after ice sheets melting-and we suggest that they result from allele surfing processes. Conversely, our results on the entire continent show a northwest-southeast gradient obtained with any scenario, which we interpreted as a consequence of isolation by distance along the long length of the continent. These findings suggest that distinct genetic gradients can be detected at different regions of the Americas and that subcontinent regions present gradients more sensible to evolutionary and environmental factors (such as LDD and the LGM) than the whole continent.
Collapse
Affiliation(s)
- Catarina Branco
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Miguel Velasco
- Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Macarena Benguigui
- Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mathias Currat
- Anthropology, Genetics and Peopling History Lab, Department of Genetics & Evolution -Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland
| | - Nicolas Ray
- EnviroSPACE Lab, Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland.,Institute of Global Health, University of Geneva, Geneva, Switzerland
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain. .,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal. .,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal. .,Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
15
|
Amorim CEG, Hofer T, Ray N, Foll M, Ruiz-Linares A, Excoffier L. Long-distance dispersal suppresses introgression of local alleles during range expansions. Heredity (Edinb) 2017; 118:135-142. [PMID: 27577693 PMCID: PMC5234476 DOI: 10.1038/hdy.2016.68] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 12/24/2022] Open
Abstract
During range expansions, even low levels of interbreeding can lead to massive introgression of local alleles into an invader's genome. Nonetheless, this pattern is not always observed in human populations. For instance, European Americans in North America are barely introgressed by Amerindian genes in spite of known contact and admixture. With coalescent spatially explicit simulations, we examined the impact of long-distance dispersal (LDD) events on introgression of local alleles into the invading population using a set of different demographic scenarios applicable to a diverse range of natural populations and species. More specifically, we consider two distinct LDD models: one where LDD events originate in the range core and targets only the expansion front and a second one where LDD events can occur from any area to any other. We find that LDD generally prevents introgression, but that LDD events specifically targeting the expansion front are most efficient in suppressing introgression. This is likely due to the fact that LDD allows for the presence of a larger number of invader alleles at the wave front, where effective population size is thus increased and local introgressed alleles are rapidly outnumbered. We postulate that the documented settlement of pioneers directly on the wave front in North America has contributed to low levels of Amerindian admixture observed in European Americans and that this phenomenon may well explain the lack of introgression after a range expansion in natural populations without the need to evoke other mechanisms such as natural selection.
Collapse
Affiliation(s)
- C E G Amorim
- Department of Biological Sciences,
Columbia University, New York, NY,
USA
- CAPES Foundation, Ministry of
Education of Brazil, Brasília, Distrito
Federal, Brazil
| | - T Hofer
- Computational and Molecular
Population Genetics Lab, Institute of Ecology and Evolution, University of
Bern, Bern, Switzerland
- Swiss Institute of
Bioinformatics, Lausanne, Switzerland
| | - N Ray
- EnviroSPACE Laboratory, Institute for
Environmental Sciences, University of Geneva, Geneva,
Switzerland
| | - M Foll
- Genetic Cancer Susceptibility Group,
International Agency for Research on Cancer, Lyon,
France
| | - A Ruiz-Linares
- Department of Genetics, Evolution and
Environment, University College London, London,
UK
| | - L Excoffier
- Computational and Molecular
Population Genetics Lab, Institute of Ecology and Evolution, University of
Bern, Bern, Switzerland
- Swiss Institute of
Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
16
|
Fischer J, Kopp GH, Dal Pesco F, Goffe A, Hammerschmidt K, Kalbitzer U, Klapproth M, Maciej P, Ndao I, Patzelt A, Zinner D. Charting the neglected West: The social system of Guinea baboons. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 162 Suppl 63:15-31. [PMID: 28105722 PMCID: PMC6586040 DOI: 10.1002/ajpa.23144] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Primate social systems are remarkably diverse, and thus play a central role in understanding social evolution, including the biological origin of human societies. Although baboons have been prominently featured in this context, historically little was known about the westernmost member of the genus, the Guinea baboon (Papio papio). MATERIAL AND METHODS Here, we summarize the findings from the first years of observations at the field site CRP Simenti in the Niokolo Koba National Park in Senegal. RESULTS Guinea baboons reveal a nested multi-level social organization, with reproductive units comprising one "primary" male, one to several females, young, and occasionally "secondary" males at the base of the society. Three to five units form "parties," which team up with other parties to form a "gang." Different gangs have largely overlapping home ranges and agonistic interactions between different parties or gangs are rare. Some but not all strongly socially bonded males are highly related, and population genetic and behavioral evidence indicate female-biased dispersal. Females play an important role in intersexual bond formation and maintenance, and female tenure length varies between a few weeks to several years. DISCUSSION While the social organization resembles that of hamadryas baboons (P. hamadryas), the social structure differs considerably, specifically in terms of low male aggressiveness and female freedom. Despite substantial differences in social organization and social structure, the acoustic structure of Guinea baboon vocalizations does not differ substantially from that of other baboon taxa. With its multi-level organization, stable bonds between males and females, as well as a high-degree of male-male cooperation and tolerance, Guinea baboons constitute an intriguing model for reconstructing human social evolution.
Collapse
Affiliation(s)
- Julia Fischer
- Cognitive Ethology LaboratoryGerman Primate CenterGöttingenGermany
| | - Gisela H. Kopp
- Cognitive Ethology LaboratoryGerman Primate CenterGöttingenGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Department of Migration and Immuno‐EcologyMax‐Planck‐Institute for OrnithologyRadolfzellGermany
| | | | - Adeelia Goffe
- Cognitive Ethology LaboratoryGerman Primate CenterGöttingenGermany
| | | | - Urs Kalbitzer
- Cognitive Ethology LaboratoryGerman Primate CenterGöttingenGermany
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryCanada
| | | | - Peter Maciej
- Cognitive Ethology LaboratoryGerman Primate CenterGöttingenGermany
| | - Ibrahima Ndao
- Direction de Park National de Niokolo KobaTambacoundaSenegal
| | - Annika Patzelt
- Cognitive Ethology LaboratoryGerman Primate CenterGöttingenGermany
| | - Dietmar Zinner
- Cognitive Ethology LaboratoryGerman Primate CenterGöttingenGermany
| |
Collapse
|
17
|
Genetic surfing in human populations: from genes to genomes. Curr Opin Genet Dev 2016; 41:53-61. [DOI: 10.1016/j.gde.2016.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/06/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022]
|
18
|
Alves I, Arenas M, Currat M, Sramkova Hanulova A, Sousa VC, Ray N, Excoffier L. Long-Distance Dispersal Shaped Patterns of Human Genetic Diversity in Eurasia. Mol Biol Evol 2015; 33:946-58. [PMID: 26637555 PMCID: PMC4776706 DOI: 10.1093/molbev/msv332] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most previous attempts at reconstructing the past history of human populations did not explicitly take geography into account or considered very simple scenarios of migration and ignored environmental information. However, it is likely that the last glacial maximum (LGM) affected the demography and the range of many species, including our own. Moreover, long-distance dispersal (LDD) may have been an important component of human migrations, allowing fast colonization of new territories and preserving high levels of genetic diversity. Here, we use a high-quality microsatellite data set genotyped in 22 populations to estimate the posterior probabilities of several scenarios for the settlement of the Old World by modern humans. We considered models ranging from a simple spatial expansion to others including LDD and a LGM-induced range contraction, as well as Neolithic demographic expansions. We find that scenarios with LDD are much better supported by data than models without LDD. Nevertheless, we show evidence that LDD events to empty habitats were strongly prevented during the settlement of Eurasia. This unexpected absence of LDD ahead of the colonization wave front could have been caused by an Allee effect, either due to intrinsic causes such as an inbreeding depression built during the expansion or due to extrinsic causes such as direct competition with archaic humans. Overall, our results suggest only a relatively limited effect of the LGM contraction on current patterns of human diversity. This is in clear contrast with the major role of LDD migrations, which have potentially contributed to the intermingled genetic structure of Eurasian populations.
Collapse
Affiliation(s)
- Isabel Alves
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland Population and Conservation Genetics Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Miguel Arenas
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Mathias Currat
- Anthropology, Genetics and Peopling History Lab, Department of Genetics & Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - Anna Sramkova Hanulova
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vitor C Sousa
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Ray
- EnviroSPACE Lab, Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Laurent Excoffier
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
19
|
Nadeau S, Godbout J, Lamothe M, Gros-Louis MC, Isabel N, Ritland K. Contrasting patterns of genetic diversity across the ranges of Pinus monticola and P. strobus: a comparison between eastern and western North American postglacial colonization histories. AMERICAN JOURNAL OF BOTANY 2015; 102:1342-1355. [PMID: 26290557 DOI: 10.3732/ajb.1500160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/09/2015] [Indexed: 06/04/2023]
Abstract
UNLABELLED • Premises of the study: Understanding the influence of recent glacial and postglacial periods on species' distributions is key for predicting the effects of future environmental changes. We investigated the influence of two physiographic landscapes on population structure and postglacial colonization of two white pine species of contrasting habitats: P. monticola, which occurs in the highly mountainous region of western North America, and P. strobus, which occurs in a much less mountainous area in eastern North America.• METHODS To characterize the patterns of genetic diversity and population structure across the ranges of both species, 158 and 153 single nucleotide polymorphism (SNP) markers derived from expressed genes were genotyped on range-wide samples of 61 P. monticola and 133 P. strobus populations, respectively.• KEY RESULTS In P. monticola, a steep latitudinal decrease in genetic diversity likely resulted from postglacial colonization involving rare long-distance dispersal (LDD) events. In contrast, no geographic patterns of diversity were detected in P. strobus, suggesting recolonization via a gradually advancing front or frequent LDD events. For each species, structure analyses identified two distinct southern and northern genetic groups that likely originated from two different glacial lineages. At a finer scale, and for the two species, smaller subgroups were detected that could be remnants of cryptic refugia.• CONCLUSION During postglacial colonization, the western and eastern North American landscapes had different impacts on genetic signatures in P. monticola compared with P. strobus. We discuss the importance of our findings for conservation programs and predictions of species' response to climate change.
Collapse
Affiliation(s)
- Simon Nadeau
- The University of British Columbia, Department of Forest and Conservation Sciences, Forest Science Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380 Stn., Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Julie Godbout
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380 Stn., Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380 Stn., Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Marie-Claude Gros-Louis
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380 Stn., Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380 Stn., Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Kermit Ritland
- The University of British Columbia, Department of Forest and Conservation Sciences, Forest Science Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
20
|
Pierce AA, Zalucki MP, Bangura M, Udawatta M, Kronforst MR, Altizer S, Haeger JF, de Roode JC. Serial founder effects and genetic differentiation during worldwide range expansion of monarch butterflies. Proc Biol Sci 2015; 281:rspb.2014.2230. [PMID: 25377462 DOI: 10.1098/rspb.2014.2230] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Range expansions can result in founder effects, increasing genetic differentiation between expanding populations and reducing genetic diversity along the expansion front. However, few studies have addressed these effects in long-distance migratory species, for which high dispersal ability might counter the effects of genetic drift. Monarchs (Danaus plexippus) are best known for undertaking a long-distance annual migration in North America, but have also dispersed around the world to form populations that do not migrate or travel only short distances. Here, we used microsatellite markers to assess genetic differentiation among 18 monarch populations and to determine worldwide colonization routes. Our results indicate that North American monarch populations connected by land show limited differentiation, probably because of the monarch's ability to migrate long distances. Conversely, we found high genetic differentiation between populations separated by large bodies of water. Moreover, we show evidence for serial founder effects across the Pacific, suggesting stepwise dispersal from a North American origin. These findings demonstrate that genetic drift played a major role in shaping allele frequencies and created genetic differentiation among newly formed populations. Thus, range expansion can give rise to genetic differentiation and declines in genetic diversity, even in highly mobile species.
Collapse
Affiliation(s)
- Amanda A Pierce
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Marie Bangura
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Milan Udawatta
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Marcus R Kronforst
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
21
|
Dellicour S, Kastally C, Hardy OJ, Mardulyn P. Comparing phylogeographic hypotheses by simulating DNA sequences under a spatially explicit model of coalescence. Mol Biol Evol 2014; 31:3359-72. [PMID: 25261404 DOI: 10.1093/molbev/msu277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Computer simulations of genetic data are increasingly used to investigate the impact of complex historical scenarios on patterns of genetic variation. Yet, in most empirical studies, relatively large portions of species ranges are often treated as panmictic populations, ignoring the underlying spatial context. In some cases, however, a more accurate spatial model is required. We use a spatially explicit model of coalescence (easily constructed by overlaying a two-dimensional grid on maps displaying an estimate of past and current species ranges) to evaluate the potential of several summary statistics to differentiate three typical phylogeographic scenarios. We first explore the variation of each summary statistic within the boundaries of each phylogeographic scenario, and identify those that appear most promising for a comparison of historical scenarios and/or to infer historical parameters. We then combine a selected set of summary statistics in a single chi-square statistic and evaluate whether it can be used to differentiate past geographic fragmentation or range expansion from a simple scenario of isolation by distance. We also investigate the benefits of using a spatially explicit model by comparing its performance to alternative models that are less spatially explicit (lower geographic resolution). The results identify conditions in which each summary statistic is useful to infer the evolution of a species range, and allow us to validate our spatially explicit model of coalescence and our procedure to compare simulated and observed sequence data. We also provide a detailed description of the spatially explicit model of coalescence used, which is currently lacking.
Collapse
Affiliation(s)
- Simon Dellicour
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Chedly Kastally
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivier J Hardy
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
22
|
Benguigui M, Arenas M. Spatial and temporal simulation of human evolution. Methods, frameworks and applications. Curr Genomics 2014; 15:245-55. [PMID: 25132795 PMCID: PMC4133948 DOI: 10.2174/1389202915666140506223639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/05/2014] [Accepted: 05/04/2014] [Indexed: 01/29/2023] Open
Abstract
Analyses of human evolution are fundamental to understand the current gradients of human diversity. In this concern, genetic samples collected from current populations together with archaeological data are the most important resources to study human evolution. However, they are often insufficient to properly evaluate a variety of evolutionary scenarios, leading to continuous debates and discussions. A commonly applied strategy consists of the use of computer simulations based on, as realistic as possible, evolutionary models, to evaluate alternative evolutionary scenarios through statistical correlations with the real data. Computer simulations can also be applied to estimate evolutionary parameters or to study the role of each parameter on the evolutionary process. Here we review the mainly used methods and evolutionary frameworks to perform realistic spatially explicit computer simulations of human evolution. Although we focus on human evolution, most of the methods and software we describe can also be used to study other species. We also describe the importance of considering spatially explicit models to better mimic human evolutionary scenarios based on a variety of phenomena such as range expansions, range shifts, range contractions, sex-biased dispersal, long-distance dispersal or admixtures of populations. We finally discuss future implementations to improve current spatially explicit simulations and their derived applications in human evolution.
Collapse
Affiliation(s)
- Macarena Benguigui
- Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Miguel Arenas
- Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
23
|
Rieux A, Soubeyrand S, Bonnot F, Klein EK, Ngando JE, Mehl A, Ravigne V, Carlier J, de Lapeyre de Bellaire L. Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experiment. PLoS One 2014; 9:e103225. [PMID: 25116080 PMCID: PMC4130500 DOI: 10.1371/journal.pone.0103225] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022] Open
Abstract
Given its biological significance, determining the dispersal kernel (i.e., the distribution of dispersal distances) of spore-producing pathogens is essential. Here, we report two field experiments designed to measure disease gradients caused by sexually- and asexually-produced spores of the wind-dispersed banana plant fungus Mycosphaerella fijiensis. Gradients were measured during a single generation and over 272 traps installed up to 1000 m along eight directions radiating from a traceable source of inoculum composed of fungicide-resistant strains. We adjusted several kernels differing in the shape of their tail and tested for two types of anisotropy. Contrasting dispersal kernels were observed between the two types of spores. For sexual spores (ascospores), we characterized both a steep gradient in the first few metres in all directions and rare long-distance dispersal (LDD) events up to 1000 m from the source in two directions. A heavy-tailed kernel best fitted the disease gradient. Although ascospores distributed evenly in all directions, average dispersal distance was greater in two different directions without obvious correlation with wind patterns. For asexual spores (conidia), few dispersal events occurred outside of the source plot. A gradient up to 12.5 m from the source was observed in one direction only. Accordingly, a thin-tailed kernel best fitted the disease gradient, and anisotropy in both density and distance was correlated with averaged daily wind gust. We discuss the validity of our results as well as their implications in terms of disease diffusion and management strategy.
Collapse
Affiliation(s)
| | - Samuel Soubeyrand
- INRA, UR546 Biostatistics and Spatial Processes (BioSP), Avignon, France
| | | | - Etienne K. Klein
- INRA, UR546 Biostatistics and Spatial Processes (BioSP), Avignon, France
| | - Josue E. Ngando
- Centre Africain de Recherches sur Bananiers et Plantains (CARBAP) – Njombe, Cameroon
| | | | | | | | | |
Collapse
|
24
|
Robledo-Arnuncio JJ, Klein EK, Muller-Landau HC, Santamaría L. Space, time and complexity in plant dispersal ecology. MOVEMENT ECOLOGY 2014; 2:16. [PMID: 25709828 PMCID: PMC4337469 DOI: 10.1186/s40462-014-0016-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/24/2014] [Indexed: 05/09/2023]
Abstract
Dispersal of pollen and seeds are essential functions of plant species, with far-reaching demographic, ecological and evolutionary consequences. Interest in plant dispersal has increased with concerns about the persistence of populations and species under global change. We argue here that advances in plant dispersal ecology research will be determined by our ability to surmount challenges of spatiotemporal scales and heterogeneities and ecosystem complexity. Based on this framework, we propose a selected set of research questions, for which we suggest some specific objectives and methodological approaches. Reviewed topics include multiple vector contributions to plant dispersal, landscape-dependent dispersal patterns, long-distance dispersal events, spatiotemporal variation in dispersal, and the consequences of dispersal for plant communities, populations under climate change, and anthropogenic landscapes.
Collapse
Affiliation(s)
- Juan J Robledo-Arnuncio
- />Department of Forest Ecology & Genetics, INIA-CIFOR, Ctra. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Etienne K Klein
- />INRA, UR546 Biostatistique et Processus Spatiaux (BioSP), Avignon, France
| | - Helene C Muller-Landau
- />Smithsonian Tropical Research Institute, Apartado Postal 0843-03092 Panamá, Republica de Panamá
| | - Luis Santamaría
- />Spatial Ecology Group, Doñana Biological Station (EBD-CSIC), Sevilla, Spain
| |
Collapse
|
25
|
Berthouly-Salazar C, Hui C, Blackburn TM, Gaboriaud C, van Rensburg BJ, van Vuuren BJ, Le Roux JJ. Long-distance dispersal maximizes evolutionary potential during rapid geographic range expansion. Mol Ecol 2013; 22:5793-804. [DOI: 10.1111/mec.12538] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Cécile Berthouly-Salazar
- Centre for Invasion Biology; Department of Botany & Zoology; Stellenbosch University; Private Bag X1 Stellenbosch 7602 South Africa
| | - Cang Hui
- Centre for Invasion Biology; Department of Botany & Zoology; Stellenbosch University; Private Bag X1 Stellenbosch 7602 South Africa
| | - Tim M. Blackburn
- Institute of Zoology; Zoological Society of London; Regent's Park London NW1 4RY UK
- Distinguished Scientist Fellowship Program; King Saud University; Riyadh 1145 Saudi Arabia
| | - Coline Gaboriaud
- Centre for Invasion Biology; Department of Botany & Zoology; Stellenbosch University; Private Bag X1 Stellenbosch 7602 South Africa
| | - Berndt J. van Rensburg
- Department of Zoology and Entomology; Centre for Invasion Biology; University of Pretoria; Private Bag X20 Hatfield 0028 South Africa
| | - Bettine Jansen van Vuuren
- Centre for Invasion Biology; Department of Zoology; University of Johannesburg; P.O. Box 524 Auckland Park 2006 South Africa
| | - Johannes J. Le Roux
- Centre for Invasion Biology; Department of Botany & Zoology; Stellenbosch University; Private Bag X1 Stellenbosch 7602 South Africa
| |
Collapse
|
26
|
Mona S, Ray N, Arenas M, Excoffier L. Genetic consequences of habitat fragmentation during a range expansion. Heredity (Edinb) 2013; 112:291-9. [PMID: 24149654 DOI: 10.1038/hdy.2013.105] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 11/09/2022] Open
Abstract
We investigate the effect of habitat fragmentation on the genetic diversity of a species experiencing a range expansion. These two evolutionary processes have not been studied yet, at the same time, owing to the difficulties of deriving analytic results for non-equilibrium models. Here we provide a description of their interaction by using extensive spatial and temporal coalescent simulations and we suggest guidelines for a proper genetic sampling to detect fragmentation. To model habitat fragmentation, we simulated a two-dimensional lattice of demes partitioned into groups (patches) by adding barriers to dispersal. After letting a population expand on this grid, we sampled lineages from the lattice at several scales and studied their coalescent history. We find that in order to detect fragmentation, one needs to extensively sample at a local level rather than at a landscape level. This is because the gene genealogy of a scattered sample is less sensitive to the presence of genetic barriers. Considering the effect of temporal changes of fragmentation intensities, we find that at least 10, but often >100, generations are needed to affect local genetic diversity and population structure. This result explains why recent habitat fragmentation does not always lead to detectable signatures in the genetic structure of populations. Finally, as expected, long-distance dispersal increases local genetic diversity and decreases levels of population differentiation, efficiently counteracting the effects of fragmentation.
Collapse
Affiliation(s)
- S Mona
- 1] Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Berne, Berne, Switzerland [2] Swiss Institute of Bioinformatics, Lausanne, Switzerland [3] Department of Systematics and Evolution, Muséum National d'Histoire Naturelle, Ecole Pratique des Hautes Etudes, UMR-CNRS 7205, Paris, France
| | - N Ray
- EnviroSPACE Laboratory, Institute for Environmental Sciences, University of Geneva, Carouge, Switzerland
| | - M Arenas
- 1] Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Berne, Berne, Switzerland [2] Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - L Excoffier
- 1] Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Berne, Berne, Switzerland [2] Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
27
|
Szövényi P, Sundberg S, Shaw AJ. Long-distance dispersal and genetic structure of natural populations: an assessment of the inverse isolation hypothesis in peat mosses. Mol Ecol 2012; 21:5461-72. [PMID: 23062192 DOI: 10.1111/mec.12055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 11/30/2022]
Abstract
It is well accepted that the shape of the dispersal kernel, especially its tail, has a substantial effect on the genetic structure of species. Theory predicts that dispersal by fat-tailed kernels reshuffles genetic material, and thus, preserves genetic diversity during colonization. Moreover, if efficient long-distance dispersal is coupled with random colonization, an inverse isolation effect is predicted to develop in which increasing genetic diversity per colonizer is expected with increasing distance from a genetically variable source. By contrast, increasing isolation leads to decreasing genetic diversity when dispersal is via thin-tailed kernels. Here, we use a well-established model group for dispersal biology (peat mosses: genus Sphagnum) with a fat-tailed dispersal kernel, and the natural laboratory of the Stockholm archipelago to study the validity of the inverse isolation hypothesis in spore-dispersed plants in island colonization. Population genetic structure of three species (Sphagnum fallax, Sphagnum fimbriatum and Sphagnum palustre) with contrasting life histories and ploidy levels were investigated on a set of islands using microsatellites. Our data show (ϕ'(st), amova, IBD) that dispersal of the two most abundant species can be well approximated by a random colonization model. We find that genetic diversity per colonizer on islands increases with distance from the mainland for S. fallax and S. fimbriatum. By contrast, S. palustre deviates from this pattern, owing to its restricted distribution in the region, affecting its source pool strength. Therefore, the inverse isolation effect appears to hold in natural populations of peat mosses and, likely, in other organisms with small diaspores.
Collapse
Affiliation(s)
- Péter Szövényi
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| | | | | |
Collapse
|
28
|
Shi MM, Chen XY. Leading-edge populations do not show low genetic diversity or high differentiation in a wind-pollinated tree. POPUL ECOL 2012. [DOI: 10.1007/s10144-012-0332-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Affiliation(s)
- Miguel Arenas
- Computational and Molecular Population Genetics Lab-CMPG, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| |
Collapse
|
30
|
VERKUIL YVONNEI, PIERSMA THEUNIS, JUKEMA JOOP, HOOIJMEIJER JOSCEW, ZWARTS LEO, BAKER ALLANJ. The interplay between habitat availability and population differentiation: a case study on genetic and morphological structure in an inland wader (Charadriiformes). Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01878.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Bourret A, McPeek MA, Turgeon J. Regional divergence and mosaic spatial distribution of two closely related damselfly species (Enallagma hageni and Enallagma ebrium). J Evol Biol 2011; 25:196-209. [PMID: 22122075 DOI: 10.1111/j.1420-9101.2011.02418.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
North American Enallagma damselflies radiated during the Pleistocene, and species differ mainly by reproductive structures. Although morphologically very different, Enallagma hageni and Enallagma ebrium are genetically very similar. Partitioning of genetic variation (AFLP), isolation by distance and clustering analyses indicate that these morphospecies are locally differentiated genetically. Spatial analyses show that they are rarely sympatric at local sites, and their distributions form a mosaic of patches where one is clearly dominant over hundreds of square kilometers. However, these morphospecies are also not genetically more similar when they are sympatric, indicating that hybridization is probably not occurring. Given that these morphospecies are ecologically equivalent, strong assortative mating, reproductive interference and fast post-glacial recolonization may explain the origin and maintenance of these distributional patches across eastern North America. By limiting opportunities for gene flow, reproductive interference may play an unsuspected role in accelerating genetic differentiation in the early phases of nonecological speciation.
Collapse
Affiliation(s)
- A Bourret
- Département de biologie, Université Laval, Quebec City, QC, Canada
| | | | | |
Collapse
|
32
|
Hamrick J, Trapnell DW. Using population genetic analyses to understand seed dispersal patterns. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2011. [DOI: 10.1016/j.actao.2011.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Plants on the move: The role of seed dispersal and initial population establishment for climate-driven range expansions. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2011. [DOI: 10.1016/j.actao.2011.05.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Arenas M, Ray N, Currat M, Excoffier L. Consequences of range contractions and range shifts on molecular diversity. Mol Biol Evol 2011; 29:207-18. [PMID: 21778191 DOI: 10.1093/molbev/msr187] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Due to past and current climatic changes, range contractions and range shifts are essential stages in the history of a species. However, unlike range expansions, the molecular consequences of these processes have been little investigated. In order to fill this gap, we simulated patterns of molecular diversity within and between populations for various types of range contractions and range shifts. We show that range contractions tend to decrease genetic diversity as compared with population with stable ranges but quite counterintuitively fast range contractions preserve higher levels of diversity and induce lower levels of genetic differentiation among refuge areas than slow contractions. Contrastingly, fast range shifts lead to lower levels of diversity than slow range shifts. At odds with our expectations, we find that species actively migrating toward refuge areas can only preserve higher levels of diversity in refugia if the contraction is rapid. Under slow range contraction or slow range shift, active migration toward refugia lead to a larger loss of diversity as compared with scenarios with isotropic migration and may thus not be a good evolutionary strategy. These results suggest that the levels of diversity preserved after a climate change both within and between refuge areas will not only depend on the dispersal abilities of a species but also on the speed of the change. It also implies that a given episode of climatic change will impact differently species with different generation times.
Collapse
Affiliation(s)
- Miguel Arenas
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Berne, Switzerland.
| | | | | | | |
Collapse
|
35
|
Lepais O, Bacles CFE. Comparison of random and SSR-enriched shotgun pyrosequencing for microsatellite discovery and single multiplex PCR optimization in Acacia harpophylla F. Muell. Ex Benth. Mol Ecol Resour 2011; 11:711-24. [PMID: 21466660 DOI: 10.1111/j.1755-0998.2011.03002.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streamlining the development and genotyping of microsatellites in species for which no genetic information is available represents an important technical challenge to overcome in order to enable mainstream application of state-of-the-art population genetic analysis techniques in nonmodel organisms. Using the example of Acacia harpophylla, an acacia tree endemic of north-eastern Australia, we show that high-throughput shotgun pyrosequencing technology, so-called second-generation sequencing, reduces time and cost of microsatellite marker discovery in nonmodel organisms and of their large-scale typing in natural populations. We found that 0.5% of short sequence reads generated on 454 Genome Sequencer FLX Titanium from random genome sampling and 2.2% of reads generated with prior microsatellite enrichment yielded microsatellite markers with designed polymerase chain reaction (PCR) primers, suggesting that enrichment increases efficiency of pyrosequencing when microsatellite discovery is the primary goal. Using stringent selection criteria to facilitate downstream PCR multiplex design, we identified 1435 microsatellite loci with designed primers from a total of 200,908 short sequence reads. From a subset of 96 loci tested for amplification, 38 were validated for population genetics applications, leading to the optimization of a cost-effective multiplex PCR protocol for the simultaneous typing of nine microsatellites in natural populations of A. harpophylla.
Collapse
Affiliation(s)
- Olivier Lepais
- Institute of Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | |
Collapse
|
36
|
Pluess AR. Pursuing glacier retreat: genetic structure of a rapidly expanding Larix decidua population. Mol Ecol 2010; 20:473-85. [PMID: 21199030 DOI: 10.1111/j.1365-294x.2010.04972.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the greatest threats to the long-term viability of migrating plant species is the loss of genetic diversity due to founder effects. Populations can expand as a response to climate change, but it is uncertain if long-lived plant species can maintain sufficient genetic diversity at the leading edge of migrating populations. This study uses an expanding Larix decidua population investigated along a chronosequence at landscape (350 ha) and local (0.8 ha) scales to test whether accelerated migration as a result of climate warming has the potential to intensify genetic erosion. Nine SSR markers revealed similar genetic diversity among eight sub-populations along the chronosequence (overall H(e) = 0.73; SE=0.04). Sub-populations were not genetically differentiated and all sampled individuals (N=730) formed one major genetic cluster indicating homogenizing gene flow despite spatial genetic structure (SGS) up to 80 m. At the local scale, individuals at the leading edge [early successional sub-population (ESSP), N =140] and a sub-population at equilibrium [late successional sub-population (LSSP), N = 290] revealed high genetic diversity in largest-sized cohorts. SGS among juveniles occurred up to 30 m in LSSP but there was no structure in ESSP. Accordingly, a maximum likelihood paternity assignment revealed local gene dispersal in LSSP (2-48 m) and intermediate-to-long distance dispersal into ESSP (115-3132 m). The findings indicate intensive mixing of the genes in this expanding population instead of founder effects and support the view that genetic diversity can be maintained in a long-lived species during rapid population expansion driven by climate warming.
Collapse
Affiliation(s)
- Andrea R Pluess
- Department of Environmental Sciences, ETH Zurich, Universitaetstrasse 16, Zurich, Switzerland
| |
Collapse
|
37
|
TRAVIS JMJ, MÜNKEMÜLLER T, BURTON OJ. Mutation surfing and the evolution of dispersal during range expansions. J Evol Biol 2010; 23:2656-67. [DOI: 10.1111/j.1420-9101.2010.02123.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Gaggiotti OE. Preface to the special issue: advances in the analysis of spatial genetic data. Mol Ecol Resour 2010; 10:757-9. [PMID: 21565087 DOI: 10.1111/j.1755-0998.2010.02899.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oscar E Gaggiotti
- Laboratoire d'Ecologie Alpine, UMR CNRS 5553, BP 53, Université Joseph Fourier, Grenoble, France
| |
Collapse
|