1
|
Neuendorf HM, Simmons JL, Boyle GM. Therapeutic targeting of anoikis resistance in cutaneous melanoma metastasis. Front Cell Dev Biol 2023; 11:1183328. [PMID: 37181747 PMCID: PMC10169659 DOI: 10.3389/fcell.2023.1183328] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
The acquisition of resistance to anoikis, the cell death induced by loss of adhesion to the extracellular matrix, is an absolute requirement for the survival of disseminating and circulating tumour cells (CTCs), and for the seeding of metastatic lesions. In melanoma, a range of intracellular signalling cascades have been identified as potential drivers of anoikis resistance, however a full understanding of the process is yet to be attained. Mechanisms of anoikis resistance pose an attractive target for the therapeutic treatment of disseminating and circulating melanoma cells. This review explores the range of small molecule, peptide and antibody inhibitors targeting molecules involved in anoikis resistance in melanoma, and may be repurposed to prevent metastatic melanoma prior to its initiation, potentially improving the prognosis for patients.
Collapse
Affiliation(s)
- Hannah M. Neuendorf
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacinta L. Simmons
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Glen M. Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Fane ME, Chhabra Y, Spoerri L, Simmons JL, Ludwig R, Bonvin E, Goding CR, Sturm RA, Boyle GM, Haass NK, Piper M, Smith AG. Reciprocal regulation of BRN2 and NOTCH1/2 signaling synergistically drives melanoma cell migration and invasion. J Invest Dermatol 2021; 142:1845-1857. [PMID: 34958806 DOI: 10.1016/j.jid.2020.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022]
Abstract
Phenotypic plasticity drives cancer progression, impacts on treatment response and is a major driver of therapeutic resistance. In melanoma, a regulatory axis between the MITF and BRN2 transcription factors has been reported to promote tumor heterogeneity by mediating switching between proliferative and invasive phenotypes respectively. Despite strong evidence that subpopulations of cells that exhibit a BRN2high/MITFlow expression profile switch to a predominantly invasive phenotype, the mechanisms by which this switch is propagated and promotes invasion remain poorly defined. We have found that a reciprocal relationship between BRN2 and NOTCH1/2 signaling exists in melanoma cells in vitro, within patient datasets and in vivo primary and metastatic human tumors that bolsters acquisition of invasiveness. Working through the epigenetic modulator EZH2, the BRN2-NOTCH1/2 axis is potentially a key mechanism by which the invasive phenotype is maintained. Given the emergence of agents targeting both EZH2 and NOTCH, understanding the mechanism through which BRN2 promotes heterogeneity may provide crucial biomarkers to predict treatment response to prevent metastasis.
Collapse
Affiliation(s)
- Mitchell E Fane
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia; The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore MD 21231; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore MD 21231
| | - Yash Chhabra
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia; Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore MD 21231; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore MD 21231
| | - Loredana Spoerri
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Jacinta L Simmons
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia; The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia; Cancer Drug Mechanisms Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Raquelle Ludwig
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia
| | - Elise Bonvin
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Glen M Boyle
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia; The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia; Cancer Drug Mechanisms Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Aaron G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia; Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
4
|
Ding S, Jin Y, Hao Q, Kang Y, Ma R. LncRNA BCYRN1/miR-490-3p/POU3F2, served as a ceRNA network, is connected with worse survival rate of hepatocellular carcinoma patients and promotes tumor cell growth and metastasis. Cancer Cell Int 2020; 20:6. [PMID: 31920461 PMCID: PMC6945438 DOI: 10.1186/s12935-019-1081-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Backgrounds LncRNA Brain Cytoplasmic RNA 1 (BCYRN1) has been certified to modulate cancer cells growth and aggressiveness in several tumors. However, research about function of BCYRN1 in hepatocellular carcinoma (HCC) is limited. Therefore, our research intends to explore the function of BCYRN1 in HCC. Methods HepG2 and BEL-7402 cell lines were employed for later function experiments. Differently expression levels of BCYRN1, miR-490-3p, and POU class 3 homeobox 2 (POU3F2) were determined on the base of TCGA dataset including 375 HCC patients and 50 normal. 370 cases of patients, which have fairly complete clinical data, were utilized for survival analysis of BCYRN1, miR-490-3p, or POU3F2 by Kaplan–Meier method. Relative expression pattern of BCYRN1 was examined by quantitative real time polymerase chain reaction (qRT-PCR), and relative expression level of POU3F2 was assessed by qRT-PCR and western blot. Cell biological behaviors were analyzed by cell counting kit-8, cloning formation, and transwell assays. Bioinformatics software and dual luciferase assay were applied to predict and confirm the targeted relationship between BCYRN1 and miR-490-3p, as well as miR-490-3p and POU3F2. Further associations among BCYRN1, miR-490-3p, and POU3F2 were analyzed by rescue assays. Results Our results exhibited that BCYRN1 was over expressed in HCC samples, which was connected with unfavorable prognosis in HCC patients. In addition, a series of experiments exhibited that overexpression of BCYRN1 significantly expedited HCC cells growth, clone formation, and movement abilities, and vice versa. Moreover, targeted relationships between BCYRN1 and miR-490-3p, as well as miR-490-3p and POU3F2 were affirmed by dual luciferase assay. Furthermore, POU3F2 expression was negatively connected with the expression of miR-490-3p and positively associated with BCYRN1 expression. Whilst, either overexpression of miR-490-3p or knockdown of POU3F2 could remarkably inhibit the increasing trends of proliferation, clone formation, invasion, and migration abilities induced by BCYRN1 in HCC cells. Conclusions BCYRN1, served as a competing endogenous RNA, up-regulated the expression of POU3F2 to promote the development of HCC through sponging miR-490-3p, supplying novel molecular targets and underlying prognostic biomarkers for HCC therapy.
Collapse
Affiliation(s)
- Shichao Ding
- Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University, Internal Second Medicine, Jinan, Shandong China
| | - Yanfeng Jin
- 2Department of Gastroenterology, Yantai Yuhuangding Hospital, Yantai, Shandong China
| | - Qingzhi Hao
- Department of Peripheral Vascular Diseases, The Affiliated Hospital of University of Traditional Chinese Medicine, Jinan, Shandong China
| | - Yanmeng Kang
- Department of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,5Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong China
| | - Ruiping Ma
- Department of Liver Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong China.,7Department of Liver Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, 250000 Shandong China
| |
Collapse
|
5
|
Yadav R, Srivastava P. Establishment of resveratrol and its derivatives as neuroprotectant against monocrotophos-induced alteration in NIPBL and POU4F1 protein through molecular docking studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:291-304. [PMID: 31786755 DOI: 10.1007/s11356-019-06806-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Monocrotophos (MCP) is a broad spectrum organophosphorus insecticide, which is widely used as foliar spray to the different important crops. MCP may reach the soil and the aquatic environment directly or indirectly during and after the application, which leads to the different environmental issues. MCP is found to be associated with neurotoxicity and its toxic effects have been monitored during different stages of neuronal development. Identification of gene expression in MCP-induced neurotoxicity during neuronal developmental stage is a major area of genomic research interest. In accordance with this identification, screening of potential neuroprotective, natural resources are also required as a preventive aspects by targeting the impaired genes. In this current course of work, microarray experiment has been used to identify genes that were expressed in monocrotophos (MCP)-induced mesenchymal stem cells (MSC) and also the neuroprotectant activity of RV on MCP-exposed MSCs. Microarray experiment data have been deposited in NCBI's Gene Expression Omnibus database and are accessible through GEO Series accession number GSE121261. In this paper, we have discussed two important genes NIPBL (nipped-B-like protein) and POU4F1 (POU domain, class 4, transcription factor 1). These genes were found to be significantly expressed in MCP-exposed MSC and show minimum expression in presence of RV. Homology modelling and docking study was done to identify the interaction and binding affinity of resveratrol and its derivatives with NIPBL and POU4F1 protein. Docking analysis shows that RV and its derivatives have strong interaction with NIPBL and POU4F1 protein hence proves the significance of resveratrol as potential neuroprotectant. This paper highlights the hazardous impact of MCP on neuronal development disorders and repairing potentiality of RV and its derivatives on altered genes involved in neuronal diseases. Graphical Abstract.
Collapse
Affiliation(s)
- Ruchi Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, U.P., India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, U.P., India.
| |
Collapse
|
6
|
da Cunha FFM, Mugnol KCU, de Melo FM, Nascimento MVSQ, de Azevedo RA, Santos RTS, Magalhães JA, Miguel DC, Tada DB, Mortara RA, Travassos LR, Arruda DC. Peptide R18H from BRN2 Transcription Factor POU Domain Displays Antitumor Activity In Vitro and In Vivo and Induces Apoptosis in B16F10-Nex2 Cells. Anticancer Agents Med Chem 2019; 19:389-401. [PMID: 30417795 DOI: 10.2174/1871520618666181109164246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND BRN2 transcription factor is associated with the development of malignant melanoma. The cytotoxic activities and cell death mechanism against B16F10-Nex2 cells were determined with synthetic peptide R18H derived from the POU domain of the BRN2 transcription factor. OBJECTIVE To determine the cell death mechanisms and in vivo activity of peptide R18H derived from the POU domain of the BRN2 transcription factor against B16F10-Nex2 cells. METHODS Cell viability was determined by the MTT method. C57Bl/6 mice were challenged with B16F10-Nex2 cells and treated with R18H. To identify the type of cell death, we used TUNEL assay, Annexin V and PI, Hoechst, DHE, and determination of caspase activation and cytochrome c release. Transmission electron microscopy was performed to verify morphological alterations after peptide treatment. RESULTS Peptide R18H displayed antitumor activity in the first hours of treatment and the EC50% was calculated for 2 and 24h, being 0.76 ± 0.045 mM and 0.559 ± 0.053 mM, respectively. After 24h apoptosis was evident, based on DNA degradation, chromatin condensation, increase of superoxide anion production, phosphatidylserine translocation, activation of caspases 3 and 8, and release of extracellular cytochrome c in B16F10-Nex2 cells. The peptide cytotoxic activity was not affected by necroptosis inhibitors and treated cells did not release LDH in the extracellular medium. Moreover, in vivo antitumor activity was observed following treatment with peptide R18H. CONCLUSION Peptide R18H from BRN2 transcription factor induced apoptosis in B16F10-Nex2 and displayed antitumor activity in vivo.
Collapse
Affiliation(s)
- Fernanda F M da Cunha
- Nucleo Integrado de Biotecnologia (NIB), Universidade de Mogi das Cruzes, UMC, Mogi das Cruzes, SP, Brazil
| | - Katia C U Mugnol
- Centro Interdisciplinar de Investigacao Bioquimica (CIIB) Universidade de Mogi das Cruzes, UMC, Mogi das Cruzes, SP, Brazil
| | - Filipe M de Melo
- Departamento de Imunologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Marta V S Q Nascimento
- Centro Interdisciplinar de Investigacao Bioquimica (CIIB) Universidade de Mogi das Cruzes, UMC, Mogi das Cruzes, SP, Brazil
| | - Ricardo A de Azevedo
- Unidade de Oncologia Experimental (UNONEX), Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Raquel T S Santos
- Nucleo Integrado de Biotecnologia (NIB), Universidade de Mogi das Cruzes, UMC, Mogi das Cruzes, SP, Brazil
| | - Jéssica A Magalhães
- Laboratorio de Nanomateriais e Nanotoxicologia, Instituto de Ciencia e Tecnologia, Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP, Brazil
| | - Danilo C Miguel
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Dayane B Tada
- Laboratorio de Nanomateriais e Nanotoxicologia, Instituto de Ciencia e Tecnologia, Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP, Brazil
| | - Renato A Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Luiz R Travassos
- Unidade de Oncologia Experimental (UNONEX), Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Denise C Arruda
- Nucleo Integrado de Biotecnologia (NIB), Universidade de Mogi das Cruzes, UMC, Mogi das Cruzes, SP, Brazil
| |
Collapse
|
7
|
Chitsazan A, Lambie D, Ferguson B, Handoko HY, Gabrielli B, Walker GJ, Boyle GM. Unexpected High Levels of BRN2/POU3F2 Expression in Human Dermal Melanocytic Nevi. J Invest Dermatol 2019; 140:1299-1302.e4. [PMID: 31881210 DOI: 10.1016/j.jid.2019.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Arash Chitsazan
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Duncan Lambie
- IQ Pathology, West End, Brisbane, Australia and The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Blake Ferguson
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | | | - Brian Gabrielli
- Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Graeme J Walker
- QIMR Berghofer Medical Research Institute, Herston, Australia; Experimental Dermatology, The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Australia.
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Herston, Australia
| |
Collapse
|
8
|
Larribère L, Utikal J. Stem Cell-Derived Models of Neural Crest Are Essential to Understand Melanoma Progression and Therapy Resistance. Front Mol Neurosci 2019; 12:111. [PMID: 31118886 PMCID: PMC6506783 DOI: 10.3389/fnmol.2019.00111] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/15/2019] [Indexed: 11/13/2022] Open
Abstract
During development, neural crest (NC) cells are early precursors of several lineages including melanocytes. Along their differentiation from multipotent cells to mature melanocytes, NC cells will go through successive steps which require either proliferative or motile capacities. For example, they will undergo Epithelial to Mesenchymal Transition (EMT) in order the separate from the neural tube and migrate to their final location in the epidermis (Larribere and Utikal, 2013; Skrypek et al., 2017). The differentiated melanocytes are the cells of origin of melanoma tumors which progress through several stages such as radial growth phase, vertical growth phase, metastasis formation, and often resistance to current therapies. Interestingly, depending on the stage of the disease, melanoma tumor cells share phenotypes with NC cells (proliferative, motile, EMT). These phenotypes are tightly controlled by specific signaling pathways and transcription factors (TFs) which tend to be reactivated during the onset of melanoma. In this review, we summarize first the main TFs which control these common phenotypes. Then, we focus on the existing strategies used to generate human NCs. Finally we discuss how identification and regulation of NC-associated genes provide an additional approach to improving current melanoma targeted therapies.
Collapse
Affiliation(s)
- Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
9
|
Herbert K, Binet R, Lambert JP, Louphrasitthiphol P, Kalkavan H, Sesma-Sanz L, Robles-Espinoza CD, Sarkar S, Suer E, Andrews S, Chauhan J, Roberts ND, Middleton MR, Gingras AC, Masson JY, Larue L, Falletta P, Goding CR. BRN2 suppresses apoptosis, reprograms DNA damage repair, and is associated with a high somatic mutation burden in melanoma. Genes Dev 2019; 33:310-332. [PMID: 30804224 PMCID: PMC6411009 DOI: 10.1101/gad.314633.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/04/2019] [Indexed: 01/04/2023]
Abstract
Herbert et al. show that BRN2 is associated with DNA damage response proteins and suppresses an apoptosis-associated gene expression program to protect against UVB-, chemotherapy-, and vemurafenib-induced apoptosis. Whether cell types exposed to a high level of environmental insults possess cell type-specific prosurvival mechanisms or enhanced DNA damage repair capacity is not well understood. BRN2 is a tissue-restricted POU domain transcription factor implicated in neural development and several cancers. In melanoma, BRN2 plays a key role in promoting invasion and regulating proliferation. Here we found, surprisingly, that rather than interacting with transcription cofactors, BRN2 is instead associated with DNA damage response proteins and directly binds PARP1 and Ku70/Ku80. Rapid PARP1-dependent BRN2 association with sites of DNA damage facilitates recruitment of Ku80 and reprograms DNA damage repair by promoting Ku-dependent nonhomologous end-joining (NHEJ) at the expense of homologous recombination. BRN2 also suppresses an apoptosis-associated gene expression program to protect against UVB-, chemotherapy- and vemurafenib-induced apoptosis. Remarkably, BRN2 expression also correlates with a high single-nucleotide variation prevalence in human melanomas. By promoting error-prone DNA damage repair via NHEJ and suppressing apoptosis of damaged cells, our results suggest that BRN2 contributes to the generation of melanomas with a high mutation burden. Our findings highlight a novel role for a key transcription factor in reprogramming DNA damage repair and suggest that BRN2 may impact the response to DNA-damaging agents in BRN2-expressing cancers.
Collapse
Affiliation(s)
- Katharine Herbert
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Romuald Binet
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Medicine, Cancer Research Centre, Université Laval, Quebec G1V 0A6, Canada; CHU de Québec Research Center, CHUL, Quebec G1V 4G2, Canada
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Halime Kalkavan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Laura Sesma-Sanz
- Genome Stability Laboratory, CHU de Oncology Division, Québec Research Center, Québec City, Quebec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, Quebec G1V 0A6, Canada
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro 76230, Mexico.,Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Sovan Sarkar
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Eda Suer
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Sarah Andrews
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Nicola D Roberts
- The Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Mark R Middleton
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Oncology Division, Québec Research Center, Québec City, Quebec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, Quebec G1V 0A6, Canada
| | - Lionel Larue
- Institut Curie, PSL Research University, Normal and Pathological Development of Melanocytes, U1021, Institut National de la Santé et de la Recherche Médicale (INSERM), 91405 Orsay, France.,University Paris-Sud, University Paris-Saclay, UMR 3347, Centre National de la Recherche Scientifique (CNRS), 91505 Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, 91405 Orsay, France
| | - Paola Falletta
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.,Università Vita-Salute San Raffaele, Milano, 20132 Milano MI, Italy
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
10
|
Chen HY, Islam A, Yuan TM, Chen SW, Liu PF, Chueh PJ. Regulation of tNOX expression through the ROS-p53-POU3F2 axis contributes to cellular responses against oxaliplatin in human colon cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:161. [PMID: 30029680 PMCID: PMC6053734 DOI: 10.1186/s13046-018-0837-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxaliplatin belongs to the platinum-based drug family and has shown promise in treating cancer by binding to DNA to induce cytotoxicity. However, individual patients show diverse therapeutic responses toward oxaliplatin due to yet-unknown underlying mechanisms. We recently established that oxaliplatin also exert its anti-cancer activity in gastric cancer cell lines by targeting tumor-associated NADH oxidase (tNOX), attenuate NAD+ generation and reduce NAD+-dependent sirtuin 1 (SIRT1) deacetylase activity, which in turn enhances p53 acetylation and apoptosis. METHODS In this study, differential cellular outcomes in response to oxaliplatin exposure of p53-wild-type versus p53-null HCT116 human colon cancer cells were examined. Cell growth profile was determined by cell impedance measurements and apoptosis was analyzed by flow cytometry. The engagement between oxaliplatin and tNOX protein was studied by cellular thermal shift assay. Furthermore, western blot analysis revealed that p53 was important in regulating tNOX expression in these cell lines. RESULTS In p53-wild-type cells, we found that oxaliplatin inhibited cell growth by inducing apoptosis and concurrently down-regulating tNOX at both the transcriptional and translational levels. In p53-null cells, in contrast, oxaliplatin moderately up-regulated tNOX expression and yielded no apoptosis and much less cytotoxicity. Further experiments revealed that in p53-wild-type cells, oxaliplatin enhanced ROS generation and p53 transcriptional activation, leading to down-regulation of the transcriptional factor, POU3F2, which enhances the expression of tNOX. Moreover, the addition of a ROS scavenger reversed the p53 activation, POU3F2 down-regulation, and apoptosis induced by oxaliplatin in p53-wild-type cells. In the p53-null line, on the other hand, oxaliplatin treatment triggered less ROS generation and no p53 protein, such that POU3F2 and tNOX were not down-regulated and oxaliplatin-mediated cytotoxicity was attenuated. CONCLUSION Our results show that oxaliplatin mediates differential cellular responses in colon cancer cells depending on their p53 status, and demonstrate that the ROS-p53 axis is important for regulating POU3F2 and its downstream target, tNOX. Notably, the depletion of tNOX sensitizes p53-null cells to both spontaneous and oxaliplatin-induced apoptosis. Our work thus clearly shows a scenario in which targeting of tNOX may be a potential strategy for cancer therapy in a p53-inactivated system.
Collapse
Affiliation(s)
- Huei-Yu Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tien-Ming Yuan
- Department of Surgery, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan
| | - Shi-Wen Chen
- Department of Surgery, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan
| | - Pei-Fen Liu
- DDepartment of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist, Taichung City, 40227, Taiwan
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan. .,Graduate Institute of Basic Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
11
|
Zeng H, Jorapur A, Shain AH, Lang UE, Torres R, Zhang Y, McNeal AS, Botton T, Lin J, Donne M, Bastian IN, Yu R, North JP, Pincus L, Ruben BS, Joseph NM, Yeh I, Bastian BC, Judson RL. Bi-allelic Loss of CDKN2A Initiates Melanoma Invasion via BRN2 Activation. Cancer Cell 2018; 34:56-68.e9. [PMID: 29990501 PMCID: PMC6084788 DOI: 10.1016/j.ccell.2018.05.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 02/12/2018] [Accepted: 05/30/2018] [Indexed: 02/03/2023]
Abstract
Loss of the CDKN2A tumor suppressor is associated with melanoma metastasis, but the mechanisms connecting the phenomena are unknown. Using CRISPR-Cas9 to engineer a cellular model of melanoma initiation from primary human melanocytes, we discovered that a lineage-restricted transcription factor, BRN2, is downstream of CDKN2A and directly regulated by E2F1. In a cohort of melanocytic tumors that capture distinct progression stages, we observed that CDKN2A loss coincides with both the onset of invasive behavior and increased BRN2 expression. Loss of the CDKN2A protein product p16INK4A permitted metastatic dissemination of human melanoma lines in mice, a phenotype rescued by inhibition of BRN2. These results demonstrate a mechanism by which CDKN2A suppresses the initiation of melanoma invasion through inhibition of BRN2.
Collapse
Affiliation(s)
- Hanlin Zeng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Aparna Jorapur
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - A Hunter Shain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Ursula E Lang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Rodrigo Torres
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Yuntian Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Andrew S McNeal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Thomas Botton
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew Donne
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ingmar N Bastian
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Richard Yu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA; Faculty of Medicine, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Jeffrey P North
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Laura Pincus
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Beth S Ruben
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA; Palo Alto Medical Foundation, Palo Alto, CA 94301, USA
| | - Nancy M Joseph
- Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Iwei Yeh
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Boris C Bastian
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Robert L Judson
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
12
|
Fane ME, Chhabra Y, Smith AG, Sturm RA. BRN2, a POUerful driver of melanoma phenotype switching and metastasis. Pigment Cell Melanoma Res 2018; 32:9-24. [PMID: 29781575 DOI: 10.1111/pcmr.12710] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 12/30/2022]
Abstract
The POU domain family of transcription factors play a central role in embryogenesis and are highly expressed in neural crest cells and the developing brain. BRN2 is a class III POU domain protein that is a key mediator of neuroendocrine and melanocytic development and differentiation. While BRN2 is a central regulator in numerous developmental programs, it has also emerged as a major player in the biology of tumourigenesis. In melanoma, BRN2 has been implicated as one of the master regulators of the acquisition of invasive behaviour within the phenotype switching model of progression. As a mediator of melanoma cell phenotype switching, it coordinates the transition to a dedifferentiated, slow cycling and highly motile cell type. Its inverse expression relationship with MITF is believed to mediate tumour progression and metastasis within this model. Recent evidence has now outlined a potential epigenetic switching mechanism in melanoma cells driven by BRN2 expression that induces melanoma cell invasion. We summarize the role of BRN2 in tumour cell dissemination and metastasis in melanoma, while also examining it as a potential metastatic regulator in other tumour models.
Collapse
Affiliation(s)
- Mitchell E Fane
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Yash Chhabra
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aaron G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Richard A Sturm
- Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Vlčková K, Vachtenheim J, Réda J, Horák P, Ondrušová L. Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells. J Cell Mol Med 2018; 22:2240-2251. [PMID: 29369499 PMCID: PMC5867098 DOI: 10.1111/jcmm.13506] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Melanoma arises from neural crest-derived melanocytes which reside mostly in the skin in an adult organism. Epithelial-mesenchymal transition (EMT) is a tumorigenic programme through which cells acquire mesenchymal, more pro-oncogenic phenotype. The reversible phenotype switching is an event still not completely understood in melanoma. The EMT features and increased invasiveness are associated with lower levels of the pivotal lineage identity maintaining and melanoma-specific transcription factor MITF (microphthalmia-associated transcription factor), whereas increased proliferation is linked to higher MITF levels. However, the precise role of MITF in phenotype switching is still loosely characterized. To exclude the changes occurring upstream of MITF during MITF regulation in vivo, we employed a model whereby MITF expression was inducibly regulated by shRNA in melanoma cell lines. We found that the decrease in MITF caused only moderate attenuation of proliferation of the whole cell line population. Proliferation was decreased in five of 15 isolated clones, in three of them profoundly. Reduction in MITF levels alone did not generally produce EMT-like characteristics. The stem cell marker levels also did not change appreciably, only a sharp increase in SOX2 accompanied MITF down-regulation. Oppositely, the downstream differentiation markers and the MITF transcriptional targets melastatin and tyrosinase were profoundly decreased, as well as the downstream target livin. Surprisingly, after the MITF decline, invasiveness was not appreciably affected, independently of proliferation. The results suggest that low levels of MITF may still maintain relatively high proliferation and might reflect, rather than cause, the EMT-like changes occurring in melanoma.
Collapse
Affiliation(s)
- Kateřina Vlčková
- Department of Transcription and Cell SignalingInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Jiri Vachtenheim
- Department of Transcription and Cell SignalingInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Jiri Réda
- Department of Transcription and Cell SignalingInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Pavel Horák
- Department of Transcription and Cell SignalingInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Lubica Ondrušová
- Department of Transcription and Cell SignalingInstitute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
14
|
Lin YMJ, Hsin IL, Sun HS, Lin S, Lai YL, Chen HY, Chen TY, Chen YP, Shen YT, Wu HM. NTF3 Is a Novel Target Gene of the Transcription Factor POU3F2 and Is Required for Neuronal Differentiation. Mol Neurobiol 2018; 55:8403-8413. [PMID: 29549646 PMCID: PMC6153716 DOI: 10.1007/s12035-018-0995-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 03/07/2018] [Indexed: 12/15/2022]
Abstract
POU-homeodomain transcription factor POU3F2 is a critical transcription factor that participates in neuronal differentiation. However, little is known about its downstream mediators. Here genome-wide analyses of a human neuronal differentiation cell model, NT2D1, suggested neurotrophin-3 (NTF3), a key mediator of neuronal development during the early neurogenic period, as a putative regulatory target of POU3F2. Western blot, cDNA microarray, and real-time quantitative PCR analyses showed that POU3F2 and NTF3 were upregulated during neuronal differentiation. Next-generation-sequence-based POU3F2 chromatin immunoprecipitation-sequencing and genome-wide in silico prediction demonstrated that POU3F2 binds to the NTF3 promoter during neuronal differentiation. Furthermore, unidirectional deletion or mutation of the binding site of POU3F2 in the NTF3 promoter decreased promoter-driven luciferase activity, indicating that POU3F2 is a positive regulator of NTF3 promoter activity. While NTF3 knockdown resulted in decreased viability and differentiation of NT2D1 cells, and POU3F2 knockdown downregulated NTF3 expression, recombinant NTF3 significantly rescued viable neuronal cells from NTF3- or POU3F2-knockdown cell cultures. Moreover, immunostaining showed colocalization of POU3F2 and NTF3 in developing mouse neurons. Thus, our data suggest that NTF3 is a novel target gene of POU3F2 and that the POU3F2/NTF3 pathway plays a role in the process of neuronal differentiation.
Collapse
Affiliation(s)
- Yi-Mei J Lin
- Institute of Biomedical sciences, National Chung Hsing University, Taichung City, Taiwan
| | - I-Lun Hsin
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, No. 135 Nanxiao Street, Changhua, 500, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shankung Lin
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, No. 135 Nanxiao Street, Changhua, 500, Taiwan
| | - Yen-Ling Lai
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, No. 135 Nanxiao Street, Changhua, 500, Taiwan
| | - Hsuan-Ying Chen
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, No. 135 Nanxiao Street, Changhua, 500, Taiwan
| | - Ting-Yu Chen
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, No. 135 Nanxiao Street, Changhua, 500, Taiwan
| | - Ya-Ping Chen
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, No. 135 Nanxiao Street, Changhua, 500, Taiwan
| | - Yi-Ting Shen
- Institute of Biomedical sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Hung-Ming Wu
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, No. 135 Nanxiao Street, Changhua, 500, Taiwan.
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan.
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan.
| |
Collapse
|
15
|
Abe Y, Goda W, Ikeshima-Kataoka H, Yasui M. The dual effects of the astrocyte-specific enhancer of the AQP4 M1 promoter. FEBS Lett 2017; 591:3906-3915. [PMID: 29125630 DOI: 10.1002/1873-3468.12910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 01/22/2023]
Abstract
Aquaporin-4, a predominant water channel in the central nervous system, has two isoforms, M1 and M23, whose transcripts are driven by distinct promoters. Using a reporter assay, we found that a fragment located between exons 0 and 1 of the mouse aquaporin-4 gene, which had been thought to be the promoter for M23, lacked enhancers functioning in astrocytes. When the astrocyte-specific enhancer (ASE) of the M1 promoter is connected to the putative M23 core promoter, it also works in astrocytes. Importantly, the ASE inhibits downstream promoter activity in NIH3T3 cells, indicating that the ASE also functions as a silencer in cells lacking aquaporin-4.
Collapse
Affiliation(s)
- Yoichiro Abe
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.,Keio Advanced Institute for Water Biology and Medicine, Tokyo, Japan
| | - Wakami Goda
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan
| | | | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.,Keio Advanced Institute for Water Biology and Medicine, Tokyo, Japan.,Keio Global Research Institute, Tokyo, Japan
| |
Collapse
|
16
|
MITF and BRN2 contribute to metastatic growth after dissemination of melanoma. Sci Rep 2017; 7:10909. [PMID: 28883623 PMCID: PMC5589904 DOI: 10.1038/s41598-017-11366-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022] Open
Abstract
Melanoma tumors are highly heterogeneous, comprising of different cell types that vary in their potential for growth and invasion. Heterogeneous expression of the Microphthalmia-associated Transcription Factor (MITF) and the POU domain transcription factor BRN2 (POU3F2) has been found in malignant melanoma. Changing expression of these transcription factors as the disease progresses has been linked to the metastatic mechanism of phenotype switching. We therefore investigated the effects of MITF and BRN2 expression in melanoma growth and metastasis. Depletion of MITF resulted in a cell population that had a slowed cell cycle progression, was less invasive in vitro and had hindered tumor and metastasis forming ability in mouse xenograft studies. BRN2 depletion left a cell population with intact proliferation and invasion in vitro; however metastatic growth was significantly reduced in the mouse xenograft model. These results suggest that the proliferative population within melanoma tumors express MITF, and both MITF and BRN2 are important for metastatic growth in vivo. This finding highlights the importance of BRN2 and MITF expression in development of melanoma metastasis.
Collapse
|
17
|
Stankiewicz E, Mao X, Mangham DC, Xu L, Yeste-Velasco M, Fisher G, North B, Chaplin T, Young B, Wang Y, Kaur Bansal J, Kudahetti S, Spencer L, Foster CS, Møller H, Scardino P, Oliver RT, Shamash J, Cuzick J, Cooper CS, Berney DM, Lu YJ. Identification of FBXL4 as a Metastasis Associated Gene in Prostate Cancer. Sci Rep 2017; 7:5124. [PMID: 28698647 PMCID: PMC5505985 DOI: 10.1038/s41598-017-05209-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/24/2017] [Indexed: 01/26/2023] Open
Abstract
Prostate cancer is the most common cancer among western men, with a significant mortality and morbidity reported for advanced metastatic disease. Current understanding of metastatic disease is limited due to difficulty of sampling as prostate cancer mainly metastasizes to bone. By analysing prostate cancer bone metastases using high density microarrays, we found a common genomic copy number loss at 6q16.1-16.2, containing the FBXL4 gene, which was confirmed in larger series of bone metastases by fluorescence in situ hybridisation (FISH). Loss of FBXL4 was also detected in primary tumours and it was highly associated with prognostic factors including high Gleason score, clinical stage, prostate-specific antigen (PSA) and extent of disease, as well as poor patient survival, suggesting that FBXL4 loss contributes to prostate cancer progression. We also demonstrated that FBXL4 deletion is detectable in circulating tumour cells (CTCs), making it a potential prognostic biomarker by 'liquid biopsy'. In vitro analysis showed that FBXL4 plays a role in regulating the migration and invasion of prostate cancer cells. FBXL4 potentially controls cancer metastasis through regulation of ERLEC1 levels. Therefore, FBXL4 could be a potential novel prostate cancer suppressor gene, which may prevent cancer progression and metastasis through controlling cell invasion.
Collapse
Affiliation(s)
- Elzbieta Stankiewicz
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Xueying Mao
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - D Chas Mangham
- The Robert Jones and Agnes Hunt Orthopaedic Hospital, Department of Pathology, Oswestry, Shropshire, SY10 7AG, UK
| | - Lei Xu
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marc Yeste-Velasco
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Gabrielle Fisher
- Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, EC1 6BQ, UK
| | - Bernard North
- Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, EC1 6BQ, UK
| | - Tracy Chaplin
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Bryan Young
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Yuqin Wang
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jasmin Kaur Bansal
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Sakunthala Kudahetti
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Lucy Spencer
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Christopher S Foster
- Division of Cellular and Molecular Pathology, University of Liverpool, Liverpool, L69 3BX, UK
- HCA Pathology Laboratories, Shropshire House, Capper Street, London, WC1E6JA, UK
| | - Henrik Møller
- King's College London, Cancer Epidemiology and Population Health, London, SE1 9RT, UK
| | - Peter Scardino
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - R Tim Oliver
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonathan Shamash
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jack Cuzick
- Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, EC1 6BQ, UK
| | - Colin S Cooper
- School of Medicine, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Daniel M Berney
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Yong-Jie Lu
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
18
|
NFIB Mediates BRN2 Driven Melanoma Cell Migration and Invasion Through Regulation of EZH2 and MITF. EBioMedicine 2017; 16:63-75. [PMID: 28119061 PMCID: PMC5474438 DOI: 10.1016/j.ebiom.2017.01.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/23/2016] [Accepted: 01/09/2017] [Indexed: 11/21/2022] Open
Abstract
While invasion and metastasis of tumour cells are the principle factor responsible for cancer related deaths, the mechanisms governing the process remain poorly defined. Moreover, phenotypic divergence of sub-populations of tumour cells is known to underpin alternative behaviors linked to tumour progression such as proliferation, survival and invasion. In the context of melanoma, heterogeneity between two transcription factors, BRN2 and MITF, has been associated with phenotypic switching between predominantly invasive and proliferative behaviors respectively. Epigenetic changes, in response to external cues, have been proposed to underpin this process, however the mechanism by which the phenotypic switch occurs is unclear. Here we report the identification of the NFIB transcription factor as a novel downstream effector of BRN2 function in melanoma cells linked to the migratory and invasive characteristics of these cells. Furthermore, the function of NFIB appears to drive an invasive phenotype through an epigenetic mechanism achieved via the upregulation of the polycomb group protein EZH2. A notable target of NFIB mediated up-regulation of EZH2 is decreased MITF expression, which further promotes a less proliferative, more invasive phenotype. Together our data reveal that NFIB has the ability to promote dynamic changes in the chromatin state of melanoma cells to facilitate migration, invasion and metastasis. NFIB mediates a slow cycling, highly invasive/migratory melanoma cell phenotype downstream of BRN2. NFIB increases EZH2 expression downstream of BRN2, which further decreases MITF levels. NFIB expression is defined by an invasive gene signature and colocalises with BRN2 in primary and metastatic human melanoma tumours.
Melanoma is a heterogeneous cancer, made up of many cellular populations that differ in their ability to induce tumour growth or invasion throughout the body (metastasis). These populations have been found to switch back and forth to drive invasion and progression. This process appears to be controlled by an inverse axis between two genes, MITF and BRN2. BRN2 drives metastatic spread, but the process by which it acts is not well characterized and cannot be targeted clinically. This study has uncovered a role for the gene NFIB in driving invasion downstream of BRN2. Importantly, it appears to drive this process through EZH2, which can be targeted therapeutically to reduce metastasis.
Collapse
|
19
|
Ahi EP, Sefc KM. A gene expression study of dorso-ventrally restricted pigment pattern in adult fins of Neolamprologus meeli, an African cichlid species. PeerJ 2017; 5:e2843. [PMID: 28097057 PMCID: PMC5228514 DOI: 10.7717/peerj.2843] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/29/2016] [Indexed: 01/04/2023] Open
Abstract
Fish color patterns are among the most diverse phenotypic traits found in the animal kingdom. Understanding the molecular and cellular mechanisms that control in chromatophore distribution and pigmentation underlying this diversity is a major goal in developmental and evolutionary biology, which has predominantly been pursued in the zebrafish model system. Here, we apply results from zebrafish work to study a naturally occurring color pattern phenotype in the fins of an African cichlid species from Lake Tanganyika. The cichlid fish Neolamprologus meeli displays a distinct dorsal color pattern, with black and white stripes along the edges of the dorsal fin and of the dorsal half of the caudal fin, corresponding with differences in melanophore density. To elucidate the molecular mechanisms controlling the differences in dorsal and ventral color patterning in the fins, we quantitatively assessed the expression of 15 candidate target genes involved in adult zebrafish pigmentation and stripe formation. For reference gene validation, we screened the expression stability of seven widely expressed genes across the investigated tissue samples and identified tbp as appropriate reference. Relative expression levels of the candidate target genes were compared between the dorsal, striped fin regions and the corresponding uniform, grey-colored regions in the anal and ventral caudal fin. Dorso-ventral expression differences, with elevated levels in both white and black stripes, were observed in two genes, the melanosome protein coding gene pmel and in igsf11, which affects melanophore adhesion, migration and survival. Next, we predicted potential shared upstream regulators of pmel and igsf11. Testing the expression patterns of six predicted transcriptions factors revealed dorso-ventral expression difference of irf1 and significant, negative expression correlation of irf1 with both pmel and igsf11. Based on these results, we propose pmel, igsf11 and irf1 as likely components of the genetic mechanism controlling distinct dorso-ventral color patterns in N. meeli fins.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Zoology, Universitätsplatz 2, Universität Graz , Graz , Austria
| | - Kristina M Sefc
- Institute of Zoology, Universitätsplatz 2, Universität Graz , Graz , Austria
| |
Collapse
|
20
|
do Vale Coelho IE, Arruda DC, Taranto AG. In silico studies of the interaction between BRN2 protein and MORE DNA. J Mol Model 2016; 22:228. [PMID: 27568376 DOI: 10.1007/s00894-016-3078-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/03/2016] [Indexed: 01/26/2023]
Abstract
The incidence of skin cancer has increased in recent decades, and melanoma is the most aggressive form with the lowest chance of successful treatment. Currently, drug design projects are in progress, but available treatments against metastatic melanoma have not significantly increased survival, and few patients are cured. Thus, new therapeutic agents should be developed as more effective therapeutic options for melanoma. High levels of the BRN2 transcription factor have been related to melanoma development. However, neither the three-dimensional (3D) structure of BRN2 protein nor its POU domain has been determined experimentally. Construction of the BRN2 3D structure, and the study of its interaction with its DNA target, are important strategies for increasing the structural and functional knowledge of this protein. Thus, the aim of this work was to study the interaction between BRN2 and MORE DNA through in silico methods. The full-length BRN2 3D structure was built using the PHYRE2 and Swiss-Model programs, and molecular dynamics of this protein in complex with MORE DNA was simulated for 20 ns by the NAMD program. The BRN2 model obtained includes helix and loop regions, and the BRN2 POU domain shares structural similarity with other members of the transcription factor family. No significant conformational change of this protein occurred during dynamics simulation. These analyses revealed BRN2 residues important for the specific interaction with nucleotide bases and with more than one DNA nucleotide. This study may contribute to the design of inhibitors against BRN2 or MORE DNA as molecular targets of melanoma skin cancer. Graphical Abstract Model of complete Brn2 protein in complex with MORE DNA after building through comparative modeling and refinement by molecular dynamics simulation.
Collapse
Affiliation(s)
- Ivan Evangelista do Vale Coelho
- Laboratório de Química Farmacêutica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | | | - Alex Gutterres Taranto
- Laboratório de Química Farmacêutica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil.
| |
Collapse
|
21
|
Chen HY, Lee YH, Chen HY, Yeh CA, Chueh PJ, Lin YMJ. Capsaicin Inhibited Aggressive Phenotypes through Downregulation of Tumor-Associated NADH Oxidase (tNOX) by POU Domain Transcription Factor POU3F2. Molecules 2016; 21:molecules21060733. [PMID: 27271588 PMCID: PMC6273514 DOI: 10.3390/molecules21060733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 11/22/2022] Open
Abstract
Capsaicin has been reported to preferentially inhibit the activity of tumor-associated NADH oxidase (tNOX), which belongs to a family of growth-related plasma membrane hydroquinone oxidases in cancer/transformed cells. The inhibitory effect of capsaicin on tNOX is associated with cell growth attenuation and apoptosis. However, no previous study has examined the transcriptional regulation of tNOX protein expression. Bioinformatic analysis has indicated that the tNOX promoter sequence harbors a binding motif for POU3F2, which is thought to play important roles in neuronal differentiation, melanocytes growth/differentiation and tumorigenesis. In this study, we found that capsaicin-mediated tNOX downregulation and cell migration inhibition were through POU3F2. The protein expression levels of POU3F2 and tNOX are positively correlated, and that overexpression of POU3F2 (and the corresponding upregulation of tNOX) enhanced the proliferation, migration and invasion in AGS (human gastric carcinoma) cells. In contrast, knockdown of POU3F2 downregulates tNOX, and the cancer phenotypes are affected. These findings not only shed light on the molecular mechanism of the anticancer properties of capsaicin, but also the transcription regulation of tNOX expression that may potentially explain how POU3F2 is associated with tumorigenesis.
Collapse
Affiliation(s)
- Hung Yen Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Yi Hui Lee
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Huei Yu Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chia An Yeh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Yi-Mei J Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
22
|
Vachtenheim J, Ondrušová L. Microphthalmia-associated transcription factor expression levels in melanoma cells contribute to cell invasion and proliferation. Exp Dermatol 2016; 24:481-4. [PMID: 25866058 DOI: 10.1111/exd.12724] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 12/29/2022]
Abstract
Microphthalmia-associated transcription factor (MITF) is a nodal point in melanoma transcriptional network that regulates dozens of genes with critical functions in cell differentiation, proliferation and survival. Highly variable MITF expression levels exist in tumor cell subpopulations conferring marked heterogeneity and plasticity in the tumor tissue. A model has been postulated whereby lower MITF levels favour cell invasion and suppress proliferation, whereas high levels stimulate differentiation and proliferation. Additionally, MITF is considered to be a prosurvival gene and a lineage addiction oncogene in melanoma. Herein, we review how MITF expression may affect the melanoma phenotype with consequences on the survival, invasion and metastasis of melanoma cells, and we discuss the research challenges.
Collapse
Affiliation(s)
- Jiri Vachtenheim
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Lubica Ondrušová
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
23
|
Urban S, Kobi D, Ennen M, Langer D, Le Gras S, Ye T, Davidson I. A Brn2-Zic1 axis specifies the neuronal fate of retinoic-acid-treated embryonic stem cells. J Cell Sci 2015; 128:2303-18. [PMID: 25991548 DOI: 10.1242/jcs.168849] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) treated with all-trans retinoic acid differentiate into a homogenous population of glutamatergic neurons. Although differentiation is initiated through activation of target genes by the retinoic acid receptors, the downstream transcription factors specifying neuronal fate are less well characterised. Here, we show that the transcription factor Brn2 (also known as Pou3f2) is essential for the neuronal differentiation programme. By integrating results from RNA-seq following Brn2 silencing with results from Brn2 ChIP-seq, we identify a set of Brn2 target genes required for the neurogenic programme. Further integration of Brn2 ChIP-seq data from retinoic-acid-treated ESCs and P19 cells with data from ESCs differentiated into neuronal precursors by Fgf2 treatment and that from fibroblasts trans-differentiated into neurons by ectopic Brn2 expression showed that Brn2 occupied a distinct but overlapping set of genomic loci in these differing conditions. However, a set of common binding sites and target genes defined the core of the Brn2-regulated neuronal programme, among which was that encoding the transcription factor Zic1. Small hairpin RNA (shRNA)-mediated silencing of Zic1 prevented ESCs from differentiating into neuronal precursors, thus defining a hierarchical Brn2-Zic1 axis that is essential to specify neural fate in retinoic-acid-treated ESCs.
Collapse
Affiliation(s)
- Sylvia Urban
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Dominique Kobi
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Marie Ennen
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Diana Langer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Stéphanie Le Gras
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Tao Ye
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France Equipe Labellisée of the Ligue Nationale Contre le Cancer, CNRS/INSERM/UDS, 1 Rue Laurent Fries, Illkirch, Cédex 67404, France
| |
Collapse
|
24
|
Schacht T, Oswald M, Eils R, Eichmüller SB, König R. Estimating the activity of transcription factors by the effect on their target genes. ACTA ACUST UNITED AC 2015; 30:i401-7. [PMID: 25161226 PMCID: PMC4147899 DOI: 10.1093/bioinformatics/btu446] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Motivation: Understanding regulation of transcription is central for elucidating cellular regulation. Several statistical and mechanistic models have come up the last couple of years explaining gene transcription levels using information of potential transcriptional regulators as transcription factors (TFs) and information from epigenetic modifications. The activity of TFs is often inferred by their transcription levels, promoter binding and epigenetic effects. However, in principle, these methods do not take hard-to-measure influences such as post-transcriptional modifications into account. Results: For TFs, we present a novel concept circumventing this problem. We estimate the regulatory activity of TFs using their cumulative effects on their target genes. We established our model using expression data of 59 cell lines from the National Cancer Institute. The trained model was applied to an independent expression dataset of melanoma cells yielding excellent expression predictions and elucidated regulation of melanogenesis. Availability and implementation: Using mixed-integer linear programming, we implemented a switch-like optimization enabling a constrained but optimal selection of TFs and optimal model selection estimating their effects. The method is generic and can also be applied to further regulators of transcription. Contact:rainer.koenig@uni-jena.de Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Theresa Schacht
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer R
| | - Marcus Oswald
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Roland Eils
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Stefan B Eichmüller
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Rainer König
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer R
| |
Collapse
|
25
|
Powell C, Cornblath E, Goldman D. Zinc-binding domain-dependent, deaminase-independent actions of apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 2 (Apobec2), mediate its effect on zebrafish retina regeneration. J Biol Chem 2014; 289:28924-41. [PMID: 25190811 DOI: 10.1074/jbc.m114.603043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Apobec/AID family of cytosine deaminases can deaminate cytosine and thereby contribute to adaptive and innate immunity, DNA demethylation, and the modification of cellular mRNAs. Unique among this family is Apobec2, whose enzymatic activity has been questioned and whose function remains poorly explored. We recently reported that zebrafish Apobec2a and Apobec2b (Apobec2a,2b) regulate retina regeneration; however, their mechanism of action remained unknown. Here we show that although Apobec2a,2b lack cytosine deaminase activity, they require a conserved zinc-binding domain to stimulate retina regeneration. Interestingly, we found that human APOBEC2 is able to functionally substitute for Apobec2a,2b during retina regeneration. By identifying Apobec2-interacting proteins, including ubiquitin-conjugating enzyme 9 (Ubc9); topoisomerase I-binding, arginine/serine-rich, E3 ubiquitin protein ligase (Toporsa); and POU class 6 homeobox 2 (Pou6f2), we uncovered that sumoylation regulates Apobec2 subcellular localization and that nuclear Apobec2 controls Pou6f2 binding to DNA. Importantly, mutations in the zinc-binding domain of Apobec2 diminished its ability to stimulate Pou6f2 binding to DNA, and knockdown of Ubc9 or Pou6f2 suppressed retina regeneration.
Collapse
Affiliation(s)
- Curtis Powell
- From the Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Eli Cornblath
- From the Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel Goldman
- From the Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
26
|
Aufauvre J, Misme-Aucouturier B, Viguès B, Texier C, Delbac F, Blot N. Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS One 2014; 9:e91686. [PMID: 24646894 PMCID: PMC3960157 DOI: 10.1371/journal.pone.0091686] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/14/2014] [Indexed: 12/18/2022] Open
Abstract
Honeybees (Apis mellifera) are constantly exposed to a wide variety of environmental stressors such as parasites and pesticides. Among them, Nosema ceranae and neurotoxic insecticides might act in combination and lead to a higher honeybee mortality. We investigated the molecular response of honeybees exposed to N. ceranae, to insecticides (fipronil or imidacloprid), and to a combination of both stressors. Midgut transcriptional changes induced by these stressors were measured in two independent experiments combining a global RNA-Seq transcriptomic approach with the screening of the expression of selected genes by quantitative RT-PCR. Although N. ceranae-insecticide combinations induced a significant increase in honeybee mortality, we observed that they did not lead to a synergistic effect. According to gene expression profiles, chronic exposure to insecticides had no significant impact on detoxifying genes but repressed the expression of immunity-related genes. Honeybees treated with N. ceranae, alone or in combination with an insecticide, showed a strong alteration of midgut immunity together with modifications affecting cuticle coatings and trehalose metabolism. An increasing impact of treatments on gene expression profiles with time was identified suggesting an absence of stress recovery which could be linked to the higher mortality rates observed.
Collapse
Affiliation(s)
- Julie Aufauvre
- Clermont Université, Université Blaise Pascal, Laboratoire “Microorganismes: Génome et Environnement”, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Barbara Misme-Aucouturier
- Clermont Université, Université Blaise Pascal, Laboratoire “Microorganismes: Génome et Environnement”, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Bernard Viguès
- Clermont Université, Université Blaise Pascal, Laboratoire “Microorganismes: Génome et Environnement”, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Catherine Texier
- Clermont Université, Université Blaise Pascal, Laboratoire “Microorganismes: Génome et Environnement”, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Frédéric Delbac
- Clermont Université, Université Blaise Pascal, Laboratoire “Microorganismes: Génome et Environnement”, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Nicolas Blot
- Clermont Université, Université Blaise Pascal, Laboratoire “Microorganismes: Génome et Environnement”, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
- * E-mail:
| |
Collapse
|
27
|
Cho EG, Bin BH, Choi H, Park PJ, Kang HH, Lee TR. Novel method for isolating human melanoblasts from keratinocyte culture. Pigment Cell Melanoma Res 2014; 27:489-94. [PMID: 24460991 DOI: 10.1111/pcmr.12221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 01/22/2014] [Indexed: 11/29/2022]
Abstract
The characterization of melanoblasts is important for understanding their in vivo development, melanoma formation, and pigment-related disorders. However, no methods have been reported for the isolation of melanoblasts from human skin. Using a 'calcium-pulse' technique, involving the differentiation of human keratinocytes with high calcium and the subsequent spontaneous separation of the epidermal sheets, we effectively isolated human melanoblasts (keratinocyte-adapted melanoblasts, KaMBs) from keratinocyte culture. The KaMBs expressed early melanogenesis-related genes, including BRN2, which is a known melanoblast marker. Moreover, the KaMBs displayed much higher proliferative and growth capacities than the primary melanocytes. Considering that keratinocytes might provide an in vivo-like environment for KaMBs during isolation and in vitro culture, the 'calcium-pulse' technique offers an unprecedented, easy, and efficient method for the isolation of human melanoblasts, retaining the original characteristics of these cells.
Collapse
Affiliation(s)
- Eun-Gyung Cho
- Bioscience Research Division, R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, Korea
| | | | | | | | | | | |
Collapse
|
28
|
Lopez-Bergami P. The role of mitogen- and stress-activated protein kinase pathways in melanoma. Pigment Cell Melanoma Res 2014; 24:902-21. [PMID: 21914141 DOI: 10.1111/j.1755-148x.2011.00908.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent discoveries have increased our comprehension of the molecular signaling events critical for melanoma development and progression. Many oncogenes driving melanoma have been identified, and most of them exert their oncogenic effects through the activation of the RAF/MEK/ERK mitogen-activated protein kinase (MAPK) pathway. The c-Jun N-terminal kinase (JNK) and p38 MAPK pathways are also important in melanoma, but their precise role is not clear yet. This review summarizes our current knowledge on the role of the three main MAPK pathways, extracellular regulated kinase (ERK), JNK, and p38, and their impact on melanoma biology. Although the results obtained with BRAF inhibitors in melanoma patients are impressive, several mechanisms of acquired resistance have emerged. To overcome this obstacle constitutes the new challenge in melanoma therapy. Given the major role that MAPKs play in melanoma, understanding their functions and the interconnection among them and with other signaling pathways represents a step forward toward this goal.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Instituto de Medicina y Biología Experimental, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
29
|
Besch R, Berking C. POU transcription factors in melanocytes and melanoma. Eur J Cell Biol 2014; 93:55-60. [DOI: 10.1016/j.ejcb.2013.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 01/23/2023] Open
|
30
|
Zhang X, Ma Y, Liu X, Zhou Q, Wang XJ. Evolutionary and Functional Analysis of the Key Pluripotency Factor Oct4 and Its Family Proteins. J Genet Genomics 2013; 40:399-412. [PMID: 23969249 DOI: 10.1016/j.jgg.2013.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Xinmin Zhang
- Computer & Information Engineering College, Inner Mongolia Normal University, Inner Mongolia, Hohhot 010022, China
| | | | | | | | | |
Collapse
|
31
|
Bery A, Martynoga B, Guillemot F, Joly JS, Rétaux S. Characterization of enhancers active in the mouse embryonic cerebral cortex suggests Sox/Pou cis-regulatory logics and heterogeneity of cortical progenitors. Cereb Cortex 2013; 24:2822-34. [PMID: 23720416 DOI: 10.1093/cercor/bht126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We aimed to identify cis-regulatory elements that control gene expression in progenitors of the cerebral cortex. A list of 975 putative enhancers were retrieved from a ChIP-Seq experiment performed in NS5 mouse stem cells with antibodies to Sox2, Brn2/Pou3f2, or Brn1/Pou3f3. Through a selection pipeline including gene ontology and expression pattern, we reduced the number of candidate enhancer sequences to 20. Ex vivo electroporation of green fluorescent pProtein (GFP) reporter constructs in the telencephalon of mouse embryos showed that 35% of the 20 selected candidate sequences displayed enhancer activity in the developing cortex at E13.5. In silico transcription factor binding site (TFBS) searches and mutagenesis experiments showed that enhancer activity is related to the presence of Sox/Pou TFBS pairs in the sequence. Comparative genomic analyses showed that enhancer activity is not related to the evolutionary conservation of the sequence. Finally, the combination of in utero electroporation of GFP reporter constructs with immunostaining for Tbr2 (basal progenitor marker) and phospho-histoneH3 (mitotic activity marker) demonstrated that each enhancer is specifically active in precise subpopulations of progenitors in the cortical germinal zone, highlighting the heterogeneity of these progenitors in terms of cis-regulation.
Collapse
Affiliation(s)
| | | | | | - Jean-Stéphane Joly
- Equipe Morphogenesis of the Chordate Nervous System, UPR3294 N&D, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France and
| | | |
Collapse
|
32
|
Hohenauer T, Berking C, Schmidt A, Haferkamp S, Senft D, Kammerbauer C, Fraschka S, Graf SA, Irmler M, Beckers J, Flaig M, Aigner A, Höbel S, Hoffmann F, Hermeking H, Rothenfusser S, Endres S, Ruzicka T, Besch R. The neural crest transcription factor Brn3a is expressed in melanoma and required for cell cycle progression and survival. EMBO Mol Med 2013; 5:919-34. [PMID: 23666755 PMCID: PMC3779452 DOI: 10.1002/emmm.201201862] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 03/28/2013] [Accepted: 04/04/2013] [Indexed: 01/28/2023] Open
Abstract
Pigment cells and neuronal cells both are derived from the neural crest. Here, we describe the Pit-Oct-Unc (POU) domain transcription factor Brn3a, normally involved in neuronal development, to be frequently expressed in melanoma, but not in melanocytes and nevi. RNAi-mediated silencing of Brn3a strongly reduced the viability of melanoma cell lines and decreased tumour growth in vivo. In melanoma cell lines, inhibition of Brn3a caused DNA double-strand breaks as evidenced by Mre11/Rad50-containing nuclear foci. Activated DNA damage signalling caused stabilization of the tumour suppressor p53, which resulted in cell cycle arrest and apoptosis. When Brn3a was ectopically expressed in primary melanocytes and fibroblasts, anchorage-independent growth was increased. In tumourigenic melanocytes and fibroblasts, Brn3a accelerated tumour growth in vivo. Furthermore, Brn3a cooperated with proliferation pathways such as oncogenic BRAF, by reducing oncogene-induced senescence in non-malignant melanocytes. Together, these results identify Brn3a as a new factor in melanoma that is essential for melanoma cell survival and that promotes melanocytic transformation and tumourigenesis.
Collapse
Affiliation(s)
- Tobias Hohenauer
- Department of Dermatology and Allergology, Ludwig-Maximilian University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sakaeda M, Sato H, Ishii J, Miyata C, Kamma H, Shishido-Hara Y, Shimoyamada H, Fujiwara M, Endo T, Tanaka R, Kondo H, Goya T, Aoki I, Yazawa T. Neural lineage-specific homeoprotein BRN2 is directly involved in TTF1 expression in small-cell lung cancer. J Transl Med 2013; 93:408-21. [PMID: 23358112 DOI: 10.1038/labinvest.2013.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Thyroid transcription factor 1 (TTF1) plays crucial roles in thyroid, lung, and developing brain morphogenesis. Because TTF1-expressing neoplasms are generated from organs and tissues that normally express TTF1, such as the thyroid follicular epithelium and peripheral lung airway epithelium, TTF1 is widely used as a cell lineage-specific and diagnostic marker for thyroid carcinomas and for lung adenocarcinomas with terminal respiratory unit (TRU) differentiation. However, among lung neuroendocrine tumors, small-cell carcinomas (small-cell lung cancers (SCLCs)), most of which are generated from the central airway, also frequently express TTF1 at high levels. To clarify how SCLCs express TTF1, we investigated the molecular mechanisms of its expression using cultivated lung cancer cells and focusing upon neural cell-specific transcription factors. Both SCLC cells and lung adenocarcinoma cells predominantly expressed isoform 2 of TTF1, and TTF1 promoter assays in SCLC cells revealed that the crucial region for activation of the promoter, which is adjacent to the transcription start site of TTF1 isoform 2, has potent FOX-, LHX-, and BRN2-binding sites. Transfection experiments using expression vectors for FOXA1, FOXA2, LHX2, LHX6, and BRN2 showed that BRN2 substantially upregulated TTF1 expression, whereas FOXA1/2 weakly upregulated TTF1 expression. BRN2 and FOXA1/2 binding to the TTF1 promoter was confirmed through chromatin immunoprecipitation experiments, and TTF1 expression in SCLC cells was considerably downregulated after BRN2 knockdown. Furthermore, the TTF1 promoter in SCLC cells was scarcely methylated, and immunohistochemical examinations using a series of primary lung tumors indicated that TTF1 and BRN2 were coexpressed only in SCLC cells. These findings suggest that TTF1 expression in SCLC is a cell lineage-specific phenomenon that involves the developing neural cell-specific homeoprotein BRN2.
Collapse
Affiliation(s)
- Masashi Sakaeda
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ishii J, Sato H, Sakaeda M, Shishido-Hara Y, Hiramatsu C, Kamma H, Shimoyamada H, Fujiwara M, Endo T, Aoki I, Yazawa T. POU domain transcription factor BRN2 is crucial for expression of ASCL1, ND1 and neuroendocrine marker molecules and cell growth in small cell lung cancer. Pathol Int 2013; 63:158-68. [DOI: 10.1111/pin.12042] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/09/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hanako Sato
- Department of Anatomy; St. Marianna University School of Medicine; Kawasaki
| | | | | | - Chie Hiramatsu
- Department of Anatomy; St. Marianna University School of Medicine; Kawasaki
| | - Hiroshi Kamma
- Department of Pathology; Kyorin University School of Medicine; Mitaka
| | | | | | | | - Ichiro Aoki
- Department of Pathology; Yokohama City University Graduate School of Medicine; Yokohama
| | - Takuya Yazawa
- Department of Pathology; Kyorin University School of Medicine; Mitaka
| |
Collapse
|
35
|
Ellmann L, Joshi MB, Resink TJ, Bosserhoff AK, Kuphal S. BRN2 is a transcriptional repressor of CDH13 (T-cadherin) in melanoma cells. J Transl Med 2012; 92:1788-800. [PMID: 23069940 DOI: 10.1038/labinvest.2012.140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
T-cadherin (cadherin 13, H-cadherin, gene name CDH13) has been proposed to act as a tumor-suppressor gene as its expression is significantly diminished in several types of carcinomas, including melanomas. Allelic loss and promoter hypermethylation have been proposed as mechanisms for silencing of CDH13. However, they do not account for loss of T-cadherin expression in all carcinomas, and other genetic or epigenetic alterations can be presumed. The present study investigated transcriptional regulation of CDH13 in melanoma. Bioinformatical analysis pointed to the presence of known BRN2 (also known as POU3F2 and N-Oct-3)-binding motifs in the CDH13 promoter sequence. We found an inverse correlation between BRN2 and T-cadherin protein and transcript expression. Reporter gene analysis and electrophoretic mobility shift assays in melanoma cells demonstrated that CDH13 is a direct target of BRN2 and that BRN2 is a functional transcriptional repressor of CDH13 promoter activity. The regulatory binding element of BRN2 was located -219 bp of the CDH13 promoter proximal to the start codon and was identified as 5'-CATGCAAAA-3'. Ectopic expression of BRN2 in BRN2-negative/T-cadherin-positive melanoma cells resulted in suppression of CDH13 promoter activity, whereas BRN2 knockdown in BRN2-positive/T-cadherin-negative melanoma cells resulted in re-expression of T-cadherin transcripts and protein. Transcriptional repression of CDH13 by BRN2 may participate in malignant transformation of melanoma by increasing invasion and migration potentials of melanoma cells. The study has identified CDH13 as a novel direct BRN2 transcriptional target gene and has advanced knowledge of mechanisms underlying loss of T-cadherin expression in melanoma.
Collapse
Affiliation(s)
- Lisa Ellmann
- Institute of Pathology, Molecular Pathology, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
36
|
A phosphatidylinositol 3-kinase-Pax3 axis regulates Brn-2 expression in melanoma. Mol Cell Biol 2012; 32:4674-83. [PMID: 22988297 DOI: 10.1128/mcb.01067-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Deregulation of transcription arising from mutations in key signaling pathways is a hallmark of cancer. In melanoma, the most aggressive and lethal form of skin cancer, the Brn-2 transcription factor (POU3F2) regulates proliferation and invasiveness and lies downstream from mitogen-activated protein kinase (MAPK) and Wnt/β-catenin, two melanoma-associated signaling pathways. In vivo Brn-2 represses expression of the microphthalmia-associated transcription factor, MITF, to drive cells to a more stem cell-like and invasive phenotype. Given the key role of Brn-2 in regulating melanoma biology, understanding the signaling pathways that drive Brn-2 expression is an important issue. Here, we show that inhibition of phosphatidylinositol 3-kinase (PI3K) signaling reduces invasiveness of melanoma cells in culture and strongly inhibits Brn-2 expression. Pax3, a transcription factor regulating melanocyte lineage-specific genes, directly binds and regulates the Brn-2 promoter, and Pax3 expression is also decreased upon PI3K inhibition. Collectively, our results highlight a crucial role for PI3K in regulating Brn-2 and Pax3 expression, reveal a mechanism by which PI3K can regulate invasiveness, and imply that PI3K signaling is a key determinant of melanoma subpopulation diversity. Together with our previous work, the results presented here now place Brn-2 downstream of three melanoma-associated signaling pathways.
Collapse
|
37
|
Leung CH, Chan DSH, Ma VPY, Ma DL. DNA-Binding Small Molecules as Inhibitors of Transcription Factors. Med Res Rev 2012; 33:823-46. [DOI: 10.1002/med.21266] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Victor Pui-Yan Ma
- Department of Chemistry; Hong Kong Baptist University; Kowloon Tong; Hong Kong
| | - Dik-Lung Ma
- Department of Chemistry; Hong Kong Baptist University; Kowloon Tong; Hong Kong
| |
Collapse
|
38
|
Abe Y, Ikeshima-Kataoka H, Goda W, Niikura T, Yasui M. An astrocyte-specific enhancer of the aquaporin-4 gene functions through a consensus sequence of POU transcription factors in concert with multiple upstream elements. J Neurochem 2012; 120:899-912. [PMID: 22225570 DOI: 10.1111/j.1471-4159.2012.07652.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aquaporin-4, a predominant water channel in the brain, is specifically expressed in astrocyte endfeet and plays a central role in water homeostasis, neuronal activity, and cell migration in the brain. It has two dominant isoforms called M1 and M23, whose mRNA is driven by distinct promoters located upstream of exons 0 and 1 of the aquaporin-4 gene, respectively. To identify cis-acting elements responsible for the astrocyte-specific transcription of M1 mRNA, the promoter activity of the 5'-flanking region upstream of exon 0 in primary cultured mouse astrocytes was examined by luciferase assay, and sequences, where nuclear factors bind, were identified by electrophoretic mobility shift assay. An astrocyte-specific activity enhancing transcription from the M1 promoter was observed within ∼2 kb from the transcriptional start sites of M1 mRNA. At least five elements clustered within the 286-bp region were found to function as a novel astrocyte-specific enhancer. Among the five elements, a consensus sequence of Pit-1/Oct/Unc-86 (POU) transcription factors was indispensable to the astrocyte-specific enhancer since disruption of the POU motif completely abolished the enhancer activity in astrocytes. However, the POU motif alone had little activity, indicating the requirement for cooperation with other upstream elements to exert full enhancer activity.
Collapse
Affiliation(s)
- Yoichiro Abe
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
39
|
Phosphorylation of BRN2 modulates its interaction with the Pax3 promoter to control melanocyte migration and proliferation. Mol Cell Biol 2012; 32:1237-47. [PMID: 22290434 DOI: 10.1128/mcb.06257-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
MITF-M and PAX3 are proteins central to the establishment and transformation of the melanocyte lineage. They control various cellular mechanisms, including migration and proliferation. BRN2 is a POU domain transcription factor expressed in melanoma cell lines and is involved in proliferation and invasion, at least in part by regulating the expression of MITF-M and PAX3. The T361 and S362 residues of BRN2, both in the POU domain, are conserved throughout the POU protein family and are targets for phosphorylation, but their roles in vivo remain unknown. To examine the role of this phosphorylation, we generated mutant BRN2 in which these two residues were replaced with alanines (BRN2TS→BRN2AA). When expressed in melanocytes in vitro or in the melanocyte lineage in transgenic mice, BRN2TS induced proliferation and repressed migration, whereas BRN2AA repressed both proliferation and migration. BRN2TS and BRN2AA bound and repressed the MITF-M promoter, whereas PAX3 transcription was induced by BRN2TS but repressed by BRN2AA. Expression of the BRN2AA transgene in a Mitf heterozygous background and in a Pax3 mutant background enhanced the coat color phenotype. Our findings show that melanocyte migration and proliferation are controlled both through the regulation of PAX3 by nonphosphorylated BRN2 and through the regulation of MITF-M by the overall BRN2 level.
Collapse
|
40
|
Tashiro K, Teissier A, Kobayashi N, Nakanishi A, Sasaki T, Yan K, Tarabykin V, Vigier L, Sumiyama K, Hirakawa M, Nishihara H, Pierani A, Okada N. A mammalian conserved element derived from SINE displays enhancer properties recapitulating Satb2 expression in early-born callosal projection neurons. PLoS One 2011; 6:e28497. [PMID: 22174821 PMCID: PMC3234267 DOI: 10.1371/journal.pone.0028497] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/09/2011] [Indexed: 02/04/2023] Open
Abstract
Short interspersed repetitive elements (SINEs) are highly repeated sequences that account for a significant proportion of many eukaryotic genomes and are usually considered "junk DNA". However, we previously discovered that many AmnSINE1 loci are evolutionarily conserved across mammalian genomes, suggesting that they may have acquired significant functions involved in controlling mammalian-specific traits. Notably, we identified the AS021 SINE locus, located 390 kbp upstream of Satb2. Using transgenic mice, we showed that this SINE displays specific enhancer activity in the developing cerebral cortex. The transcription factor Satb2 is expressed by cortical neurons extending axons through the corpus callosum and is a determinant of callosal versus subcortical projection. Mouse mutants reveal a crucial function for Sabt2 in corpus callosum formation. In this study, we compared the enhancer activity of the AS021 locus with Satb2 expression during telencephalic development in the mouse. First, we showed that the AS021 enhancer is specifically activated in early-born Satb2(+) neurons. Second, we demonstrated that the activity of the AS021 enhancer recapitulates the expression of Satb2 at later embryonic and postnatal stages in deep-layer but not superficial-layer neurons, suggesting the possibility that the expression of Satb2 in these two subpopulations of cortical neurons is under genetically distinct transcriptional control. Third, we showed that the AS021 enhancer is activated in neurons projecting through the corpus callosum, as described for Satb2(+) neurons. Notably, AS021 drives specific expression in axons crossing through the ventral (TAG1(-)/NPY(+)) portion of the corpus callosum, confirming that it is active in a subpopulation of callosal neurons. These data suggest that exaptation of the AS021 SINE locus might be involved in enhancement of Satb2 expression, leading to the establishment of interhemispheric communication via the corpus callosum, a eutherian-specific brain structure.
Collapse
Affiliation(s)
- Kensuke Tashiro
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Anne Teissier
- Centre National de la Recherche Scientifique–Unité Mixte de Recherche 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Naoki Kobayashi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Akiko Nakanishi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Takeshi Sasaki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Kuo Yan
- Department of Molecular Biology of Neuronal Signals, Max-Plank-Institute for Experimental Medicine, Göttingen, Germany
| | - Victor Tarabykin
- Department of Molecular Biology of Neuronal Signals, Max-Plank-Institute for Experimental Medicine, Göttingen, Germany
| | - Lisa Vigier
- Centre National de la Recherche Scientifique–Unité Mixte de Recherche 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Kenta Sumiyama
- National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Mika Hirakawa
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Hidenori Nishihara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Alessandra Pierani
- Centre National de la Recherche Scientifique–Unité Mixte de Recherche 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: (NO); (AP)
| | - Norihiro Okada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
- * E-mail: (NO); (AP)
| |
Collapse
|
41
|
Comparative promoter analysis in vivo: identification of a dendritic cell-specific promoter module. Blood 2011; 118:e40-9. [DOI: 10.1182/blood-2011-03-342261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Dendritic cells (DCs) are important immune cells. This study focused on transcriptional networks active in murine DCs, but DCs are difficult to study using conventional molecular techniques. Therefore, comparative promoter analysis was used to identify evolutionarily conserved features between the murine CD11c and DC-STAMP promoters. A promoter framework consisting of 4 transcription factor binding sites was identified that included signal transducer and activator of transcription, homeodomain transcription factors, and 2 members of the Brn POU domain factors family. This promoter module was functionally verified by in vivo promoter analysis and site-directed mutagenesis. Hematopoietic stem cells were engineered by lentiviral vectors and expression of green fluorescent protein reporter was monitored in primary hematopoietic cell types that develop without further manipulation in irradiated recipient mice. The verified promoter module was then modeled and used in a bioinformatics-based search for other potential coregulated genes in murine DCs. A promoter database search identified 2 additional genes, Ppef2 and Pftk1, which have a similar promoter organization and are preferentially expressed in murine DCs. The results define a regulatory network linked to development of murine DCs.
Collapse
|
42
|
Takaoka N, Takayama T, Teratani T, Sugiyama T, Mugiya S, Ozono S. Analysis of the regulation of fatty acid binding protein 7 expression in human renal carcinoma cell lines. BMC Mol Biol 2011; 12:31. [PMID: 21771320 PMCID: PMC3162894 DOI: 10.1186/1471-2199-12-31] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 07/19/2011] [Indexed: 12/15/2022] Open
Abstract
Background Improving the treatment of renal cell carcinoma (RCC) will depend on the development of better biomarkers for predicting disease progression and aiding the design of appropriate therapies. One such marker may be fatty acid binding protein 7 (FABP7), also known as B-FABP and BLBP, which is expressed normally in radial glial cells of the developing central nervous system and cells of the mammary gland. Melanomas, glioblastomas, and several types of carcinomas, including RCC, overexpress FABP7. The abundant expression of FABP7 in primary RCCs compared to certain RCC-derived cell lines may allow the definition of the molecular components of FABP7's regulatory system. Results We determined FABP7 mRNA levels in six RCC cell lines. Two were highly expressed, whereas the other and the embryonic kidney cell line (HEK293) were weakly expressed FABP7 transcripts. Western blot analysis of the cell lines detected strong FABP7 expression only in one RCC cell line. Promoter activity in the RCC cell lines was 3- to 21-fold higher than that of HEK293. Deletion analysis demonstrated that three FABP7 promoter regions contributed to upregulated expression in RCC cell lines, but not in the HEK293 cell. Competition analysis of gel shifts indicated that OCT1, OCT6, and nuclear factor I (NFI) bound to the FABP7 promoter region. Supershift experiments indicated that BRN2 (POU3F2) and NFI bound to the FABP7 promoter region as well. There was an inverse correlation between FABP7 promoter activity and BRN2 mRNA expression. The FABP7-positive cell line's NFI-DNA complex migrated faster than in other cell lines. Levels of NFIA mRNA were higher in the HEK293 cell line than in any of the six RCC cell lines. In contrast, NFIC mRNA expression was lower in the HEK293 cell line than in the six RCC cell lines. Conclusions Three putative FABP7 promoter regions drive reporter gene expression in RCC cell lines, but not in the HEK293 cell line. BRN2 and NFI may be key factors regulating the expression of FABP7 in certain RCC-derived cell lines.
Collapse
Affiliation(s)
- Naohisa Takaoka
- Department of Urology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Boyle GM, Woods SL, Bonazzi VF, Stark MS, Hacker E, Aoude LG, Dutton-Regester K, Cook AL, Sturm RA, Hayward NK. Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res 2011; 24:525-37. [PMID: 21435193 DOI: 10.1111/j.1755-148x.2011.00849.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To identify microRNAs potentially involved in melanomagenesis, we compared microRNA expression profiles between melanoma cell lines and cultured melanocytes. The most differentially expressed microRNA between the normal and tumor cell lines was miR-211. We focused on this pigment-cell-enriched miRNA as it is derived from the microphthalmia-associated transcription factor (MITF)-regulated gene, TRPM1 (melastatin). We find that miR-211 expression is greatly decreased in melanoma cells and melanoblasts compared to melanocytes. Bioinformatic analysis identified a large number of potential targets of miR-211, including POU3F2 (BRN2). Inhibition of miR-211 in normal melanocytes resulted in increased BRN2 protein, indicating that endogenous miR-211 represses BRN2 in differentiated cells. Over-expression of miR-211 in melanoma cell lines changed the invasive potential of the cells in vitro through directly targeting BRN2 translation. We propose a model for the apparent non-overlapping expression levels of BRN2 and MITF in melanoma, mediated by miR-211 expression.
Collapse
Affiliation(s)
- Glen M Boyle
- Drug Discovery Group, Division of Cancer & Cell Biology, Queensland Institute of Medical Research, Brisbane, QLD, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway. Oncogene 2011; 30:3036-48. [PMID: 21358674 DOI: 10.1038/onc.2011.33] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of adherent monolayer cultures have produced many insights into melanoma cell growth and differentiation, but often novel therapeutics demonstrated to act on these cells are not active in vivo. It is imperative that new methods of growing melanoma cells that reflect growth in vivo are investigated. To this end, a range of human melanoma cell lines passaged as adherent cultures or induced to form melanoma spheres (melanospheres) in stem cell media have been studied to compare cellular characteristics and protein expression. Melanoma spheres and tumours grown from cell lines as mouse xenografts had increased heterogeneity when compared with adherent cells and 3D-spheroids in agar (aggregates). Furthermore, cells within the melanoma spheres and mouse xenografts each displayed a high level of reciprocal BRN2 or MITF expression, which matched more closely the pattern seen in human melanoma tumours in situ, rather than the propensity for co-expression of these important melanocytic transcription factors seen in adherent cells and 3D-spheroids. Notably, when the levels of the BRN2 and MITF proteins were each independently repressed using siRNA treatment of adherent melanoma cells, members of the NOTCH pathway responded by decreasing or increasing expression, respectively. This links BRN2 as an activator, and conversely, MITF as a repressor of the NOTCH pathway in melanoma cells. Loss of the BRN2-MITF axis in antisense-ablated cell lines decreased the melanoma sphere-forming capability, cell adhesion during 3D-spheroid formation and invasion through a collagen matrix. Combined, this evidence suggests that the melanoma sphere-culture system induces subpopulations of cells that may more accurately portray the in vivo disease, than the growth as adherent melanoma cells.
Collapse
|
45
|
Bakos RM, Maier T, Besch R, Mestel DS, Ruzicka T, Sturm RA, Berking C. Nestin and SOX9 and SOX10 transcription factors are coexpressed in melanoma. Exp Dermatol 2011; 19:e89-94. [PMID: 19845757 DOI: 10.1111/j.1600-0625.2009.00991.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nestin is an intermediate filament expressed in proliferating neural progenitor cells and has been considered as a stem cell marker. Nestin is also found in melanoma and we recently demonstrated that its expression in melanoma cell lines is regulated by the transcription factors SOX9 and SOX10, but not BRN2. In this study, the expression levels of nestin, BRN2, SOX9 and SOX10 were analysed in tissues of melanoma (n = 78) and melanocytic nevi (n = 26) by immunohistochemistry. All proteins were highly expressed in primary and metastatic melanomas and, apart from BRN2, showed much lower levels in melanocytic nevi. Significant coexpression of nestin with SOX9 and SOX10 was found in primary melanoma confirming our in vitro data. Correlation analysis with clinicopathological data revealed that nestin was significantly associated with presence of ulceration in primary tumors and SOX9 with more advanced stage of disease. Our data reveal that SOX9 and SOX10 are highly expressed in melanoma and seem to have a regulatory role in nestin expression. The association with ulceration and advanced-stage tumors, respectively, suggests that nestin and SOX9 may be negative prognostic markers in melanoma.
Collapse
Affiliation(s)
- Renato M Bakos
- Department of Dermatology, Ludwig-Maximilian University of Munich, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Weirauch MT, Hughes TR. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. Subcell Biochem 2011; 52:25-73. [PMID: 21557078 DOI: 10.1007/978-90-481-9069-0_3] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Transcription factors (TFs) play key roles in the regulation of gene expression by binding in a sequence-specific manner to genomic DNA. In eukaryotes, DNA binding is achieved by a wide range of structural forms and motifs. TFs are typically classified by their DNA-binding domain (DBD) type. In this chapter, we catalogue and survey 91 different TF DBD types in metazoa, plants, fungi, and protists. We briefly discuss well-characterized TF families representing the major DBD superclasses. We also examine the species distributions and inferred evolutionary histories of the various families, and the potential roles played by TF family expansion and dimerization.
Collapse
Affiliation(s)
- Matthew T Weirauch
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada,
| | | |
Collapse
|
47
|
Shi G, Sohn KC, Choi DK, Kim YJ, Kim SJ, Ou BS, Piao YJ, Lee YH, Yoon TJ, Lee Y, Seo YJ, Kim CD, Lee JH. Brn2 is a transcription factor regulating keratinocyte differentiation with a possible role in the pathogenesis of lichen planus. PLoS One 2010; 5:e13216. [PMID: 20967260 PMCID: PMC2953493 DOI: 10.1371/journal.pone.0013216] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/10/2010] [Indexed: 11/18/2022] Open
Abstract
Terminal differentiation of skin keratinocytes is a vertically directed multi-step process that is tightly controlled by the sequential expression of a variety of genes. In this study, we investigated the role of the POU domain-containing transcription factor Brn2 in keratinocyte differentiation. Immunohistochemical analysis showed that Brn2 is expressed primarily in the upper granular layer. Consistent with its epidermal localization, Brn2 expression was highly induced at 14 days after calcium treatment of cultured normal human epidermal keratinocytes. When Brn2 was overexpressed by adenoviral transduction, Brn2 led to increased expression of the differentiation-related genes involucrin, filaggrin, and loricrin in addition to inhibition of their proliferation. Chromatin immunoprecipitation demonstrated that Brn2 bound to the promoter regions of these differentiation-related genes. We injected the purified Brn2 adenovirus into rat skin, which led to a thickened epidermis with increased amounts of differentiation related markers. The histopathologic features of adenovirus-Brn2 injected skin tissues looked similar to the features of lichen planus, a human skin disease showing chronic inflammation and well-differentiated epidermal changes. Moreover, Brn2 is shown to be expressed in almost all cell nuclei of the thickened epidermis of lichen planus, and Brn2 also attracts T lymphocytes. Our results demonstrate that Brn2 is probably a transcriptional factor playing an important role in keratinocyte differentiation and probably also in the pathogenesis of lichen planus lesions.
Collapse
Affiliation(s)
- Ge Shi
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
- Department of Dermatology, The First Affiliated Hospital, Guangxi Traditional Chinese Medical University, Nanning, China
| | - Kyung-Cheol Sohn
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Dae-Kyoung Choi
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Yu-Jin Kim
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Seong-Jin Kim
- Department of Dermatology, School of Medicine, Chonnam National University, Gwangju, Korea
| | - Bai-Sheng Ou
- Department of Dermatology, The First Affiliated Hospital, Guangxi Traditional Chinese Medical University, Nanning, China
| | - Yong-Jun Piao
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Young Ho Lee
- Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Tae-Jin Yoon
- Department of Dermatology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Korea
| | - Young Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang Deok Kim
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
- * E-mail:
| |
Collapse
|
48
|
Abstract
Tumours comprise multiple phenotypically distinct subpopulations of cells, some of which are proposed to possess stem cell-like properties, being able to self-renew, seed and maintain tumours, and provide a reservoir of therapeutically resistant cells. Here, we use melanoma as a model to explore the validity of the cancer stem cell hypothesis in the light of accumulating evidence that melanoma progression may instead be driven by phenotype-switching triggered by genetic lesions that impose an increased sensitivity to changes in the tumour microenvironment. Although at any given moment cells within a tumour may exhibit differentiated, proliferative or invasive phenotypes, an ability to switch phenotypes implies that most cells will have the potential to adopt a stem cell-like identity. Insights into the molecular events underpinning phenotype-switching in melanoma highlight the close relationship between signalling pathways that generate, maintain and activate melanocyte stem cells as well as the inverse correlation between proliferation and invasive potentials. An understanding of phenotype-switching in melanoma, and in particular the signalling events that regulate the expression of the microphthalmia-associated transcription factor Mitf, points to new therapeutic opportunities aimed at eradicating therapeutically resistant stem cell-like melanoma cells.
Collapse
Affiliation(s)
- Keith S Hoek
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | | |
Collapse
|
49
|
Kobi D, Steunou AL, Dembélé D, Legras S, Larue L, Nieto L, Davidson I. Genome-wide analysis of POU3F2/BRN2 promoter occupancy in human melanoma cells reveals Kitl as a novel regulated target gene. Pigment Cell Melanoma Res 2010; 23:404-18. [PMID: 20337985 DOI: 10.1111/j.1755-148x.2010.00697.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
POU3F2 is a POU-Homeodomain transcription factor expressed in neurons and melanoma cells. In melanoma lesions, cells expressing high levels of POU3F2 show enhanced invasive and metastatic capacity that can in part be explained by repression of Micropthalmia-associated Transcription Factor (MITF) expression via POU3F2 binding to its promoter. To identify other POU3F2 target genes that may be involved in modulating the properties of melanoma cells, we performed ChIP-chip experiments in 501Mel melanoma cells. 2108 binding loci located in the regulatory regions of 1700 potential target genes were identified. Bioinformatic and experimental assays showed the presence of known POU3F2-binding motifs, but also many AT-rich sequences with only partial similarity to the known motifs at the occupied loci. Functional analysis indicates that POU3F2 regulates the stem cell factor (Kit ligand, Kitl) promoter via a cluster of four closely spaced binding sites located in the proximal promoter. Our results suggest that POU3F2 may regulate the properties of melanoma cells via autocrine KIT ligand signalling.
Collapse
Affiliation(s)
- Dominique Kobi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch Cédex, France
| | | | | | | | | | | | | |
Collapse
|