1
|
Role of Uncoupling Protein 2 Gene Polymorphisms on the Risk of Ischemic Stroke in a Sardinian Population. Life (Basel) 2022; 12:life12050721. [PMID: 35629388 PMCID: PMC9147365 DOI: 10.3390/life12050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
The mitochondrial uncoupling protein 2 (UCP2) acts as an anion transporter and as an antioxidant factor able to reduce the reactive oxygen species level. Based on its effects, UCP2 prevents the membrane lipids, proteins, and DNA damage while preserving normal cellular functions. Many variants have been identified within the human UCP2. Some of them were associated with a higher risk of obesity, diabetes and cardiovascular diseases in different populations. UCP2 appears a suitable candidate also for the risk of ischemic stroke. In the current study, we investigated the possible association between few variants of UCP2 (rs659366, rs660339, rs1554995310) and the risk of ischemic stroke in a genetically homogenous cohort of cases and controls selected in Sardinia Island. This population has been previously analysed for other candidate genes. A total of 250 cases of ischemic stroke and 241 controls were enrolled in the study. The allelic/genotypic distribution of the 3 UCP2 variants was characterized and compared among cases and controls. The results of our study confirmed known risk factors for ischemic stroke: age, history of smoking, hypertension, hypercholesterolemia, and atrial fibrillation. No association was found between the 3 UCP2 variants and the risk of ischemic stroke in our Sardinian cohort.
Collapse
|
2
|
Stanzione R, Forte M, Cotugno M, Bianchi F, Marchitti S, Busceti CL, Fornai F, Rubattu S. Uncoupling Protein 2 as a Pathogenic Determinant and Therapeutic Target in Cardiovascular and Metabolic Diseases. Curr Neuropharmacol 2022; 20:662-674. [PMID: 33882809 PMCID: PMC9878956 DOI: 10.2174/1570159x19666210421094204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022] Open
Abstract
Uncoupling protein 2 (UCP2) is a mitochondrial protein that acts as an anion carrier. It is involved in the regulation of several processes, including mitochondrial membrane potential, generation of reactive oxygen species within the inner mitochondrial membrane and calcium homeostasis. UCP2 expression can be regulated at different levels: genetic (gene variants), transcriptional [by peroxisome proliferator-activated receptors (PPARs) and microRNAs], and post-translational. Experimental evidence indicates that activation of UCP2 expression through the AMPK/PPAR-α axis exerts a protective effect toward renal damage and stroke occurrence in an animal model of ischemic stroke (IS) associated with hypertension. UCP2 plays a key role in heart diseases (myocardial infarction and cardiac hypertrophy) and metabolic disorders (obesity and diabetes). In humans, UCP2 genetic variants (-866G/A and Ala55Val) associate with an increased risk of type 2 diabetes mellitus and IS development. Over the last few years, many agents that modulate UCP2 expression have been identified. Some of them are natural compounds of plant origin, such as Brassica oleracea, curcumin, berberine and resveratrol. Other molecules, currently used in clinical practice, include anti-diabetic (gliptin) and chemotherapeutic (doxorubicin and taxol) drugs. This evidence highlights the relevant role of UCP2 for the treatment of a wide range of diseases, which affect the national health systems of Western countries. We will review current knowledge on the physiological and pathological implications of UCP2 with particular regard to cardiovascular and metabolic disorders and will focus on the available therapeutic approaches affecting UCP2 level for the treatment of human diseases.
Collapse
Affiliation(s)
- Rosita Stanzione
- IRCCS Neuromed, Pozzilli Isernia, Italy,,Address correspondence to these authors at the IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Is, Italy; Tel: +390865915224/23; Fax: +390865927575; E-mail: and Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S.Andrea, 00189 Rome, Italy; Tel: +390865915224/23; Fax: +390865927575; E-mail:
| | | | | | | | | | | | - Francesco Fornai
- IRCCS Neuromed, Pozzilli Isernia, Italy,,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli Isernia, Italy,,Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy,Address correspondence to these authors at the IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Is, Italy; Tel: +390865915224/23; Fax: +390865927575; E-mail: and Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S.Andrea, 00189 Rome, Italy; Tel: +390865915224/23; Fax: +390865927575; E-mail:
| |
Collapse
|
3
|
Association and interaction effect of UCP2 gene polymorphisms and dietary factors with congenital heart diseases in Chinese Han population. Sci Rep 2021; 11:8699. [PMID: 33888769 PMCID: PMC8062668 DOI: 10.1038/s41598-021-88057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/06/2021] [Indexed: 12/02/2022] Open
Abstract
Congenital heart diseases (CHDs) are the most common birth defects and the leading cause of non-infectious deaths in infants, with an unknown etiology. We aimed to assess the association of genetic variations in UCP2 gene, dietary factors, and their interactions with the risk of CHDs in offspring. The hospital-based case–control study included 464 mothers of children with CHDs and 504 mothers of healthy children. The exposures of interest were maternal dietary factors in early pregnancy and UCP2 genetic variants. Logistic regression analyses were used to assess the association and interaction of UCP2 gene and dietary factors with CHDs. Our results found that the polymorphisms of UCP2 gene at rs659366 and rs660339, together with maternal dietary factors including excessive intake of pickled vegetables and smoked foods were associated with increased risks of CHDs in offspring. Regular intake of fresh meat, fish and shrimp, and milk products were associated with lower risks of CHDs in offspring. Besides, positive interaction between the dominant model of rs659366 and excessive intake of pickled vegetables was found in the additive interaction model (RERI = 1.19, P = 0.044). These findings provide the theoretical basis for gene screening and a new clue for the prevention of CHDs in offspring.
Collapse
|
4
|
Dieter C, Assmann TS, Lemos NE, Massignam ET, de Souza BM, Bauer AC, Crispim D. -866G/A and Ins/Del polymorphisms in the UCP2 gene and diabetic kidney disease: case-control study and meta-analysis. Genet Mol Biol 2020; 43:e20180374. [PMID: 31479096 PMCID: PMC7198021 DOI: 10.1590/1678-4685-gmb-2018-0374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/11/2019] [Indexed: 01/11/2023] Open
Abstract
Uncoupling protein 2 (UCP2) decreases reactive oxygen species (ROS). ROS overproduction is a key contributor to the pathogenesis of diabetic kidney disease (DKD). Thus, UCP2 polymorphisms are candidate risk factors for DKD; however, their associations with this complication are still inconclusive. Here, we describe a case-control study and a meta-analysis conducted to investigate the association between UCP2 -866G/A and Ins/Del polymorphisms and DKD. The case-control study comprised 385 patients with type 1 diabetes mellitus (T1DM): 223 patients without DKD and 162 with DKD. UCP2 -866G/A (rs659366) and Ins/Del polymorphisms were genotyped by real-time PCR and conventional PCR, respectively. For the meta-analysis, a literature search was conducted to identify all studies that investigated associations between UCP2 polymorphisms and DKD in patients with T1DM or type 2 diabetes mellitus. Pooled odds ratios were calculated for different inheritance models. Allele and genotype frequencies of -866G/A and Ins/Del polymorphisms did not differ between T1DM case and control groups. Haplotype frequencies were also similar between groups. Four studies plus the present one were eligible for inclusion in the meta-analysis. In agreement with case-control data, the meta-analysis results showed that the -866G/A and Ins/Del polymorphisms were not associated with DKD. In conclusion, our case-control and meta-analysis studies did not indicate an association between the analyzed UCP2 polymorphisms and DKD.
Collapse
Affiliation(s)
- Cristine Dieter
- Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de
Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto
Alegre, RS, Brazil
| | - Taís Silveira Assmann
- Universidad de Navarra, Department of Nutrition, Food Science
and Physiology, Pamplona, Spain
| | - Natália Emerim Lemos
- Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de
Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto
Alegre, RS, Brazil
| | | | - Bianca Marmontel de Souza
- Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de
Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto
Alegre, RS, Brazil
| | - Andrea Carla Bauer
- Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de
Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto
Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Nephrology Division, Porto
Alegre, RS, Brazil
| | - Daisy Crispim
- Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de
Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto
Alegre, RS, Brazil
| |
Collapse
|
5
|
Li G, Liu Y, Li X, Ning Z, Sun Z, Zhang M, Lu Y, Wu L, Wang L. Association of PAI-1 4G/5G Polymorphism with Ischemic Stroke in Chinese Patients with Type 2 Diabetes Mellitus. Genet Test Mol Biomarkers 2018; 22:554-560. [PMID: 30160528 DOI: 10.1089/gtmb.2018.0130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIM To investigate the association of the genetic polymorphisms of the plasminogen activator inhibitor type 1 (PAI-1) gene with the risk of ischemic stroke (IS) in subjects with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS Using a case-control study design, 175 individuals with T2D and IS were enrolled in the case group and 125 patients with T2D without IS were enrolled as controls. The clinical characteristics of the groups were compared, and genotypes were determined by direct DNA sequencing. RESULTS Male and hypertensive subjects were higher in the IS group (p = 0.002 and 0.014, respectively). High-density lipoprotein (HDL) and apolipoprotein A1 (APOA1) were lower in the IS group (p = 0.011 and 0.025, respectively); hemoglobin A1c (HbA1c), total homocysteine (tHcy), and FT4 levels were higher in the IS group (p = 0.022, 0.003, and 0.008, respectively). The 4G/4G, 4G/5G, and 5G/5G genotype frequencies were 40.0%, 46.4%, and 13.6% in the control group versus 31.4%, 52.0% and 16.6% in the IS group, respectively. Hypertension (odds ratio [OR] = 1.953, p = 0.020), tHcy (OR = 1.059, p = 0.029), thyroid-stimulating hormone (OR = 0.876, p = 0.039), and the PAI-1 genotype dominant allele model (OR = 1.748, p = 0.047) were associated with IS by multivariate analysis. CONCLUSION The PAI-1 genotype dominant allele model was a risk factor for IS in patients with T2DM of Jinan, China.
Collapse
Affiliation(s)
- Guohong Li
- 1 Department of Neurology, Jinan Central Hospital Affiliated to Shandong University , Jinan, China
| | - Yiming Liu
- 2 Department of Neurology, Qilu Hospital, Shandong University , Jinan, China
| | - Xiaohong Li
- 1 Department of Neurology, Jinan Central Hospital Affiliated to Shandong University , Jinan, China
| | - Zhijie Ning
- 3 Jinan Infectious Diseases Hospital , Jinan, China
| | - Zihao Sun
- 4 Department of Medical Administration, The Mental Hospital of Jinan City , Jinan, China
| | - Maoxiu Zhang
- 5 Department of Central Laboratory and Jinan Central Hospital Affiliated to Shandong University , Jinan, China
| | - Yong Lu
- 6 Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University , Jinan, China
| | - Lin Wu
- 7 Department of Neurology, The People's Hospital of Rizhao City , Rizhao, China
| | - Lingling Wang
- 8 Department of Neurology, Yantaishan Hospital , Yantai, China
| |
Collapse
|
6
|
Liu J, Li J, Li WJ, Wang CM. The role of uncoupling proteins in diabetes mellitus. J Diabetes Res 2013; 2013:585897. [PMID: 23841103 PMCID: PMC3687498 DOI: 10.1155/2013/585897] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/21/2013] [Indexed: 01/04/2023] Open
Abstract
Uncoupling proteins (UCPs) are anion carriers expressed in the mitochondrial inner membrane that uncouple oxygen consumption by the respiratory chain from ATP synthesis. The physiological functions of UCPs have long been debated since the new UCPs (UCP2 to 5) were discovered, and the role of UCPs in the pathogeneses of diabetes mellitus is one of the hottest topics. UCPs are thought to be activated by superoxide and then decrease mitochondrial free radicals generation; this may provide a protective effect on diabetes mellitus that is under the oxidative stress conditions. UCP1 is considered to be a candidate gene for diabetes because of its role in thermogenesis and energy expenditure. UCP2 is expressed in several tissues and acts in the negative regulation of insulin secretion by β-cells and in fatty acid metabolism. UCP3 plays a role in fatty acid metabolism and energy homeostasis and modulates insulin sensitivity. Several gene polymorphisms of UCP1, UCP2, and UCP3 were reported to be associated with diabetes. The progress in the role of UCP1, UCP2, and UCP3 on diabetes mellitus is summarized in this review.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ji Li
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Wen-Jian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chun-Ming Wang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- *Chun-Ming Wang:
| |
Collapse
|