1
|
Halai P, Kiss O, Wang R, Chien AL, Kang S, O'Connor C, Bell M, Griffiths CEM, Watson REB, Langton AK. Retinoids in the treatment of photoageing: A histological study of topical retinoid efficacy in black skin. J Eur Acad Dermatol Venereol 2024; 38:1618-1627. [PMID: 38682699 DOI: 10.1111/jdv.20043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Photoageing describes complex cutaneous changes that occur due to chronic exposure to solar ultraviolet radiation (UVR). The 'gold standard' for the treatment of photoaged white skin is all-trans retinoic acid (ATRA); however, cosmetic retinol (ROL) has also proven efficacious. Recent work has identified that black skin is susceptible to photoageing, characterized by disintegration of fibrillin-rich microfibrils (FRMs) at the dermal-epidermal junction (DEJ). However, the impact of topical retinoids for repair of black skin has not been well investigated. OBJECTIVES To determine the potential of retinoids to repair photoaged black skin. METHODS An exploratory intervention study was performed using an in vivo, short-term patch test protocol. Healthy but photoaged black volunteers (>45 years) were recruited to the study, and participant extensor forearms were occluded with either 0.025% ATRA (n = 6; 4-day application due to irritancy) or ROL (12-day treatment protocol for a cosmetic) at concentrations of 0.3% (n = 6) or 1% (n = 6). Punch biopsies from occluded but untreated control sites and retinoid-treated sites were processed for histological analyses of epidermal characteristics, melanin distribution and dermal remodelling. RESULTS Treatment with ATRA and ROL induced significant acanthosis (all p < 0.001) accompanied by a significant increase in keratinocyte proliferation (Ki67; all p < 0.01), dispersal of epidermal melanin and restoration of the FRMs at the DEJ (all p < 0.01), compared to untreated control. CONCLUSIONS This study confirms that topical ATRA has utility for the repair of photoaged black skin and that ROL induces comparable effects on epidermal and dermal remodelling, albeit over a longer timeframe. The effects of topical retinoids on black photoaged skin are similar to those reported for white photoaged skin and suggest conserved biology in relation to repair of UVR-induced damage. Further investigation of topical retinoid efficacy in daily use is warranted for black skin.
Collapse
Affiliation(s)
- P Halai
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - O Kiss
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - R Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - A L Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - S Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C O'Connor
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - M Bell
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - C E M Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Department of Dermatology, King's College Hospital, King's College London, London, UK
| | - R E B Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- A*STAR Skin Research Laboratory (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - A K Langton
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
2
|
Johns E, Ma Y, Louphrasitthipol P, Peralta C, Hunter MV, Raymond JH, Molina H, Goding CR, White RM. The lipid droplet protein DHRS3 is a regulator of melanoma cell state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586589. [PMID: 38586016 PMCID: PMC10996640 DOI: 10.1101/2024.03.25.586589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lipid droplets are fat storage organelles composed of a protein envelope and lipid rich core. Regulation of this protein envelope underlies differential lipid droplet formation and function. In melanoma, lipid droplet formation has been linked to tumor progression and metastasis, but it is unknown whether lipid droplet proteins play a role. To address this, we performed proteomic analysis of the lipid droplet envelope in melanoma. We found that lipid droplet proteins were differentially enriched in distinct melanoma states; from melanocytic to undifferentiated. DHRS3, which converts all-trans-retinal to all-trans-retinol, is upregulated in the MITFLO/undifferentiated/neural crest-like melanoma cell state and reduced in the MITFHI/melanocytic state. Increased DHRS3 expression is sufficient to drive MITFHI/melanocytic cells to a more undifferentiated/invasive state. These changes are due to retinoic acid mediated regulation of melanocytic genes. Our data demonstrate that melanoma cell state can be regulated by expression of lipid droplet proteins which affect downstream retinoid signaling.
Collapse
|
3
|
Vitamin A in Skin and Hair: An Update. Nutrients 2022; 14:nu14142952. [PMID: 35889909 PMCID: PMC9324272 DOI: 10.3390/nu14142952] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin A is a fat-soluble micronutrient necessary for the growth of healthy skin and hair. However, both too little and too much vitamin A has deleterious effects. Retinoic acid and retinal are the main active metabolites of vitamin A. Retinoic acid dose-dependently regulates hair follicle stem cells, influencing the functioning of the hair cycle, wound healing, and melanocyte stem cells. Retinoic acid also influences melanocyte differentiation and proliferation in a dose-dependent and temporal manner. Levels of retinoids decline when exposed to ultraviolet irradiation in the skin. Retinal is necessary for the phototransduction cascade that initiates melanogenesis but the source of that retinal is currently unknown. This review discusses new research on retinoids and their effects on the skin and hair.
Collapse
|
4
|
Tancrède-Bohin E, Baldeweck T, Brizion S, Decencière E, Victorin S, Ngo B, Raynaud E, Souverain L, Bagot M, Pena AM. In vivo multiphoton imaging for non-invasive time course assessment of retinoids effects on human skin. Skin Res Technol 2020; 26:794-803. [PMID: 32713074 PMCID: PMC7754381 DOI: 10.1111/srt.12877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/22/2020] [Indexed: 01/09/2023]
Abstract
Background In vivo multiphoton imaging and automatic 3D image processing tools provide quantitative information on human skin constituents. These multiphoton‐based tools allowed evidencing retinoids epidermal effects in the occlusive patch test protocol developed for antiaging products screening. This study aimed at investigating their relevance for non‐invasive, time course assessment of retinoids cutaneous effects under real‐life conditions for one year. Materials and Methods Thirty women, 55‐65 y, applied either retinol (RO 0.3%) or retinoic acid (RA 0.025%) on one forearm dorsal side versus a control product on the other forearm once a day for 1 year. In vivo multiphoton imaging was performed every three months, and biopsies were taken after 1 year. Epidermal thickness and dermal‐epidermal junction undulation were estimated in 3D with multiphoton and in 2D with histology, whereas global melanin density and its z‐epidermal distribution were estimated using 3D multiphoton image processing tools. Results Main results after one year were as follows: a) epidermal thickening with RO (+30%); b) slight increase in dermal‐epidermal junction undulation with RO; c) slight decrease in 3D melanin density with RA; d) limitation of the melanin ascent observed with seasonality and time within supra‐basal layers with both retinoids, using multiphoton 3D‐melanin z‐epidermal profile. Conclusions With a novel 3D descriptor of melanin z‐epidermal distribution, in vivo multiphoton imaging allows demonstrating that daily usage of retinoids counteracts aging by acting not only on epidermal morphology, but also on melanin that is shown to accumulate in the supra‐basal layers with time.
Collapse
Affiliation(s)
- Emmanuelle Tancrède-Bohin
- L'Oréal Research and Innovation, Clichy, France.,Service de Dermatologie, Hôpital Saint-Louis, Paris, France
| | | | | | - Etienne Decencière
- Center for Mathematical Morphology, MINES ParisTech - PSL Research University, Fontainebleau, France
| | | | - Blandine Ngo
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | | | - Luc Souverain
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Martine Bagot
- Service de Dermatologie, Hôpital Saint-Louis, Paris, France.,Inserm U976, Hôpital Saint-Louis, Université de Paris, Paris, France
| | - Ana-Maria Pena
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| |
Collapse
|
5
|
Chen Q, Sato K, Yokoi H, Suzuki T. Developmental regulatory system of ocular‐side‐specific asymmetric pigmentation in flounder: Critical role of retinoic acid signaling. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:156-167. [DOI: 10.1002/jez.b.22934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Qiran Chen
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural ScienceTohoku UniversitySendai Japan
| | - Kota Sato
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural ScienceTohoku UniversitySendai Japan
| | - Hayato Yokoi
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural ScienceTohoku UniversitySendai Japan
| | - Tohru Suzuki
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural ScienceTohoku UniversitySendai Japan
| |
Collapse
|
6
|
Affiliation(s)
- Wilbur Johnson
- 1 Senior Scientific Writer/Analyst, Cosmetic Ingredient Review, Washington, DC, USA
| |
Collapse
|
7
|
Kawakami T, Ohgushi A, Hirobe T, Soma Y. Analysis of the effects of all-trans retinoic acid on human melanocytes and melanoblasts in vitro. J Dermatol 2017; 44:93-94. [PMID: 28052446 DOI: 10.1111/1346-8138.13477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/23/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Tamihiro Kawakami
- Department of Dermatology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Akiko Ohgushi
- Department of Dermatology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Tomohisa Hirobe
- Department of Dermatology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshinao Soma
- Department of Dermatology, St Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
8
|
Piersma AH, Hessel EV, Staal YC. Retinoic acid in developmental toxicology: Teratogen, morphogen and biomarker. Reprod Toxicol 2017; 72:53-61. [PMID: 28591664 DOI: 10.1016/j.reprotox.2017.05.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
Abstract
This review explores the usefulness retinoic acid (RA) related physiological factors as possible biomarkers of embryotoxicity. RA is involved in the morphogenesis of the early embryo as well as in the development and maturation of a wide variety of organ anlagen. The region-specific homeostasis of RA in the embryo is in many ways the driving force determining developmental cell proliferation versus differentiation. As a consequence, RA concentrations are carefully controlled in time and space in the developing embryo. RA deficiency and overdosing both result in characteristic patterns of malformations that may involve many different organ systems. The central role of RA in embryo development provides us with a set of sensitive biomarkers that may be employed in developmental toxicity testing. This includes the synthesizing and metabolizing enzymes of RA, but also a myriad of related morphogenetic factors and their genes, of which the expression may be affected by changes in RA balance. Several examples of embryotoxicants interfering with the homeostasis of RA and related parameters have been described. A preliminary adverse outcome pathway framework for RA mediated malformations has been published. Expansion of this framework and its application in developmental toxicity testing may allow the detection of a large variety of embryotoxicants with diverse modes of action. RA homeostasis therefore provides a promising set of molecular tools that may be employed in the advancement of mode of action driven animal-free developmental toxicity testing.
Collapse
Affiliation(s)
- Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Ellen V Hessel
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Yvonne C Staal
- Center for Health Protection, National Institute for Public Health and the Environment RIVM, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
9
|
Takahashi N, Imai M, Komori Y. Inhibitory effects of p-alkylaminophenol on melanogenesis. Bioorg Med Chem 2014; 22:4677-83. [DOI: 10.1016/j.bmc.2014.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 01/13/2023]
|
10
|
Choi H, Jin SH, Han MH, Lee J, Ahn S, Seong M, Choi H, Han J, Cho EG, Lee TR, Noh M. Human melanocytes form a PAX3-expressing melanocyte cluster on Matrigel by the cell migration process. J Dermatol Sci 2014; 76:60-6. [PMID: 25128984 DOI: 10.1016/j.jdermsci.2014.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/07/2014] [Accepted: 07/13/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND The interactions between human epidermal melanocytes and their cellular microenvironment are important in the regulation of human melanocyte functions or in their malignant transformation into melanoma. Although the basement membrane extracellular matrix (BM-ECM) is one of major melanocyte microenvironments, the effects of BM-ECM on the human melanocyte functions are not fully explained at a molecular level. OBJECTIVE This study was aimed to characterize the molecular and cellular interactions between normal human melanocytes (NHMs) and BM-ECM. METHODS We investigated cell culture models of normal human melanocytes or melanoma cells on three-dimensional (3D) Matrigel to understand the roles of the basement membrane microenvironment in human melanocyte functions. Melanogenesis and melanobast biomarker expression in both primary human melanocytes and melanoma cells on 3D Matrigel were evaluated. RESULTS We found that NHMs migrated and formed reversible paired box 3 (PAX3) expressing cell clusters on three-dimensional (3D) Matrigel. The melanogenesis was significantly decreased in the PAX3 expressing cell cluster. The expression profile of PAX3, SOX10, and MITF in the melanocyte cluster on 3D Matrigel was similar to that of melanoblasts. Interestingly, PAX3 and SOX10 showed an inverse expression profile in NHMs, whereas the inverse expression pattern of PAX3 and SOX10 was disrupted in melanoma MNT1 and WM266-4 cells. CONCLUSION The human melanocyte culture on 3D Matrigel provides an alternative model system to study functions of human melanoblasts. In addition, this system will contribute to the elucidation of PAX3-related tumorigenic mechanisms to understand human melanoma.
Collapse
Affiliation(s)
- Hyunjung Choi
- Bioscience Research Institute, AmorePacific Corporation R&D Center, Yongin, Gyeonggi-do 446-729, Republic of Korea
| | - Sun Hee Jin
- College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Mi Hwa Han
- College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jinyoung Lee
- College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seyeon Ahn
- College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Minjeong Seong
- College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyun Choi
- Bioscience Research Institute, AmorePacific Corporation R&D Center, Yongin, Gyeonggi-do 446-729, Republic of Korea
| | - Jiyeon Han
- Bioscience Research Institute, AmorePacific Corporation R&D Center, Yongin, Gyeonggi-do 446-729, Republic of Korea
| | - Eun-Gyung Cho
- Bioscience Research Institute, AmorePacific Corporation R&D Center, Yongin, Gyeonggi-do 446-729, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, AmorePacific Corporation R&D Center, Yongin, Gyeonggi-do 446-729, Republic of Korea.
| | - Minsoo Noh
- College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
11
|
Yang J, Wang J, Pan L, Li H, Rao C, Zhang X, Niu G, Qu J, Hou L. BMP4 is required for the initial expression of MITF in melanocyte precursor differentiation from embryonic stem cells. Exp Cell Res 2013; 320:54-61. [PMID: 24080013 DOI: 10.1016/j.yexcr.2013.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/06/2013] [Accepted: 09/21/2013] [Indexed: 11/19/2022]
Abstract
Although the differentiation of melanoblasts to melanocytes is known to depend on many distinct factors, it is still poorly understood which factors lead to the induction of melanoblasts. To determine which factors might induce melanoblasts, we examined a set of candidate factors for their ability to induce expression of MITF, a master regulator of melanoblast development, in an ES cell-based melanocyte differentiation system. It appears that BMP4 is capable of inducing MITF expression in stem cells. In contrast, a number of other factors normally implicated in the development of the melanocyte lineage, including WNT1, WNT3a, SCF, EDN3, IGF1, PDGF, and RA, cannot induce MITF expression. Nevertheless, BMP4 alone does not allow MITF-expressing precursors to become differentiated melanocytes, but the addition of EDN3 further promotes differentiation of the precursors into mature melanocytes. Our results support a model in which BMP4 induces MITF expression in pluripotent stem cells and EDN3 subsequently promotes differentiation of these MITF expressing cells along the melanocyte lineage.
Collapse
Affiliation(s)
- Juan Yang
- Developmental Cell Biology and Disease Program, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325003, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou 325003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dahl C, Christensen C, Jönsson G, Lorentzen A, Skjødt ML, Borg Å, Pawelec G, Guldberg P. Mutual exclusivity analysis of genetic and epigenetic drivers in melanoma identifies a link between p14 ARF and RARβ signaling. Mol Cancer Res 2013; 11:1166-78. [PMID: 23851445 DOI: 10.1158/1541-7786.mcr-13-0006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Melanoma genomes contain thousands of alterations including: mutations, copy number alterations, structural aberrations, and methylation changes. The bulk of this variation is stochastic and functionally neutral, with only a small minority representing "drivers" that contribute to the genesis and maintenance of tumors. Drivers are often directly or inversely correlated across tumors, reflecting the molecular and regulatory signaling pathways in which they operate. Here, a profile of genetic and epigenetic drivers in 110 human melanoma cell lines was generated and searched for non-random distribution patterns. Statistically significant mutual exclusivity was revealed among components of each of the p16(INK4A)-CDK4-RB, RAS-RAF-MEK-ERK and PI3K-AKT signaling pathways. In addition, an inverse correlation was observed between promoter hypermethylation of retinoic acid receptor β (RARB) and CDKN2A alterations affecting p14(ARF) (P < 0.0001), suggesting a functional link between RARβ signaling and the melanoma-suppressive activities of p14(ARF). Mechanistically, all-trans retinoic acid (ATRA) treatment increased the expression of p14(ARF) in primary human melanocytes and the steady-state levels of p14(ARF) in these cells were shown to be regulated via RARβ. Furthermore, the ability of ATRA to induce senescence is reduced in p14(ARF)-depleted melanocytes, and we provide proof-of-concept that ATRA can induce irreversible growth arrest in melanoma cells with an intact RARβ-p14(ARF) signaling axis, independent of p16(INK4A) and p53 status. IMPLICATIONS These data highlight the power of mutual exclusivity analysis of cancer drivers to unravel molecular pathways and establish a previously unrecognized cross-talk between RARβ and p14(ARF) with potential implications for melanoma treatment.
Collapse
Affiliation(s)
- Christina Dahl
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Baldea I, Costin GE, Shellman Y, Kechris K, Olteanu ED, Filip A, Cosgarea MR, Norris DA, Birlea SA. Biphasic pro-melanogenic and pro-apoptotic effects of all-trans-retinoic acid (ATRA) on human melanocytes: time-course study. J Dermatol Sci 2013; 72:168-76. [PMID: 23867358 DOI: 10.1016/j.jdermsci.2013.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 05/03/2013] [Accepted: 06/09/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND The effects of retinoids on melanogenesis and their mechanism as depigmenting agents in topical therapy have not been fully elucidated. Conflicting data about their impact on melanogenic pathways have been reported. OBJECTIVE To investigate the effects of all-trans-retinoic acid (ATRA) on normal human melanocytes from Caucasian subjects. METHODS We assessed ATRA's cytotoxicity by measuring viability with a cell proliferation assay, and apoptotic effects using Annexin V and γ-H2AX markers. ATRA's melanogenic activity was investigated based on spectrophotometric measurement of melanin content and tyrosinase enzymatic activity. Tyrosinase expression was assessed by Western blotting. We tested the antioxidant activity of superoxide dismutase (SOD) and catalase (CAT) in melanocytes using a spectrophotometric assay. RESULTS Of the concentrations tested in this 72h time-course study, the 1.0μM ATRA had a well-defined two-stage pro-melanogenic and pro-apoptotic effect on melanocytes. In the first 6h, treated cells showed significant increase (p≤0.01) of melanin content, tyrosinase, SOD, and CAT activities compared to the controls. While overall tyrosinase expression was not affected by ATRA, all other tested parameters decreased progressively beyond the short-term point of 6h. ATRA treatment of over 6h induced melanocyte apoptosis, as shown by the time-dependent decrease in cell viability, coupled with significant increase in Annexin V positive cells and nuclear accumulation of γ-H2AX foci. CONCLUSION The results obtained using this testing platform show a biphasic ATRA action: immediate pro-melanogenic effect and longer-term exposure pro-apoptotic activity. These data qualify ATRA as a potent tool to better understand the mechanisms that regulate the pigmentary system.
Collapse
Affiliation(s)
- Ioana Baldea
- Department of Physiology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lignin Induces ES Cells to Differentiate into Neuroectodermal Cells through Mediation of the Wnt Signaling Pathway. PLoS One 2013; 8:e66376. [PMID: 23805217 PMCID: PMC3689838 DOI: 10.1371/journal.pone.0066376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/05/2013] [Indexed: 02/06/2023] Open
Abstract
Embryonic stem cells (ES cells) are characterized by their pluripotency and infinite proliferation potential. Ever since ES cells were first established in 1981, there have been a growing number of studies aimed at clinical applications of ES cells. In recent years, various types of differentiation inducement systems using ES cells have been established. Further studies have been conducted to utilize differentiation inducement systems in the field of regenerative medicine. For cellular treatments using stem cells including ES cells, differentiation induction should be performed in a sufficient manner to obtain the intended cell lineages. Lignin is a high-molecular amorphous material that forms plants together with cellulose and hemicelluloses, in which phenylpropane fundamental units are complexly condensed. Lignin derivatives have been shown to have several bioactive functions. In spite of these findings, few studies have focused on the effects of lignin on stem cells. Our study aimed to develop a novel technology using lignin to effectively induce ES cells to differentiate into neuroectodermal cells including ocular cells and neural cells. Since lignin can be produced at a relatively low cost in large volumes, its utilization is expected for more convenient differentiation induction technologies and in the field of regenerative medicine in the future.
Collapse
|