1
|
Sharma M, Aggarwal N, Mishra J, Panda JJ. Neuroglia targeting nano-therapeutic approaches to rescue aging and neurodegenerating brain. Int J Pharm 2024; 654:123950. [PMID: 38430951 DOI: 10.1016/j.ijpharm.2024.123950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/12/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Despite intense efforts at the bench, the development of successful brain-targeting therapeutics to relieve malicious neural diseases remains primitive. The brain, being a beautifully intricate organ, consists of heterogeneous arrays of neuronal and glial cells. Primarily acting as the support system for neuronal functioning and maturation, glial cells have been observed to be engaged more apparently in the progression and worsening of various neural pathologies. The diseased state is often related to metabolic alterations in glial cells, thereby modulating their physiological homeostasis in conjunction with neuronal dysfunction. A plethora of data indicates the effect of oxidative stress, protein aggregation, and DNA damage in neuroglia impairments. Still, a deeper insight is needed to gain a conflict-free understanding in this arena. As a consequence, glial cells hold the potential to be identified as promising targets for novel therapeutic approaches aimed at brain protection. In this review, we describe the recent strides taken in the direction of understanding the impact of oxidative stress, protein aggregation, and DNA damage on neuroglia impairment and neuroglia-directed nanotherapeutic approaches to mitigate the burden of various neural disorders.
Collapse
Affiliation(s)
- Manju Sharma
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Nidhi Aggarwal
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Jibanananda Mishra
- School of Biosciences, RIMT University, Mandi Gobindgarh, Punjab 147301, India.
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India.
| |
Collapse
|
2
|
Chao MW, Kuo HC, Tong SY, Yang YS, Chuang YC, Tseng CY. In Vitro and In Vivo Analysis of the Effects of 3,5-DMA and Its Metabolites in Neural Oxidative Stress and Neurodevelopmental Toxicity. Toxicol Sci 2020; 168:405-419. [PMID: 30590852 DOI: 10.1093/toxsci/kfy306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
3,5-Dimethylaniline (3,5-DMA), a monocyclic aromatic amine, is widely present in a spectrum of sources including tobacco, dyes, combustion products, and suspended particulates. 3,5-DMA and its metabolites form superoxides, resulting in apoptosis or oncogenesis. Data of a direct effect of 3,5-DMA on the nervous system, especially the developing brain, are lacking. Therefore, we investigated the effects of 3,5-DMA and its metabolites on fetal neurite growth and brain development using in vitro cell cultures of primary cortical neurons to observe whether these compounds caused neuronal cytotoxicity and affected neurite structural development. With increasing concentrations of 3,5-DMA (10, 50, 100, 500, 1000 μM) and its major metabolite 5-dimethylaminophenol (3,5-DMAP) (10, 50, 100, 500, 1000 μM), reactive oxygen species (ROS), cytotoxicity, and DNA damage increased significantly in the cells and dendritic arborization decreased. The addition of 5 mM N-acetylcysteine, an ROS scavenger, reduced ROS in the cells and alleviated the neuronal damage. In vivo studies in Sprague Dawley pregnant rats suggested that exposure to 3,5-DMA (10, 30, 60, 100 mg/kg/day) subcutaneously from GD15 to GD17 led to fetal cerebral cortex thinning. BrdU labeling showed that 3,5-DMA reduced the number and generation of cortical cells. To detect the laminar position of newly generated neurons, cortex layer markers such as Satb2, Ctip2, and Tbr1 were used. 3,5-DMA perturbed the cortical layer distribution in developing fetal rats. In summary, this is the first study to provide evidence for 3,5-DMA and its metabolites causing anomalies of the fetal central nervous system development through ROS production.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Department of Bioscience Technology, Chung Yuan Christian University, Zhongli District, Taoyuan 32023, Taiwan.,Center for Nanotechnology, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Hui-Chuan Kuo
- Department of Pharmacy, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
| | - Sih-Yu Tong
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Yu-Shiu Yang
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Yu-Chen Chuang
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Chia-Yi Tseng
- Department of Bioscience Technology, Chung Yuan Christian University, Zhongli District, Taoyuan 32023, Taiwan.,Center for Nanotechnology, Chung Yuan Christian University, Taoyuan 32023, Taiwan.,Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
3
|
Chudley AE. Diagnosis of fetal alcohol spectrum disorder: current practices and future considerations. Biochem Cell Biol 2017; 96:231-236. [PMID: 28746809 DOI: 10.1139/bcb-2017-0106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This paper discusses the current state of knowledge and practice for diagnosing fetal alcohol spectrum disorder (FASD). The strengths and challenges of different models of diagnosis are compared. Some models require a team approach for evaluation, while other approaches assume that a clinician in his or her office provides a diagnosis based on a review of the patient's medical and social history, behaviour, and physical examination. The author reviews the emergence of new information from recent advances in genetics, imaging, and electrophysiology that has the potential to lead to changes in practice and improved reliability of an FASD diagnosis.
Collapse
Affiliation(s)
- Albert E Chudley
- Department of Pediatrics and Child Health and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Heath Sciences, University of Manitoba, and the Children's Hospital, Winnipeg, MB R3A 1R9, Canada.,Department of Pediatrics and Child Health and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Heath Sciences, University of Manitoba, and the Children's Hospital, Winnipeg, MB R3A 1R9, Canada
| |
Collapse
|
4
|
Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res 2016; 176:52-71. [PMID: 26589391 DOI: 10.1016/j.schres.2015.06.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
Oxidative stress is a well-recognized participant in the pathophysiology of multiple brain disorders, particularly neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. While not a dementia, a wide body of evidence has also been accumulating for aberrant reactive oxygen species and inflammation in schizophrenia. Here we highlight roles for oxidative stress as a common mechanism by which varied genetic and epidemiologic risk factors impact upon neurodevelopmental processes that underlie the schizophrenia syndrome. While there is longstanding evidence that schizophrenia may not have a single causative lesion, a common pathway involving oxidative stress opens the possibility for intervention at susceptible phases.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Anthony V Serritella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA.
| |
Collapse
|
5
|
Neurotrophic and neuroprotective actions of Achyranthes bidentata polypeptides on cultured dorsal root ganglia of rats and on crushed common peroneal nerve of rabbits. Neurosci Lett 2014; 562:7-12. [DOI: 10.1016/j.neulet.2013.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 01/05/2023]
|
6
|
Arain M, Haque M, Johal L, Mathur P, Nel W, Rais A, Sandhu R, Sharma S. Maturation of the adolescent brain. Neuropsychiatr Dis Treat 2013; 9:449-61. [PMID: 23579318 PMCID: PMC3621648 DOI: 10.2147/ndt.s39776] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Adolescence is the developmental epoch during which children become adults - intellectually, physically, hormonally, and socially. Adolescence is a tumultuous time, full of changes and transformations. The pubertal transition to adulthood involves both gonadal and behavioral maturation. Magnetic resonance imaging studies have discovered that myelinogenesis, required for proper insulation and efficient neurocybernetics, continues from childhood and the brain's region-specific neurocircuitry remains structurally and functionally vulnerable to impulsive sex, food, and sleep habits. The maturation of the adolescent brain is also influenced by heredity, environment, and sex hormones (estrogen, progesterone, and testosterone), which play a crucial role in myelination. Furthermore, glutamatergic neurotransmission predominates, whereas gamma-aminobutyric acid neurotransmission remains under construction, and this might be responsible for immature and impulsive behavior and neurobehavioral excitement during adolescent life. The adolescent population is highly vulnerable to driving under the influence of alcohol and social maladjustments due to an immature limbic system and prefrontal cortex. Synaptic plasticity and the release of neurotransmitters may also be influenced by environmental neurotoxins and drugs of abuse including cigarettes, caffeine, and alcohol during adolescence. Adolescents may become involved with offensive crimes, irresponsible behavior, unprotected sex, juvenile courts, or even prison. According to a report by the Centers for Disease Control and Prevention, the major cause of death among the teenage population is due to injury and violence related to sex and substance abuse. Prenatal neglect, cigarette smoking, and alcohol consumption may also significantly impact maturation of the adolescent brain. Pharmacological interventions to regulate adolescent behavior have been attempted with limited success. Since several factors, including age, sex, disease, nutritional status, and substance abuse have a significant impact on the maturation of the adolescent brain, we have highlighted the influence of these clinically significant and socially important aspects in this report.
Collapse
Affiliation(s)
- Mariam Arain
- Saint James School of Medicine, Kralendijk, Bonaire, The Netherlands
| | - Maliha Haque
- Saint James School of Medicine, Kralendijk, Bonaire, The Netherlands
| | - Lina Johal
- Saint James School of Medicine, Kralendijk, Bonaire, The Netherlands
| | - Puja Mathur
- Saint James School of Medicine, Kralendijk, Bonaire, The Netherlands
| | - Wynand Nel
- Saint James School of Medicine, Kralendijk, Bonaire, The Netherlands
| | - Afsha Rais
- Saint James School of Medicine, Kralendijk, Bonaire, The Netherlands
| | - Ranbir Sandhu
- Saint James School of Medicine, Kralendijk, Bonaire, The Netherlands
| | - Sushil Sharma
- Saint James School of Medicine, Kralendijk, Bonaire, The Netherlands
| |
Collapse
|
7
|
Liu Z, Wang JF, Meng Y, Fan XH, Deng XM, Li JB, Cai GJ. Effects of three target-controlled concentrations of sufentanil on MAC(BAR) of sevoflurane. CNS Neurosci Ther 2013; 18:361-4. [PMID: 22486849 DOI: 10.1111/j.1755-5949.2012.00300.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
8
|
Lindahl M, Archer T. Depressive Expression and Anti-Depressive Protection in Adolescence: Stress, Positive Affect, Motivation and Self-Efficacy. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/psych.2013.46070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Fetal stress and programming of hypoxic/ischemic-sensitive phenotype in the neonatal brain: mechanisms and possible interventions. Prog Neurobiol 2012; 98:145-65. [PMID: 22627492 DOI: 10.1016/j.pneurobio.2012.05.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 12/12/2022]
Abstract
Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxic-ischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other brain disorders.
Collapse
|
10
|
Archer T, Oscar-Berman M, Blum K. Epigenetics in Developmental Disorder: ADHD and Endophenotypes. JOURNAL OF GENETIC SYNDROMES & GENE THERAPY 2011; 2:1000104. [PMID: 22224195 PMCID: PMC3250517 DOI: 10.4172/2157-7412.1000104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heterogeneity in attention-deficit/hyperactivity disorder (ADHD), with complex interactive operations of genetic and environmental factors, is expressed in a variety of disorder manifestations: severity, co-morbidities of symptoms, and the effects of genes on phenotypes. Neurodevelopmental influences of genomic imprinting have set the stage for the structural-physiological variations that modulate the cognitive, affective, and pathophysiological domains of ADHD. The relative contributions of genetic and environmental factors provide rapidly proliferating insights into the developmental trajectory of the condition, both structurally and functionally. Parent-of-origin effects seem to support the notion that genetic risks for disease process debut often interact with the social environment, i.e., the parental environment in infants and young children. The notion of endophenotypes, markers of an underlying liability to the disorder, may facilitate detection of genetic risks relative to a complex clinical disorder. Simple genetic association has proven insufficient to explain the spectrum of ADHD. At a primary level of analysis, the consideration of epigenetic regulation of brain signalling mechanisms, dopamine, serotonin, and noradrenaline is examined. Neurotrophic factors that participate in the neurogenesis, survival, and functional maintenance of brain systems, are involved in neuroplasticity alterations underlying brain disorders, and are implicated in the genetic predisposition to ADHD, but not obviously, nor in a simple or straightforward fashion. In the context of intervention, genetic linkage studies of ADHD pharmacological intervention have demonstrated that associations have fitted the "drug response phenotype," rather than the disorder diagnosis. Despite conflicting evidence for the existence, or not, of genetic associations between disorder diagnosis and genes regulating the structure and function of neurotransmitters and brain-derived neurotrophic factor (BDNF), associations between symptoms-profiles endophenotypes and single nucleotide polymorphisms appear reassuring.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Box 500, SE-40530 Gothenburg, Sweden
| | - Marlene Oscar-Berman
- Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Kenneth Blum
- Department of Psychiatry, University of Florida College of Medicine, and McKnight Brain Institute, Gainesville, FL, USA
| |
Collapse
|