1
|
Terrar DA. Timing mechanisms to control heart rhythm and initiate arrhythmias: roles for intracellular organelles, signalling pathways and subsarcolemmal Ca 2. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220170. [PMID: 37122228 PMCID: PMC10150226 DOI: 10.1098/rstb.2022.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Rhythms of electrical activity in all regions of the heart can be influenced by a variety of intracellular membrane bound organelles. This is true both for normal pacemaker activity and for abnormal rhythms including those caused by early and delayed afterdepolarizations under pathological conditions. The influence of the sarcoplasmic reticulum (SR) on cardiac electrical activity is widely recognized, but other intracellular organelles including lysosomes and mitochondria also contribute. Intracellular organelles can provide a timing mechanism (such as an SR clock driven by cyclic uptake and release of Ca2+, with an important influence of intraluminal Ca2+), and/or can act as a Ca2+ store involved in signalling mechanisms. Ca2+ plays many diverse roles including carrying electric current, driving electrogenic sodium-calcium exchange (NCX) particularly when Ca2+ is extruded across the surface membrane causing depolarization, and activation of enzymes which target organelles and surface membrane proteins. Heart function is also influenced by Ca2+ mobilizing agents (cADP-ribose, nicotinic acid adenine dinucleotide phosphate and inositol trisphosphate) acting on intracellular organelles. Lysosomal Ca2+ release exerts its effects via calcium/calmodulin-dependent protein kinase II to promote SR Ca2+ uptake, and contributes to arrhythmias resulting from excessive beta-adrenoceptor stimulation. A separate arrhythmogenic mechanism involves lysosomes, mitochondria and SR. Interacting intracellular organelles, therefore, have profound effects on heart rhythms and NCX plays a central role. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Derek A Terrar
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
2
|
Hogan KA, Zeidler JD, Beasley HK, Alsaadi AI, Alshaheeb AA, Chang YC, Tian H, Hinton AO, McReynolds MR. Using mass spectrometry imaging to visualize age-related subcellular disruption. Front Mol Biosci 2023; 10:906606. [PMID: 36968274 PMCID: PMC10032471 DOI: 10.3389/fmolb.2023.906606] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/24/2023] [Indexed: 03/10/2023] Open
Abstract
Metabolic homeostasis balances the production and consumption of energetic molecules to maintain active, healthy cells. Cellular stress, which disrupts metabolism and leads to the loss of cellular homeostasis, is important in age-related diseases. We focus here on the role of organelle dysfunction in age-related diseases, including the roles of energy deficiencies, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, changes in metabolic flux in aging (e.g., Ca2+ and nicotinamide adenine dinucleotide), and alterations in the endoplasmic reticulum-mitochondria contact sites that regulate the trafficking of metabolites. Tools for single-cell resolution of metabolite pools and metabolic flux in animal models of aging and age-related diseases are urgently needed. High-resolution mass spectrometry imaging (MSI) provides a revolutionary approach for capturing the metabolic states of individual cells and cellular interactions without the dissociation of tissues. mass spectrometry imaging can be a powerful tool to elucidate the role of stress-induced cellular dysfunction in aging.
Collapse
Affiliation(s)
- Kelly A. Hogan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Julianna D. Zeidler
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Abrar I. Alsaadi
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Abdulkareem A. Alshaheeb
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Yi-Chin Chang
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Hua Tian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Hua Tian, ; Antentor O. Hinton Jr, ; Melanie R. McReynolds,
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Hua Tian, ; Antentor O. Hinton Jr, ; Melanie R. McReynolds,
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Hua Tian, ; Antentor O. Hinton Jr, ; Melanie R. McReynolds,
| |
Collapse
|
3
|
Andy D, Gunaratne GS, Marchant JS, Walseth TF, Slama JT. Synthesis and biological evaluation of novel photo-clickable adenosine and cyclic ADP-ribose analogs: 8-N 3-2'-O-propargyladenosine and 8-N 3-2'-O-propargyl-cADPR. Bioorg Med Chem 2022; 76:117099. [PMID: 36446271 PMCID: PMC9842072 DOI: 10.1016/j.bmc.2022.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
A photo-clickable analog of adenosine was devised and synthesized in which the photoactive functional group (8-azidoadenosine) and the click moiety (2'-O-propargyl-ether) were compactly combined within the structure of the adenosine nucleoside itself. We synthesized 8-N3-2'-O-propargyl adenosine in four steps starting from adenosine. This photo-clickable adenosine was 5'-phosphorylated and coupled to nicotinamide mononucleotide to form the NAD analog 8-N3-2'-O-propargyl-NAD. This NAD analog was recognized by Aplysia californica ADP-ribosyl cyclase and enzymatically cyclized producing 8-N3-2'-O-propargyl cyclic ADP-ribose. Photo-clickable cyclic-ADP-ribose analog was envisioned as a probe to label cyclic ADP-ribose binding proteins. The monofunctional 8-N3-cADPR has previously been shown to be an antagonist of cADPR-induced calcium release [T.F. Walseth et. al., J. Biol. Chem (1993) 268, 26686-26691]. 2'-O-propargyl-cADPR was recognized as an agonist which elicited Ca2+ release when added at low concentration to sea urchin egg homogenates. The bifunctional 8-N3-2'-O-propargyl cyclic ADP-ribose did not elicit Ca2+ release at low concentration or impact cyclic ADP-ribose mediated Ca2+ release either when added to sea urchin egg homogenates or when microinjected into cultured human U2OS cells. The photo-clickable adenosine will none-the-less be a useful scaffold for synthesizing photo-clickable probes for identifying proteins that interact with a variety of adenosine nucleotides.
Collapse
Affiliation(s)
- Divya Andy
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Gihan S Gunaratne
- Department of Pharmacology, University of Minnesota Medical School, 312 Church St, Minneapolis, MN 55455-0217, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226-0509, USA
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, 312 Church St, Minneapolis, MN 55455-0217, USA
| | - James T Slama
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| |
Collapse
|
4
|
Agorrody G, Peclat TR, Peluso G, Gonano LA, Santos L, van Schooten W, Chini CCS, Escande C, Chini EN, Contreras P. Benefits in cardiac function by CD38 suppression: Improvement in NAD + levels, exercise capacity, heart rate variability and protection against catecholamine induced ventricular arrhythmias. J Mol Cell Cardiol 2022; 166:11-22. [PMID: 35114253 PMCID: PMC9035106 DOI: 10.1016/j.yjmcc.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/31/2021] [Accepted: 01/25/2022] [Indexed: 01/18/2023]
Abstract
CD38 enzymatic activity regulates NAD+ and cADPR levels in mammalian tissues, and therefore has a prominent role in cellular metabolism and calcium homeostasis. Consequently, it is reasonable to hypothesize about its involvement in cardiovascular physiology as well as in heart related pathological conditions. AIM To investigate the role of CD38 in cardiovascular performance, and its involvement in cardiac electrophysiology and calcium-handling. METHODS AND RESULTS When submitted to a treadmill exhaustion test, a way of evaluating cardiovascular performance, adult male CD38KO mice showed better exercise capacity. This benefit was also obtained in genetically modified mice with catalytically inactive (CI) CD38 and in WT mice treated with antibody 68 (Ab68) which blocks CD38 activity. Hearts from these 3 groups (CD38KO, CD38CI and Ab68) showed increased NAD+ levels. When CD38KO mice were treated with FK866 which inhibits NAD+ biosynthesis, exercise capacity as well as NAD+ in heart tissue decreased to WT levels. Electrocardiograms of conscious unrestrained CD38KO and CD38CI mice showed lower basal heart rates and higher heart rate variability than WT mice. Although inactivation of CD38 in mice resulted in increased SERCA2a expression in the heart, the frequency of spontaneous calcium release from the sarcoplasmic reticulum under stressful conditions (high extracellular calcium concentration) was lower in CD38KO ventricular myocytes. When mice were challenged with caffeine-epinephrine, CD38KO mice had a lower incidence of bidirectional ventricular tachycardia when compared to WT ones. CONCLUSION CD38 inhibition improves exercise performance by regulating NAD+ homeostasis. CD38 is involved in cardiovascular function since its genetic ablation decreases basal heart rate, increases heart rate variability and alters calcium handling in a way that protects mice from developing catecholamine induced ventricular arrhythmias.
Collapse
Affiliation(s)
- Guillermo Agorrody
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay; Laboratorio de Fisiología Cardiovascular, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Thais R Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Gonzalo Peluso
- Laboratorio de Fisiología Cardiovascular, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Luis A Gonano
- Centro de Investigaciones Cardiovasculares Horacio Cingolani, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Leonardo Santos
- Laboratory of Metabolic Diseases and Aging, INDICyO Program, Institut Pasteur Montevideo, Montevideo 11400, Uruguay
| | | | - Claudia C S Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Carlos Escande
- Laboratory of Metabolic Diseases and Aging, INDICyO Program, Institut Pasteur Montevideo, Montevideo 11400, Uruguay
| | - Eduardo N Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Paola Contreras
- Laboratorio de Fisiología Cardiovascular, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay; Laboratory of Metabolic Diseases and Aging, INDICyO Program, Institut Pasteur Montevideo, Montevideo 11400, Uruguay.
| |
Collapse
|
5
|
Identification of a dihydropyridine scaffold that blocks ryanodine receptors. iScience 2022; 25:103706. [PMID: 35059610 PMCID: PMC8760560 DOI: 10.1016/j.isci.2021.103706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Ryanodine receptors (RyRs) are large, intracellular ion channels that control Ca2+ release from the sarco/endoplasmic reticulum. Dysregulation of RyRs in skeletal muscle, heart, and brain has been implicated in various muscle pathologies, arrhythmia, heart failure, and Alzheimer's disease. Therefore, there is considerable interest in therapeutically targeting RyRs to normalize Ca2+ homeostasis in scenarios involving RyR dysfunction. Here, a simple invertebrate screening platform was used to discover new chemotypes targeting RyRs. The approach measured Ca2+ signals evoked by cyclic adenosine 5′-diphosphate ribose, a second messenger that sensitizes RyRs. From a 1,534-compound screen, FLI-06 (currently described as a Notch “inhibitor”) was identified as a potent blocker of RyR activity. Two closely related tyrosine kinase inhibitors that stimulate and inhibit Ca2+ release through RyRs were also resolved. Therefore, this simple screen yielded RyR scaffolds tractable for development and revealed an unexpected linkage between RyRs and trafficking events in the early secretory pathway. FLI-06 inhibits transport in the secretory pathway via an unknown mechanism An invertebrate screening platform revealed FLI-06 blocks intracellular Ca2+ release FLI-06 acts as a potent, cell-permeable ryanodine receptor (RyR) blocker The para-substituted dihydropyridine chemotype is a new scaffold for RyR modulation
Collapse
|
6
|
Yu P, Cai X, Liang Y, Wang M, Yang W. Roles of NAD + and Its Metabolites Regulated Calcium Channels in Cancer. Molecules 2020; 25:molecules25204826. [PMID: 33092205 PMCID: PMC7587972 DOI: 10.3390/molecules25204826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor for redox enzymes, but also moonlights as a regulator for ion channels, the same as its metabolites. Ca2+ homeostasis is dysregulated in cancer cells and affects processes such as tumorigenesis, angiogenesis, autophagy, progression, and metastasis. Herein, we summarize the regulation of the most common calcium channels (TRPM2, TPCs, RyRs, and TRPML1) by NAD+ and its metabolites, with a particular focus on their roles in cancers. Although the mechanisms of NAD+ metabolites in these pathological processes are yet to be clearly elucidated, these ion channels are emerging as potential candidates of alternative targets for anticancer therapy.
Collapse
Affiliation(s)
- Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Xiaobo Cai
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
| | - Yan Liang
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Mingxiang Wang
- BrioPryme Biologics, Inc., Hangzhou 310058, Zhejiang, China;
| | - Wei Yang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
- Correspondence: ; Tel.: +86-571-8820-8713
| |
Collapse
|
7
|
Abstract
The aim of this chapter is to discuss evidence concerning the many roles of calcium ions, Ca2+, in cell signaling pathways that control heart function. Before considering details of these signaling pathways, the control of contraction in ventricular muscle by Ca2+ transients accompanying cardiac action potentials is first summarized, together with a discussion of how myocytes from the atrial and pacemaker regions of the heart diverge from this basic scheme. Cell signaling pathways regulate the size and timing of the Ca2+ transients in the different heart regions to influence function. The simplest Ca2+ signaling elements involve enzymes that are regulated by cytosolic Ca2+. Particularly important examples to be discussed are those that are stimulated by Ca2+, including Ca2+-calmodulin-dependent kinase (CaMKII), Ca2+ stimulated adenylyl cyclases, Ca2+ stimulated phosphatase and NO synthases. Another major aspect of Ca2+ signaling in the heart concerns actions of the Ca2+ mobilizing agents, inositol trisphosphate (IP3), cADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate, (NAADP). Evidence concerning roles of these Ca2+ mobilizing agents in different regions of the heart is discussed in detail. The focus of the review will be on short term regulation of Ca2+ transients and contractile function, although it is recognized that Ca2+ regulation of gene expression has important long term functional consequences which will also be briefly discussed.
Collapse
|
8
|
Feng R, Zhou X, Zhang W, Pu T, Sun Y, Yang R, Wang D, Zhang X, Gao Y, Cai Z, Liang Y, Yu Q, Wu Y, Lei X, Liang Z, Jones O, Wang L, Xu M, Sun Y, Isaacs WB, Ma J, Xu X. Dynamics expression of DmFKBP12/Calstabin during embryonic early development of Drosophila melanogaster. Cell Biosci 2019; 9:8. [PMID: 30637096 PMCID: PMC6325743 DOI: 10.1186/s13578-019-0270-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background Calcium signaling are conserved from invertebrates to vertebrates and plays critical roles in many molecular mechanisms of embryogenesis and postnatal development. As a critical component of the signaling pathway, the RyR medicated calcium-induced calcium release signaling system, has been well studied along with their regulator FK506-binding protein 12 (FKBP12/Calstabin). Lack of FKBP12 is known to result in lethal cardiac dysfunction in mouse. However, precisely how FKBP12 is regulated and effects calcium signaling in Drosophila melanogaster remains largely unknown. Results In this study, we identified both temporal and localization changes in expression of DmFKBP12, a translational and transcriptional regulator of Drosophila RyR (DmRyR) and FKBP12, through embryonic development. DmFKBP12 is first expressed at the syncytial blastoderm stage and undergoes increased expression during the cellular blastoderm and early gastrulation stages. At late gastrulation, DmFKBP12 expression begins to decline until it reaches homeostasis, which it then maintains throughout the rest of development. Throughout these described changes in expression, DmFKBP12 mRNA remain stable, which indicates that protein dynamics are attributed to regulation at the mRNA to protein translation level. In addition to temporal changes in expression, dynamic expression profiles during Drosophila development also revealed DmFKBP12 localization. Although DmFKBP12 is distributed evenly between the anterior to posterior poles of the blastoderm egg, the protein is expressed more strongly in the cortex of the early Drosophila gastrula with the highest concentration found in the basement membrane of the cellular blastoderm. Fertilized egg, through the profile as under-membrane cortex distribution concentering onto basement at cellular blastoderm, to the profile as three-gem layer localization in primitive neuronal and digestion architecture of early Drosophila gastrula. By late gastrulation, DmFKBP12 is no longer identified in the yolk or lumen of duct structures and has relocated to the future brain (suboesophageal and supraesophageal ganglions), ventral nervous system, and muscular system. Throughout these changes in distribution, in situ DmFKBP12 mRNA monitoring detected equal distribution of DmFKBP12 mRNA, once again indicating that regulation of DmFKBP12 occurs at the translational level in Drosophila development. Conclusion As a critical regulator of the DmRyR-FKBP complex, DmFKBP12 expression in Drosophila fluctuates temporally and geographically with the formation of organ systems. These finding indicate that DmFKBP12 and RyR associated calcium signaling plays an essential role in the successful development of Drosophila melanogaster. Further study on the differences between mammalian RyR-FKBP12 and Drosophila DmRyR-FKBP12 can be exploited to develop safe pesticides. Electronic supplementary material The online version of this article (10.1186/s13578-019-0270-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Feng
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Xin Zhou
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China.,2Ohio State University School of Medicine, Columbus, OH 43210 USA
| | - Wei Zhang
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Tao Pu
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Yuting Sun
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Rong Yang
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Dan Wang
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Xiaofei Zhang
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Yingfeng Gao
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Zhenlu Cai
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Yu Liang
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Qiuxia Yu
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Yajun Wu
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Xinjuan Lei
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Zhijia Liang
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| | - Odell Jones
- 4University of Pennsylvania ULAR, Philadelphia, PA 19144 USA
| | - Liyang Wang
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China.,Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Mengmeng Xu
- 5Medical-Scientist Training Program, Department of Pharmacology, Duke University Medical Center, Durham, NC 27710 USA
| | - Yanping Sun
- 6College of Pharmacy, Xi'an Medical University, Xi'an, 710062 China
| | | | - Jianjie Ma
- 2Ohio State University School of Medicine, Columbus, OH 43210 USA
| | - Xuehong Xu
- 1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an, 710062 China
| |
Collapse
|
9
|
Shuto S. Cyclic ADP-Carbocyclic-Ribose and -4-Thioribose, as Stable Mimics of Cyclic ADP-Ribose, a Ca 2+-Mobilizing Second Messenger. Chem Pharm Bull (Tokyo) 2018; 66:155-161. [PMID: 29386466 DOI: 10.1248/cpb.c17-00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic ADP-ribose (cADPR), a general mediator involved in Ca2+ signaling, has the characteristic 18-membered ring consisting of an adenine, two riboses and a pyrophosphate, in which the two primary hydroxy groups of the riboses are linked by a pyrophosphate unit. This review focuses on chemical synthetic studies of cADPR analogues of biological importance. Although cADPR analogues can be synthesized by enzymatic and chemo-enzymatic methods using ADP-ribosyl cyclase, the analogues obtained by these methods are limited due to the substrate-specificity of the enzymes. Consequently, chemical synthetic methods providing a greater variety of cADPR analogues are required. Although early chemical synthetic studies demonstrated that construction of the large 18-membered ring structure is difficult, the construction was achieved using the phenylthiophosphate-type substrates by treating with AgNO3 or I2. This is now a general method for synthesizing these types of biologically important cyclic nucleotides. Using this method as the key step, the chemically and biologically stable cADPR mimic, cADP-carbocyclic-ribose (cADPcR) and -4-thioribose (cADPtR), were synthesized.
Collapse
Affiliation(s)
- Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
10
|
Thillaiappan NB, Chakraborty P, Hasan G, Taylor CW. IP 3 receptors and Ca 2+ entry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1092-1100. [PMID: 30448464 DOI: 10.1016/j.bbamcr.2018.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/23/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3R) are the most widely expressed intracellular Ca2+ release channels. Their activation by IP3 and Ca2+ allows Ca2+ to pass rapidly from the ER lumen to the cytosol. The resulting increase in cytosolic [Ca2+] may directly regulate cytosolic effectors or fuel Ca2+ uptake by other organelles, while the decrease in ER luminal [Ca2+] stimulates store-operated Ca2+ entry (SOCE). We are close to understanding the structural basis of both IP3R activation, and the interactions between the ER Ca2+-sensor, STIM, and the plasma membrane Ca2+ channel, Orai, that lead to SOCE. IP3Rs are the usual means through which extracellular stimuli, through ER Ca2+ release, stimulate SOCE. Here, we review evidence that the IP3Rs most likely to respond to IP3 are optimally placed to allow regulation of SOCE. We also consider evidence that IP3Rs may regulate SOCE downstream of their ability to deplete ER Ca2+ stores. Finally, we review evidence that IP3Rs in the plasma membrane can also directly mediate Ca2+ entry in some cells.
Collapse
Affiliation(s)
| | - Pragnya Chakraborty
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, United Kingdom; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Colin W Taylor
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|
11
|
Lin WK, Bolton EL, Cortopassi WA, Wang Y, O'Brien F, Maciejewska M, Jacobson MP, Garnham C, Ruas M, Parrington J, Lei M, Sitsapesan R, Galione A, Terrar DA. Synthesis of the Ca 2+-mobilizing messengers NAADP and cADPR by intracellular CD38 enzyme in the mouse heart: Role in β-adrenoceptor signaling. J Biol Chem 2017; 292:13243-13257. [PMID: 28539361 PMCID: PMC5555186 DOI: 10.1074/jbc.m117.789347] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/13/2017] [Indexed: 11/28/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (cADPR) are Ca2+-mobilizing messengers important for modulating cardiac excitation-contraction coupling and pathophysiology. CD38, which belongs to the ADP-ribosyl cyclase family, catalyzes synthesis of both NAADP and cADPR in vitro However, it remains unclear whether this is the main enzyme for their production under physiological conditions. Here we show that membrane fractions from WT but not CD38-/- mouse hearts supported NAADP and cADPR synthesis. Membrane permeabilization of cardiac myocytes with saponin and/or Triton X-100 increased NAADP synthesis, indicating that intracellular CD38 contributes to NAADP production. The permeabilization also permitted immunostaining of CD38, with a striated pattern in WT myocytes, whereas CD38-/- myocytes and nonpermeabilized WT myocytes showed little or no staining, without striation. A component of β-adrenoreceptor signaling in the heart involves NAADP and lysosomes. Accordingly, in the presence of isoproterenol, Ca2+ transients and contraction amplitudes were smaller in CD38-/- myocytes than in the WT. In addition, suppressing lysosomal function with bafilomycin A1 reduced the isoproterenol-induced increase in Ca2+ transients in cardiac myocytes from WT but not CD38-/- mice. Whole hearts isolated from CD38-/- mice and exposed to isoproterenol showed reduced arrhythmias. SAN4825, an ADP-ribosyl cyclase inhibitor that reduces cADPR and NAADP synthesis in mouse membrane fractions, was shown to bind to CD38 in docking simulations and reduced the isoproterenol-induced arrhythmias in WT hearts. These observations support generation of NAADP and cADPR by intracellular CD38, which contributes to effects of β-adrenoreceptor stimulation to increase both Ca2+ transients and the tendency to disturb heart rhythm.
Collapse
Affiliation(s)
- Wee K Lin
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Emma L Bolton
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Wilian A Cortopassi
- the Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, and
| | - Yanwen Wang
- the Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Fiona O'Brien
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Matylda Maciejewska
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Matthew P Jacobson
- the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, and
| | - Clive Garnham
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Margarida Ruas
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - John Parrington
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ming Lei
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Rebecca Sitsapesan
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Antony Galione
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Derek A Terrar
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom,
| |
Collapse
|
12
|
Deshpande DA, Guedes AGP, Lund FE, Subramanian S, Walseth TF, Kannan MS. CD38 in the pathogenesis of allergic airway disease: Potential therapeutic targets. Pharmacol Ther 2016; 172:116-126. [PMID: 27939939 DOI: 10.1016/j.pharmthera.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CD38 is an ectoenzyme that catalyzes the conversion of β-nicotinamide adenine dinucleotide (β-NAD) to cyclic adenosine diphosphoribose (cADPR) and adenosine diphosphoribose (ADPR) and NADP to nicotinic acid adenine dinucleotide phosphate (NAADP) and adenosine diphosphoribose-2'-phosphate (ADPR-P). The metabolites of NAD and NADP have roles in calcium signaling in different cell types including airway smooth muscle (ASM) cells. In ASM cells, inflammatory cytokines augment CD38 expression and to a greater magnitude in cells from asthmatics, indicating a greater capacity for the generation of cADPR and ADPR in ASM from asthmatics. CD38 deficient mice develop attenuated airway responsiveness to inhaled methacholine following allergen sensitization and challenge compared to wild-type mice indicating its potential role in asthma. Regulation of CD38 expression in ASM cells is achieved by mitogen activated protein kinases, specific isoforms of PI3 kinases, the transcription factors NF-κB and AP-1, and post-transcriptionally by microRNAs. This review will focus on the role of CD38 in intracellular calcium regulation in ASM, contribution to airway inflammation and airway hyperresponsiveness in mouse models of allergic airway inflammation, the transcriptional and post-transcriptional mechanisms of regulation of expression, and outline approaches to inhibit its expression and activity.
Collapse
Affiliation(s)
| | - Alonso G P Guedes
- Department of Veterinary Clinical Sciences, University of Minnesota at Twin Cities, USA
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, USA
| | | | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota at Twin Cities, USA
| | - Mathur S Kannan
- Department of Veterinary and Biomedical Sciences, University of Minnesota at Twin Cities, USA.
| |
Collapse
|
13
|
Morgan AJ, Bampali K, Ruas M, Factor C, Back TG, Chen SRW, Galione A. Carvedilol inhibits cADPR- and IP 3-induced Ca 2+ release. ACTA ACUST UNITED AC 2016; 5:92-99. [PMID: 28758053 DOI: 10.1166/msr.2016.1050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spontaneous Ca2+ waves, also termed store-overload-induced Ca2+ release (SOICR), in cardiac cells can trigger ventricular arrhythmias especially in failing hearts. SOICR occurs when RyRs are activated by an increase in sarcoplasmic reticulum (SR) luminal Ca2+. Carvedilol is one of the most effective drugs for preventing arrhythmias in patients with heart failure. Furthermore, carvedilol analogues with minimal β-blocking activity also block SOICR showing that SOICR-inhibiting activity is distinct from that for β-block. We show here that carvedilol is a potent inhibitor of cADPR-induced Ca2+ release in sea urchin egg homogenate. In addition, the carvedilol analog VK-II-86 with minimal β-blocking activity also suppresses cADPR-induced Ca2+ release. Carvedilol appeared to be a non-competitive antagonist of cADPR and could also suppress Ca2+ release by caffeine. These results are consistent with cADPR releasing Ca2+ in sea urchin eggs by sensitizing RyRs to Ca2+ involving a luminal Ca2+ activation mechanism. In addition to action on the RyR, we also observed inhibition of inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release by carvedilol suggesting a common mechanism between these evolutionarily related and conserved Ca2+ release channels.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Konstantina Bampali
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Margarida Ruas
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Cailley Factor
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Thomas G Back
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - S R Wayne Chen
- The Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
14
|
Shiels HA, Sitsapesan R. Is there something fishy about the regulation of the ryanodine receptor in the fish heart? Exp Physiol 2015. [DOI: 10.1113/ep085136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Holly A. Shiels
- Faculty of Life Sciences; University of Manchester; Manchester M13 9NT UK
| | | |
Collapse
|
15
|
Roberge S, Roussel J, Andersson DC, Meli AC, Vidal B, Blandel F, Lanner JT, Le Guennec JY, Katz A, Westerblad H, Lacampagne A, Fauconnier J. TNF-α-mediated caspase-8 activation induces ROS production and TRPM2 activation in adult ventricular myocytes. Cardiovasc Res 2014; 103:90-9. [PMID: 24802330 DOI: 10.1093/cvr/cvu112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS TRPM2 is a Ca(2+)-permeable cationic channel of the transient receptor potential (TRP) superfamily that is linked to apoptotic signalling. Its involvement in cardiac pathophysiology is unknown. The aim of this study was to determine whether the pro-apoptotic cytokine tumour necrosis factor-α (TNF-α) induces a TRPM2-like current in murine ventricular cardiomyocytes. METHODS AND RESULTS Adult isolated cardiomyocytes from C57BL/6 mice were exposed to TNF-α (10 ng/mL). Western blotting showed TRPM2 expression, which was not changed after TNF-α incubation. Using patch clamp in whole-cell configuration, a non-specific cation current was recorded after exposure to TNF-α (ITNF), which reached maximal steady-state amplitude after 3 h incubation. ITNF was inhibited by the caspase-8 inhibitor z-IETD-fmk, the antioxidant N-acetylcysteine, and the TRPM2 inhibitors clotrimazole, N-(P-amylcinnamoyl) anthranilic acid and flufenamic acid (FFA). TRPM2 has previously been shown to be activated by ADP-ribose, which is produced by poly(ADP-ribose) polymerase 1 (PARP-1). TNF-α exposure resulted in increased poly-ADP-ribosylation of proteins and the PARP-1 inhibitor 3-aminobenzamide inhibited ITNF. TNF-α exposure increased the mitochondrial production of reactive oxygen species (ROS; measured with the fluorescent indicator MitoSOX Red), and this increase was blocked by the caspase-8 inhibitor z-IETD-fmk. Clotrimazole and TRPM2 inhibitory antibody decreased TNF-α-induced cardiomyocyte death. CONCLUSION These results demonstrate that TNF-α induces a TRPM2 current in adult ventricular cardiomyocytes. TNF-α induces caspase-8 activation leading to ROS production, PARP-1 activation, and ADP-ribose production. TNF-induced TRPM2 activation may contribute to cardiomyocyte cell death.
Collapse
Affiliation(s)
- Stéphanie Roberge
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Julien Roussel
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Daniel C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Medicine, Karolinska Institutet, Stockholm, Sweden Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Albano C Meli
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Bastien Vidal
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Florence Blandel
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jean-Yves Le Guennec
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Abram Katz
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alain Lacampagne
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Jérémy Fauconnier
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| |
Collapse
|
16
|
Bezprozvanny I. Bilayer measurement of endoplasmic reticulum Ca2+ channels. Cold Spring Harb Protoc 2013; 2013:2013/11/pdb.top066225. [PMID: 24184754 DOI: 10.1101/pdb.top066225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Reconstitution of ion channels into planar lipid bilayers (also called black lipid membranes or BLM) is the most widely used method to conduct physiological studies of intracellular ion channels, including endoplasmic reticulum (ER) calcium (Ca(2+)) channels. The two main types of Ca(2+) release channels in the ER membrane are ryanodine receptors (RyanRs) and inositol(1,4,5)-trisphosphate receptors (InsP3Rs). Use of the BLM reconstitution technique enabled the initial description of the functional properties of InsP3R and RyanR at the single-channel level more than 20 years ago. Since then, BLM reconstitution methods have been used to study physiological modulation and to perform structure-function analysis of these channels, and to study pathological changes in the function of InsP3R and RyanR in various disease states. The BLM technique has also been useful for studies of other intracellular Ca(2+) channels, such as ER Ca(2+) leak presenilin channels and NAADP-gated lysosomal Ca(2+) channels encoded by TPC2. In this article, basic protocols used for BLM studies of ER Ca(2+) channels are introduced.
Collapse
Affiliation(s)
- Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
17
|
Schönknecht G. Calcium Signals from the Vacuole. PLANTS (BASEL, SWITZERLAND) 2013; 2:589-614. [PMID: 27137394 PMCID: PMC4844392 DOI: 10.3390/plants2040589] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 01/13/2023]
Abstract
The vacuole is by far the largest intracellular Ca(2+) store in most plant cells. Here, the current knowledge about the molecular mechanisms of vacuolar Ca(2+) release and Ca(2+) uptake is summarized, and how different vacuolar Ca(2+) channels and Ca(2+) pumps may contribute to Ca(2+) signaling in plant cells is discussed. To provide a phylogenetic perspective, the distribution of potential vacuolar Ca(2+) transporters is compared for different clades of photosynthetic eukaryotes. There are several candidates for vacuolar Ca(2+) channels that could elicit cytosolic [Ca(2+)] transients. Typical second messengers, such as InsP₃ and cADPR, seem to trigger vacuolar Ca(2+) release, but the molecular mechanism of this Ca(2+) release still awaits elucidation. Some vacuolar Ca(2+) channels have been identified on a molecular level, the voltage-dependent SV/TPC1 channel, and recently two cyclic-nucleotide-gated cation channels. However, their function in Ca(2+) signaling still has to be demonstrated. Ca(2+) pumps in addition to establishing long-term Ca(2+) homeostasis can shape cytosolic [Ca(2+)] transients by limiting their amplitude and duration, and may thus affect Ca(2+) signaling.
Collapse
Affiliation(s)
- Gerald Schönknecht
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
18
|
FK506 binding proteins: Cellular regulators of intracellular Ca2+ signalling. Eur J Pharmacol 2013; 700:181-93. [DOI: 10.1016/j.ejphar.2012.12.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/04/2012] [Accepted: 12/18/2012] [Indexed: 02/04/2023]
|
19
|
Kannt A, Sicka K, Kroll K, Kadereit D, Gögelein H. Selective inhibitors of cardiac ADPR cyclase as novel anti-arrhythmic compounds. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:717-27. [PMID: 22526470 PMCID: PMC3367138 DOI: 10.1007/s00210-012-0750-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 03/26/2012] [Indexed: 12/17/2022]
Abstract
ADP-ribosyl cyclases (ADPRCs) catalyse the conversion of nicotinamide adenine dinucleotide to cyclic adenosine diphosphoribose (cADPR) which is a second messenger involved in Ca(2+) mobilisation from intracellular stores. Via its interaction with the ryanodine receptor Ca(2+) channel in the heart, cADPR may exert arrhythmogenic activity. To test this hypothesis, we have studied the effect of novel cardiac ADPRC inhibitors in vitro and in vivo in models of ventricular arrhythmias. Using a high-throughput screening approach on cardiac sarcoplasmic reticulum membranes isolated from pig and rat and nicotinamide hypoxanthine dinuleotide as a surrogate substrate, we have identified potent and selective inhibitors of an intracellular, membrane-bound cardiac ADPRC that are different from the two known mammalian ADPRCs, CD38 and CD157/Bst1. We show that two structurally distinct cardiac ADPRC inhibitors, SAN2589 and SAN4825, prevent the formation of spontaneous action potentials in guinea pig papillary muscle in vitro and that compound SAN4825 is active in vivo in delaying ventricular fibrillation and cardiac arrest in a guinea pig model of Ca(2+) overload-induced arrhythmia. Inhibition of cardiac ADPRC prevents Ca(2+) overload-induced spontaneous depolarizations and ventricular fibrillation and may thus provide a novel therapeutic principle for the treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Aimo Kannt
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, G877, 65926 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|