1
|
Farrokh D, Davids K, Araújo D, Strafford BW, Rumbold JL, Stone JA. Towards an ecological dynamics theory of flow in sport. Acta Psychol (Amst) 2025; 253:104765. [PMID: 39889665 DOI: 10.1016/j.actpsy.2025.104765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/15/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
Flow is an optimal state of absorption that may be experienced in appropriately challenging and intrinsically motivating activities such as sports. Flow may be an important concept for understanding the emergence and role of sport in society, yet theoretical explanations of flow have had limited success explaining, predicting, and facilitating flow in sport. Here, we use the ecological dynamics framework, seeking to resolve foundational issues in an explanation of flow, building towards a theory of flow in sport. To address this challenge, we highlight the utility of ecological conceptualisations of experience, intention, skill, attention, information, and temporality, in explanations of flow experiences in sport, before discussing some novel empirical predictions motivated by the theory. We suggest that a multiscale ecological dynamics approach is well equipped to explore flow in performer-environment systems that display interaction-dominant dynamics and conclude by outlining avenues for future research created by an ecological dynamics theory of flow in sport.
Collapse
Affiliation(s)
| | | | - Duarte Araújo
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal
| | | | | | | |
Collapse
|
2
|
Mangalam M, Kelty-Stephen DG. Multifractal perturbations to multiplicative cascades promote multifractal nonlinearity with asymmetric spectra. Phys Rev E 2024; 109:064212. [PMID: 39020880 DOI: 10.1103/physreve.109.064212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/24/2024] [Indexed: 07/20/2024]
Abstract
Biological and psychological processes have been conceptualized as emerging from intricate multiplicative interactions among component processes across various spatial and temporal scales. Among the statistical models employed to approximate these intricate nonlinear interactions across scales, one prominent framework is that of cascades. Despite decades of empirical work using multifractal formalisms, several fundamental questions persist concerning the proper interpretations of multifractal evidence of nonlinear cross-scale interactivity. Does multifractal spectrum width depend on multiplicative interactions, constituent noise processes participating in those interactions, or both? We conducted numerical simulations of cascade time series featuring component noise processes characterizing a range of nonlinear temporal correlations: nonlinearly multifractal, linearly multifractal (obtained via the iterative amplitude adjusted wavelet transform of nonlinearly multifractal), phase-randomized linearity (obtained via the iterative amplitude adjustment Fourier transform of nonlinearly multifractal), and phase and amplitude randomized (obtained via shuffling of nonlinearly multifractal). Our findings show that the multiplicative interactions coordinate with the nonlinear temporal correlations of noise components to dictate emergent multifractal properties. Multiplicative cascades with stronger nonlinear temporal correlations make multifractal spectra more asymmetric with wider left sides. However, when considering multifractal spectral differences between the original and surrogate time series, even multiplicative cascades produce multifractality greater than in surrogate time series, even with linearized multifractal noise components. In contrast, additivity among component processes leads to a linear outcome. These findings provide a robust framework for generating multifractal expectations for biological and psychological models in which cascade dynamics flow from one part of an organism to another.
Collapse
|
3
|
Seckler H, Metzler R, Kelty-Stephen DG, Mangalam M. Multifractal spectral features enhance classification of anomalous diffusion. Phys Rev E 2024; 109:044133. [PMID: 38755826 DOI: 10.1103/physreve.109.044133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
Anomalous diffusion processes, characterized by their nonstandard scaling of the mean-squared displacement, pose a unique challenge in classification and characterization. In a previous study [Mangalam et al., Phys. Rev. Res. 5, 023144 (2023)2643-156410.1103/PhysRevResearch.5.023144], we established a comprehensive framework for understanding anomalous diffusion using multifractal formalism. The present study delves into the potential of multifractal spectral features for effectively distinguishing anomalous diffusion trajectories from five widely used models: fractional Brownian motion, scaled Brownian motion, continuous-time random walk, annealed transient time motion, and Lévy walk. We generate extensive datasets comprising 10^{6} trajectories from these five anomalous diffusion models and extract multiple multifractal spectra from each trajectory to accomplish this. Our investigation entails a thorough analysis of neural network performance, encompassing features derived from varying numbers of spectra. We also explore the integration of multifractal spectra into traditional feature datasets, enabling us to assess their impact comprehensively. To ensure a statistically meaningful comparison, we categorize features into concept groups and train neural networks using features from each designated group. Notably, several feature groups demonstrate similar levels of accuracy, with the highest performance observed in groups utilizing moving-window characteristics and p varation features. Multifractal spectral features, particularly those derived from three spectra involving different timescales and cutoffs, closely follow, highlighting their robust discriminatory potential. Remarkably, a neural network exclusively trained on features from a single multifractal spectrum exhibits commendable performance, surpassing other feature groups. In summary, our findings underscore the diverse and potent efficacy of multifractal spectral features in enhancing the predictive capacity of machine learning to classify anomalous diffusion processes.
Collapse
Affiliation(s)
- Henrik Seckler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, New York 12561, USA
| | - Madhur Mangalam
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| |
Collapse
|
4
|
Faini A, Arsac LM, Deschodt-Arsac V, Castiglioni P. Multifractal Multiscale Analysis of Human Movements during Cognitive Tasks. ENTROPY (BASEL, SWITZERLAND) 2024; 26:148. [PMID: 38392403 PMCID: PMC10888086 DOI: 10.3390/e26020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Continuous adaptations of the movement system to changing environments or task demands rely on superposed fractal processes exhibiting power laws, that is, multifractality. The estimators of the multifractal spectrum potentially reflect the adaptive use of perception, cognition, and action. To observe time-specific behavior in multifractal dynamics, a multiscale multifractal analysis based on DFA (MFMS-DFA) has been recently proposed and applied to cardiovascular dynamics. Here we aimed at evaluating whether MFMS-DFA allows identifying multiscale structures in the dynamics of human movements. Thirty-six (12 females) participants pedaled freely, after a metronomic initiation of the cadence at 60 rpm, against a light workload for 10 min: in reference to cycling (C), cycling while playing "Tetris" on a computer, alone (CT) or collaboratively (CTC) with another pedaling participant. Pedal revolution periods (PRP) series were examined with MFMS-DFA and compared to linearized surrogates, which attested to a presence of multifractality at almost all scales. A marked alteration in multifractality when playing Tetris was evidenced at two scales, τ ≈ 16 and τ ≈ 64 s, yet less marked at τ ≈ 16 s when playing collaboratively. Playing Tetris in collaboration attenuated these alterations, especially in the best Tetris players. This observation suggests the high sensitivity to cognitive demand of MFMS-DFA estimators, extending to the assessment of skill/demand interplay from individual behavior. So, by identifying scale-dependent multifractal structures in movement dynamics, MFMS-DFA has obvious potential for examining brain-movement coordinative structures, likely with sufficient sensitivity to find echo in diagnosing disorders and monitoring the progress of diseases that affect cognition and movement control.
Collapse
Affiliation(s)
- Andrea Faini
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, 20149 Milan, Italy
- Department of Electronics Information and Bioengineering, Politecnico di Milano, 20156 Milan, Italy
| | - Laurent M Arsac
- University of Bordeaux, CNRS, Laboratoire IMS, UMR 5218, 33405 Talence, France
| | | | - Paolo Castiglioni
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| |
Collapse
|
5
|
Arsac LM. Entropy-Based Multifractal Testing of Heart Rate Variability during Cognitive-Autonomic Interplay. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1364. [PMID: 37761663 PMCID: PMC10527959 DOI: 10.3390/e25091364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Entropy-based and fractal-based metrics derived from heart rate variability (HRV) have enriched the way cardiovascular dynamics can be described in terms of complexity. The most commonly used multifractal testing, a method using q moments to explore a range of fractal scaling in small-sized and large-sized fluctuations, is based on detrended fluctuation analysis, which examines the power-law relationship of standard deviation with the timescale in the measured signal. A more direct testing of a multifractal structure exists based on the Shannon entropy of bin (signal subparts) proportion. This work aims to reanalyze HRV during cognitive tasks to obtain new markers of HRV complexity provided by entropy-based multifractal spectra using the method proposed by Chhabra and Jensen in 1989. Inter-beat interval durations (RR) time series were obtained in 28 students comparatively in baseline (viewing a video) and during three cognitive tasks: Stroop color and word task, stop-signal, and go/no-go. The new HRV estimators were extracted from the f/α singularity spectrum of the RR magnitude increment series, established from q-weighted stable (log-log linear) power laws, namely: (i) the whole spectrum width (MF) calculated as αmax - αmin; the specific width representing large-sized fluctuations (MFlarge) calculated as α0 - αq+; and small-sized fluctuations (MFsmall) calculated as αq- - α0. As the main results, cardiovascular dynamics during Stroop had a specific MF signature while MFlarge was rather specific to go/no-go. The way these new HRV markers could represent different aspects of a complete picture of the cognitive-autonomic interplay is discussed, based on previously used entropy- and fractal-based markers, and the introduction of distribution entropy (DistEn), as a marker recently associated specifically with complexity in the cardiovascular control.
Collapse
Affiliation(s)
- Laurent M Arsac
- Univ. Bordeaux, CNRS, Laboratoire IMS, UMR 5218 Talence, France
| |
Collapse
|
6
|
Kelty-Stephen DG, Lane E, Bloomfield L, Mangalam M. Multifractal test for nonlinearity of interactions across scales in time series. Behav Res Methods 2023; 55:2249-2282. [PMID: 35854196 DOI: 10.3758/s13428-022-01866-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 01/21/2023]
Abstract
The creativity and emergence of biological and psychological behavior tend to be nonlinear, and correspondingly, biological and psychological measures contain degrees of irregularity. The linear model might fail to reduce these measurements to a sum of independent random factors (yielding a stable mean for the measurement), implying nonlinear changes over time. The present work reviews some of the concepts implicated in nonlinear changes over time and details the mathematical steps involved in their identification. It introduces multifractality as a mathematical framework helpful in determining whether and to what degree the measured series exhibits nonlinear changes over time. These mathematical steps include multifractal analysis and surrogate data production for resolving when multifractality entails nonlinear changes over time. Ultimately, when measurements fail to fit the structures of the traditional linear model, multifractal modeling allows for making those nonlinear excursions explicit, that is, to come up with a quantitative estimate of how strongly events may interact across timescales. This estimate may serve some interests as merely a potentially statistically significant indicator of independence failing to hold, but we suspect that this estimate might serve more generally as a predictor of perceptuomotor or cognitive performance.
Collapse
Affiliation(s)
| | - Elizabeth Lane
- Department of Psychiatry, University of California-San Diego, San Diego, CA, USA
| | | | - Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
7
|
Kelty-Stephen DG, Lee J, Cole KR, Shields RK, Mangalam M. Multifractal Nonlinearity Moderates Feedforward and Feedback Responses to Suprapostural Perturbations. Percept Mot Skills 2023; 130:622-657. [PMID: 36600493 DOI: 10.1177/00315125221149147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An adaptive response to unexpected perturbations requires near-term and long-term adjustments over time. We used multifractal analysis to test how nonlinear interactions across timescales might support an adaptive response following an unpredictable perturbation. We reanalyzed torque data from 44 young and 24 older adults who performed a single-leg squat task challenged by an unexpected mechanical perturbation and a secondary visual-cognitive task. We report three findings: (a) multifractal nonlinearity interacted with pre-perturbation torque production and task error to presage greater pre-voluntary feedforward increases and greater voluntary reductions, respectively, in post-perturbation task error; (b) multifractal nonlinearity presaged relatively smaller task error than standard deviations of both pre-perturbation torques and pre-perturbation task error; and (c) increased task demand (e.g., age-related changes in dexterity and dual-task settings) led to multifractal nonlinearity presaging reduced task error. All these results were consistent with our expectations, except that a pre-perturbation knee torque-dependent increase in post-perturbation task error appeared later for older than for younger participants. This correlational multifractal modeling offered theoretical clarity on the possible roles of nonlinear interactions across timescales, moderating both feedforward and feedback processes, and presaging greater stability when the standard deviation is relatively large and task demands are strong. Thus, multifractal nonlinearity usefully describes movement variability even when paired with classical descriptors like the standard deviation. We discuss potential insights from these findings for understanding suprapostural dexterity and developing rehabilitative interventions.
Collapse
Affiliation(s)
- Damian G Kelty-Stephen
- Department of Psychology, 14821State University of New York at New Paltz, New Paltz, NY, USA
| | - Jinhyun Lee
- Department of Physical Therapy and Rehabilitation Sciences, 573932University of Iowa, Iowa City, IA, USA
| | - Keith R Cole
- Department of Health, Human Function, and Rehabilitation Science, 50430George Washington University, Washington, DC, USA
| | - Richard K Shields
- Department of Physical Therapy and Rehabilitation Sciences, 573932University of Iowa, Iowa City, IA, USA
| | - Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, 14720University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
8
|
Tomashin A, Leonardi G, Wallot S. Four Methods to Distinguish between Fractal Dimensions in Time Series through Recurrence Quantification Analysis. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1314. [PMID: 36141200 PMCID: PMC9498220 DOI: 10.3390/e24091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Fractal properties in time series of human behavior and physiology are quite ubiquitous, and several methods to capture such properties have been proposed in the past decades. Fractal properties are marked by similarities in statistical characteristics over time and space, and it has been suggested that such properties can be well-captured through recurrence quantification analysis. However, no methods to capture fractal fluctuations by means of recurrence-based methods have been developed yet. The present paper takes this suggestion as a point of departure to propose and test several approaches to quantifying fractal fluctuations in synthetic and empirical time-series data using recurrence-based analysis. We show that such measures can be extracted based on recurrence plots, and contrast the different approaches in terms of their accuracy and range of applicability.
Collapse
Affiliation(s)
- Alon Tomashin
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Giuseppe Leonardi
- Institute of Psychology, University of Economics and Human Sciences, 01-043 Warsaw, Poland
| | - Sebastian Wallot
- Institute for Sustainability Education and Psychology, Leuphana University of Lüneburg, 21335 Lüneburg, Germany
- Department of Language and Literature, Max Planck Institute of Empirical Aesthetics, 60322 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Palatinus Z, Volosin M, Csábi E, Hallgató E, Hajnal E, Lukovics M, Prónay S, Ujházi T, Osztobányi L, Szabó B, Králik T, Majó-Petri Z. Physiological measurements in social acceptance of self driving technologies. Sci Rep 2022; 12:13312. [PMID: 35922644 PMCID: PMC9349214 DOI: 10.1038/s41598-022-17049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
The goal of the present study is to examine the cognitive/affective physiological correlates of passenger travel experience in autonomously driven transportation systems. We investigated the social acceptance and cognitive aspects of self-driving technology by measuring physiological responses in real-world experimental settings using eye-tracking and EEG measures simultaneously on 38 volunteers. A typical test run included human-driven (Human) and Autonomous conditions in the same vehicle, in a safe environment. In the spectrum analysis of the eye-tracking data we found significant differences in the complex patterns of eye movements: the structure of movements of different magnitudes were less variable in the Autonomous drive condition. EEG data revealed less positive affectivity in the Autonomous condition compared to the human-driven condition while arousal did not differ between the two conditions. These preliminary findings reinforced our initial hypothesis that passenger experience in human and machine navigated conditions entail different physiological and psychological correlates, and those differences are accessible using state of the art in-world measurements. These useful dimensions of passenger experience may serve as a source of information both for the improvement and design of self-navigating technology and for market-related concerns.
Collapse
Affiliation(s)
- Zsolt Palatinus
- Department of Cognitive and Neuropsychology, Institute of Psychology, University of Szeged, Szeged, Hungary.
| | - Márta Volosin
- Department of Cognitive and Neuropsychology, Institute of Psychology, University of Szeged, Szeged, Hungary. .,Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.
| | - Eszter Csábi
- Department of Cognitive and Neuropsychology, Institute of Psychology, University of Szeged, Szeged, Hungary
| | - Emese Hallgató
- Department of Cognitive and Neuropsychology, Institute of Psychology, University of Szeged, Szeged, Hungary
| | - Edina Hajnal
- Department of Cognitive and Neuropsychology, Institute of Psychology, University of Szeged, Szeged, Hungary
| | - Miklós Lukovics
- Faculty of Economics and Business Administration, Department of Economics and Economic Development, University of Szeged, Szeged, Hungary.
| | - Szabolcs Prónay
- Faculty of Economics and Business Administration, Institute of Business Studies, University of Szeged, Szeged, Hungary
| | - Tamás Ujházi
- Faculty of Economics and Business Administration, Institute of Business Studies, University of Szeged, Szeged, Hungary
| | - Lilla Osztobányi
- Mindtech Ltd., Vác, Hungary.,Pázmány Péter Catholic University, Budapest, Hungary
| | - Balázs Szabó
- Mindtech Ltd., Vác, Hungary.,Pázmány Péter Catholic University, Budapest, Hungary
| | - Tamás Králik
- Mindtech Ltd., Vác, Hungary.,Pázmány Péter Catholic University, Budapest, Hungary
| | - Zoltán Majó-Petri
- Faculty of Economics and Business Administration, Institute of Business Studies, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Kelty-Stephen DG, Mangalam M. Turing's cascade instability supports the coordination of the mind, brain, and behavior. Neurosci Biobehav Rev 2022; 141:104810. [PMID: 35932950 DOI: 10.1016/j.neubiorev.2022.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Turing inspired a computer metaphor of the mind and brain that has been handy and has spawned decades of empirical investigation, but he did much more and offered behavioral and cognitive sciences another metaphor-that of the cascade. The time has come to confront Turing's cascading instability, which suggests a geometrical framework driven by power laws and can be studied using multifractal formalism and multiscale probability density function analysis. Here, we review a rapidly growing body of scientific investigations revealing signatures of cascade instability and their consequences for a perceiving, acting, and thinking organism. We review work related to executive functioning (planning to act), postural control (bodily poise for turning plans into action), and effortful perception (action to gather information in a single modality and action to blend multimodal information). We also review findings on neuronal avalanches in the brain, specifically about neural participation in body-wide cascades. Turing's cascade instability blends the mind, brain, and behavior across space and time scales and provides an alternative to the dominant computer metaphor.
Collapse
Affiliation(s)
- Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, USA.
| | - Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
11
|
Abstract
Recent advances in neuroscience have linked dynamical systems theory to cognition. The main contention is that extended cognition relies on a unitary brain-body-tool system showing the expected signatures of interaction-dominance reflected in a multifractal behavior. This might be particularly relevant when it comes to understanding how the brain is able to embody a tool to perform a task. Here we applied the multifractal formalism to the dynamics of hand movement while one was performing a computer task (the herding task) using a mouse or its own hand as a tool to move an object on the screen. We applied a focus-based multifractal detrended fluctuation analysis to acceleration time series. Then, multifractal nonlinearity was assessed by comparing original series to a finite set of surrogates obtained after Iterated Amplitude Adjusted Fourier transformation, a method that removes nonlinear multiscale dependencies while preserving the linear structure of the time series. Both hand and mouse task execution demonstrated multifractal nonlinearity, a typical form of across-scales interactivity in cognitive control. In addition, a wider multifractal spectrum was observed in mouse condition, which might highlight a richer set of interactions when the cognitive system is extended to the embodied mouse. We conclude that the emergence of multifractal nonlinearity from a brain-body-tool system pleads for recent theories of radical tool embodiment. Multifractal nonlinearity may be a promising metric to appreciate how physical objects—but also virtual tools and potentially prosthetics—are efficiently embodied by the brain.
Collapse
|
12
|
The Fractal Tapestry of Life: III Multifractals Entail the Fractional Calculus. FRACTAL AND FRACTIONAL 2022. [DOI: 10.3390/fractalfract6040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This is the third essay advocating the use the (non-integer) fractional calculus (FC) to capture the dynamics of complex networks in the twilight of the Newtonian era. Herein, the focus is on drawing a distinction between networks described by monfractal time series extensively discussed in the prequels and how they differ in function from multifractal time series, using physiological phenomena as exemplars. In prequel II, the network effect was introduced to explain how the collective dynamics of a complex network can transform a many-body non-linear dynamical system modeled using the integer calculus (IC) into a single-body fractional stochastic rate equation. Note that these essays are about biomedical phenomena that have historically been improperly modeled using the IC and how fractional calculus (FC) models better explain experimental results. This essay presents the biomedical entailment of the FC, but it is not a mathematical discussion in the sense that we are not concerned with the formal infrastucture, which is cited, but we are concerned with what that infrastructure entails. For example, the health of a physiologic network is characterized by the width of the multifractal spectrum associated with its time series, and which becomes narrower with the onset of certain pathologies. Physiologic time series that have explicitly related pathology to a narrowing of multifractal time series include but are not limited to heart rate variability (HRV), stride rate variability (SRV) and breath rate variability (BRV). The efficiency of the transfer of information due to the interaction between two such complex networks is determined by their relative spectral width, with information being transferred from the network with the broader to that with the narrower width. A fractional-order differential equation, whose order is random, is shown to generate a multifractal time series, thereby providing a FC model of the information exchange between complex networks. This equivalence between random fractional derivatives and multifractality has not received the recognition in the bioapplications literature we believe it warrants.
Collapse
|
13
|
Mangalam M, Kelty-Stephen DG. Ergodic descriptors of non-ergodic stochastic processes. J R Soc Interface 2022; 19:20220095. [PMID: 35414215 PMCID: PMC9006033 DOI: 10.1098/rsif.2022.0095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The stochastic processes underlying the growth and stability of biological and psychological systems reveal themselves when far-from-equilibrium. Far-from-equilibrium, non-ergodicity reigns. Non-ergodicity implies that the average outcome for a group/ensemble (i.e. of representative organisms/minds) is not necessarily a reliable estimate of the average outcome for an individual over time. However, the scientific interest in causal inference suggests that we somehow aim at stable estimates of the cause that will generalize to new individuals in the long run. Therefore, the valid analysis must extract an ergodic stationary measure from fluctuating physiological data. So the challenge is to extract statistical estimates that may describe or quantify some of this non-ergodicity (i.e. of the raw measured data) without themselves (i.e. the estimates) being non-ergodic. We show that traditional linear statistics such as the standard deviation, coefficient of variation and root mean square can break ergodicity. Time series of statistics addressing sequential structure and its potential nonlinearity: fractality and multi-fractality, change in a time-independent way and fulfil the ergodic assumption. Complementing traditional linear indices with fractal and multi-fractal indices would empower the study of stochastic far-from-equilibrium biological and psychological dynamics.
Collapse
Affiliation(s)
- Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
14
|
Multifractality in the Movement System When Adapting to Arm Cranking in Wheelchair Athletes, Able-Bodied Athletes, and Untrained People. FRACTAL AND FRACTIONAL 2022. [DOI: 10.3390/fractalfract6040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Complexity science has helped neuroscientists shed new light on brain-body coordination during movement performance and motor learning in humans. A critical intuition based on monofractal approaches has been a fractal-like coordination in the movement system, more marked in motor-skilled people. Here we aimed to show that heterogeneity in scaling exponents of movements series, literally multifractality, may reflect a special kind of interactions spanning multiple temporal scales at once, which can be grasped by a focus-based multifractal detrended fluctuation analysis. We analyzed multifractality in the variability structure of a 10-min arm cranking movement series repeated as 3 sets a day for 3 days, comparatively with their linearized (phase-randomized) surrogate series in sedentary (SED) untrained people, wheelchair athletes (WATH), and able-bodied athletes (ATH). Arm cranking exercise was chosen to minimize external variations, which tend to interfere with internal origin of variability. Participants were asked to maintain a regular effort and torque output served as the performance variable. Our first hypothesis suggests greater multiscale interactions in trained (WATH, ATH) versus untrained (SED) people, reflected in a wider range of scaling exponents characterizing movement series, providing the system with significant robustness. As a second hypothesis, we addressed a possible advantage in WATH over ATH due to greater motor skills in upper-limbs. Multifractal metrics in original and surrogate series showed ubiquitous, but different, multifractal behaviors in expert (ATH and WATH indistinctively) versus novice (SED) people. Experts exhibited high multifractality during the first execution of the task; then multifractality dropped in following repetitions. We suggest an exacerbated robustness of the movement system coordination in experts when discovering the task. Once task novelty has worn off, poor external sources of variability and limited risks of task failure have been identified, which is reflected in the narrower range of scale interactions, possibly as an energy cost effective adaptation. Multifractal corollaries of movement adaptation may be helpful in sport training and motor rehabilitation programs.
Collapse
|
15
|
Pratviel Y, Deschodt-Arsac V, Larrue F, Arsac LM. Fast Hand Movements Unveil Multifractal Roots of Adaptation in the Visuomotor Cognitive System. Front Physiol 2021; 12:713076. [PMID: 34354603 PMCID: PMC8330832 DOI: 10.3389/fphys.2021.713076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Beyond apparent simplicity, visuomotor dexterity actually requires the coordination of multiple interactions across a complex system that links the brain, the body and the environment. Recent research suggests that a better understanding of how perceptive, cognitive and motor activities cohere to form executive control could be gained from multifractal formalisms applied to movement behavior. Rather than a central executive "talking" to encapsuled components, the multifractal intuition suggests that eye-hand coordination arises from multiplicative cascade dynamics across temporal scales of activity within the whole system, which is reflected in movement time series. Here we examined hand movements of sport students performing a visuomotor task in virtual reality (VR). The task involved hitting spatially arranged targets that lit up on a virtual board under critical time pressure. Three conditions were compared where the visual search field changed: whole board (Standard), half-board lower view field (LVF) and upper view field (UVF). Densely sampled (90 Hz) time series of hand motions captured by VR controllers were analyzed by a focus-based multifractal detrended fluctuation analysis (DFA). Multiplicative rather than additive interactions across temporal scales were evidenced by testing comparatively phase-randomized surrogates of experimental series, which confirmed nonlinear processes. As main results, it was demonstrated that: (i) the degree of multifractality in hand motion behavior was minimal in LVF, a familiar visual search field where subjects correlatively reached their best visuomotor response times (RTs); (ii) multifractality increased in the less familiar UVF, but interestingly only for the non-dominant hand; and (iii) multifractality increased further in Standard, for both hands indifferently; in Standard, the maximal expansion of the visual search field imposed the highest demand as evidenced by the worst visuomotor RTs. Our observations advocate for visuomotor dexterity best described by multiplicative cascades dynamics and a system-wide distributed control rather than a central executive. More importantly, multifractal metrics obtained from hand movements behavior, beyond the confines of the brain, offer a window on the fine organization of control architecture, with high sensitivity to hand-related control behavior under specific constraints. Appealing applications may be found in movement learning/rehabilitation, e.g., in hemineglect people, stroke patients, maturing children or athletes.
Collapse
Affiliation(s)
- Yvan Pratviel
- Laboratoire IMS, CNRS, UMR 5218, Université de Bordeaux, Bordeaux, France.,CATIE, Centre Aquitain des Technologies de l'Information et Electroniques, Talence, France
| | | | - Florian Larrue
- CATIE, Centre Aquitain des Technologies de l'Information et Electroniques, Talence, France
| | - Laurent M Arsac
- Laboratoire IMS, CNRS, UMR 5218, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
16
|
De Jonge-Hoekstra L, Cox RFA, Van der Steen S, Dixon JA. Easier Said Than Done? Task Difficulty's Influence on Temporal Alignment, Semantic Similarity, and Complexity Matching Between Gestures and Speech. Cogn Sci 2021; 45:e12989. [PMID: 34170013 PMCID: PMC8365723 DOI: 10.1111/cogs.12989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/08/2021] [Accepted: 04/25/2021] [Indexed: 11/28/2022]
Abstract
Gestures and speech are clearly synchronized in many ways. However, previous studies have shown that the semantic similarity between gestures and speech breaks down as people approach transitions in understanding. Explanations for these gesture–speech mismatches, which focus on gestures and speech expressing different cognitive strategies, have been criticized for disregarding gestures’ and speech's integration and synchronization. In the current study, we applied three different perspectives to investigate gesture–speech synchronization in an easy and a difficult task: temporal alignment, semantic similarity, and complexity matching. Participants engaged in a simple cognitive task and were assigned to either an easy or a difficult condition. We automatically measured pointing gestures, and we coded participant's speech, to determine the temporal alignment and semantic similarity between gestures and speech. Multifractal detrended fluctuation analysis was used to determine the extent of complexity matching between gestures and speech. We found that task difficulty indeed influenced gesture–speech synchronization in all three domains. We thereby extended the phenomenon of gesture–speech mismatches to difficult tasks in general. Furthermore, we investigated how temporal alignment, semantic similarity, and complexity matching were related in each condition, and how they predicted participants’ task performance. Our study illustrates how combining multiple perspectives, originating from different research areas (i.e., coordination dynamics, complexity science, cognitive psychology), provides novel understanding about cognitive concepts in general and about gesture–speech synchronization and task difficulty in particular.
Collapse
Affiliation(s)
- Lisette De Jonge-Hoekstra
- Department of Developmental Psychology, Behavioural and Social Sciences, University of Groningen.,Department of Orthopedagogy & Clinical Educational Science-Ortho, Education and Learning and Development, Behavioural and Social Sciences, University of Groningen
| | - Ralf F A Cox
- Department of Developmental Psychology, Behavioural and Social Sciences, University of Groningen
| | - Steffie Van der Steen
- Department of Orthopedagogy & Clinical Educational Science-Ortho, Education and Learning and Development, Behavioural and Social Sciences, University of Groningen
| | - James A Dixon
- Center for the Ecological Study of Perception & Action, Department of Psychological Sciences, University of Connecticut
| |
Collapse
|
17
|
Arsac LM. Multifractal Dynamics in Executive Control When Adapting to Concurrent Motor Tasks. Front Physiol 2021; 12:662076. [PMID: 33935808 PMCID: PMC8085344 DOI: 10.3389/fphys.2021.662076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/26/2021] [Indexed: 01/08/2023] Open
Abstract
There is some evidence that an improved understanding of executive control in the human movement system could be gained from explorations based on scale-free, fractal analysis of cyclic motor time series. Such analyses capture non-linear fractal dynamics in temporal fluctuations of motor instances that are believed to reflect how executive control enlist a coordination of multiple interactions across temporal scales between the brain, the body and the task environment, an essential architecture for adaptation. Here by recruiting elite rugby players with high motor skills and submitting them to the execution of rhythmic motor tasks involving legs and arms concurrently, the main attempt was to build on the multifractal formalism of movement control to show a marginal need of effective adaptation in concurrent tasks, and a preserved adaptability despite complexified motor execution. The present study applied a multifractal analytical approach to experimental time series and added surrogate data testing based on shuffled, ARFIMA, Davies&Harte and phase-randomized surrogates, for assessing scale-free behavior in repeated motor time series obtained while combining cycling with finger tapping and with circling. Single-tasking was analyzed comparatively. A focus-based multifractal-DFA approach provided Hurst exponents (H) of individual time series over a range of statistical moments H(q), q = [−15 15]. H(2) quantified monofractality and H(-15)-H(15) provided an index of multifractality. Despite concurrent tasking, participants showed great capacity to keep the target rhythm. Surrogate data testing showed reasonable reliability in using multifractal formalism to decipher movement control behavior. The global (i.e., monofractal) behavior in single-tasks did not change when adapting to dual-task. Multifractality dominated in cycling and did not change when cycling was challenged by upper limb movements. Likewise, tapping and circling behaviors were preserved despite concurrent cycling. It is concluded that the coordinated executive control when adapting to dual-motor tasking is not modified in people having developed great motor skills through physical training. Executive control likely emerged from multiplicative interactions across temporal scales which puts emphasis on multifractal approaches of the movement system to get critical cues on adaptation. Extending such analyses to less skilled people is appealing in the context of exploring healthy and diseased movement systems.
Collapse
Affiliation(s)
- Laurent M Arsac
- Université de Bordeaux, CNRS, Laboratoire IMS, UMR 5218, Talence, France
| |
Collapse
|
18
|
Jacobson N, Berleman-Paul Q, Mangalam M, Kelty-Stephen DG, Ralston C. Multifractality in postural sway supports quiet eye training in aiming tasks: A study of golf putting. Hum Mov Sci 2021; 76:102752. [PMID: 33468324 DOI: 10.1016/j.humov.2020.102752] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 01/13/2023]
Abstract
The 'quiet eye' (QE) approach to visually-guided aiming behavior invests fully in perceptual information's potential to organize coordinated action. Sports psychologists refer to QE as the stillness of the eyes during aiming tasks and increasingly into self- and externally-paced tasks. Amidst the 'noisy' fluctuations of the athlete's body, quiet eyes might leave fewer saccadic interruptions to the coupling between postural sway and optic flow. Postural sway exhibits fluctuations whose multifractal structure serves as a robust predictor of visual and haptic perceptual responses. Postural sway generates optic flow centered on an individual's eye height. We predicted that perturbing the eye height by attaching wooden blocks below the feet would perturb the putting more so in QE-trained participants than participants trained technically. We also predicted that QE's efficacy and responses to perturbation would depend on multifractality in postural sway. Specifically, we predicted that less multifractality would predict more adaptive responses to the perturbation and higher putting accuracy. Results showed that lower multifractality led to more accurate putts, and the perturbation of eye height led to less accurate putts, particularly for QE-trained participants. Models of radial error (i.e., the distance between the ball's final position and the hole) indicated that lower estimates of multifractality due to nonlinearity coincided with a more adaptive response to the perturbation. These results suggest that reduced multifractality may act in a context-sensitive manner to restrain motoric degrees of freedom to achieve the task goal.
Collapse
Affiliation(s)
- Noah Jacobson
- Department of Psychology, Grinnell College, Grinnell, IA 50112, USA
| | | | - Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | | | | |
Collapse
|
19
|
Drożdż S, Kwapień J, Oświęcimka P, Stanisz T, Wątorek M. Complexity in Economic and Social Systems: Cryptocurrency Market at around COVID-19. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1043. [PMID: 33286816 PMCID: PMC7597102 DOI: 10.3390/e22091043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
Social systems are characterized by an enormous network of connections and factors that can influence the structure and dynamics of these systems. Among them the whole economical sphere of human activity seems to be the most interrelated and complex. All financial markets, including the youngest one, the cryptocurrency market, belong to this sphere. The complexity of the cryptocurrency market can be studied from different perspectives. First, the dynamics of the cryptocurrency exchange rates to other cryptocurrencies and fiat currencies can be studied and quantified by means of multifractal formalism. Second, coupling and decoupling of the cryptocurrencies and the conventional assets can be investigated with the advanced cross-correlation analyses based on fractal analysis. Third, an internal structure of the cryptocurrency market can also be a subject of analysis that exploits, for example, a network representation of the market. In this work, we approach the subject from all three perspectives based on data from a recent time interval between January 2019 and June 2020. This period includes the peculiar time of the Covid-19 pandemic; therefore, we pay particular attention to this event and investigate how strong its impact on the structure and dynamics of the market was. Besides, the studied data covers a few other significant events like double bull and bear phases in 2019. We show that, throughout the considered interval, the exchange rate returns were multifractal with intermittent signatures of bifractality that can be associated with the most volatile periods of the market dynamics like a bull market onset in April 2019 and the Covid-19 outburst in March 2020. The topology of a minimal spanning tree representation of the market also used to alter during these events from a distributed type without any dominant node to a highly centralized type with a dominating hub of USDT. However, the MST topology during the pandemic differs in some details from other volatile periods.
Collapse
Affiliation(s)
- Stanisław Drożdż
- Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland; (J.K.); (P.O.); (T.S.)
- Faculty of Computer Science and Telecommunication, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland;
| | - Jarosław Kwapień
- Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland; (J.K.); (P.O.); (T.S.)
| | - Paweł Oświęcimka
- Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland; (J.K.); (P.O.); (T.S.)
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. prof. Stanisława Łojasiewicza 11, 30-348 Kraków, Poland
| | - Tomasz Stanisz
- Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland; (J.K.); (P.O.); (T.S.)
| | - Marcin Wątorek
- Faculty of Computer Science and Telecommunication, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland;
| |
Collapse
|
20
|
Ritwika VPS, Pretzer GM, Mendoza S, Shedd C, Kello CT, Gopinathan A, Warlaumont AS. Exploratory dynamics of vocal foraging during infant-caregiver communication. Sci Rep 2020; 10:10469. [PMID: 32591549 PMCID: PMC7319970 DOI: 10.1038/s41598-020-66778-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
We investigated the hypothesis that infants search in an acoustic space for vocalisations that elicit adult utterances and vice versa, inspired by research on animal and human foraging. Infant-worn recorders were used to collect day-long audio recordings, and infant speech-related and adult vocalisation onsets and offsets were automatically identified. We examined vocalisation-to-vocalisation steps, focusing on inter-vocalisation time intervals and distances in an acoustic space defined by mean pitch and mean amplitude, measured from the child's perspective. Infant inter-vocalisation intervals were shorter immediately following a vocal response from an adult. Adult intervals were shorter following an infant response and adult inter-vocalisation pitch differences were smaller following the receipt of a vocal response from the infant. These findings are consistent with the hypothesis that infants and caregivers are foraging vocally for social input. Increasing infant age was associated with changes in inter-vocalisation step sizes for both infants and adults, and we found associations between response likelihood and acoustic characteristics. Future work is needed to determine the impact of different labelling methods and of automatic labelling errors on the results. The study represents a novel application of foraging theory, demonstrating how infant behaviour and infant-caregiver interaction can be characterised as foraging processes.
Collapse
Affiliation(s)
- V P S Ritwika
- University of California, Merced, Department of Physics, Merced, CA, 94343, USA.
| | - Gina M Pretzer
- University of California, Merced, Cognitive and Information Sciences, Merced, CA, 95343, USA
| | - Sara Mendoza
- University of California, Merced, Cognitive and Information Sciences, Merced, CA, 95343, USA
| | - Christopher Shedd
- University of California, Merced, Department of Physics, Merced, CA, 94343, USA
| | - Christopher T Kello
- University of California, Merced, Cognitive and Information Sciences, Merced, CA, 95343, USA
| | - Ajay Gopinathan
- University of California, Merced, Department of Physics, Merced, CA, 94343, USA
| | - Anne S Warlaumont
- University of California, Los Angeles, Department of Communication, Los Angeles, CA, 90095, USA.
| |
Collapse
|
21
|
Stirling L, Kelty-Stephen D, Fineman R, Jones MLH, Daniel Park BK, Reed MP, Parham J, Choi HJ. Static, Dynamic, and Cognitive Fit of Exosystems for the Human Operator. HUMAN FACTORS 2020; 62:424-440. [PMID: 32004106 DOI: 10.1177/0018720819896898] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To define static, dynamic, and cognitive fit and their interactions as they pertain to exosystems and to document open research needs in using these fit characteristics to inform exosystem design. BACKGROUND Initial exosystem sizing and fit evaluations are currently based on scalar anthropometric dimensions and subjective assessments. As fit depends on ongoing interactions related to task setting and user, attempts to tailor equipment have limitations when optimizing for this limited fit definition. METHOD A targeted literature review was conducted to inform a conceptual framework defining three characteristics of exosystem fit: static, dynamic, and cognitive. Details are provided on the importance of differentiating fit characteristics for developing exosystems. RESULTS Static fit considers alignment between human and equipment and requires understanding anthropometric characteristics of target users and geometric equipment features. Dynamic fit assesses how the human and equipment move and interact with each other, with a focus on the relative alignment between the two systems. Cognitive fit considers the stages of human-information processing, including somatosensation, executive function, and motor selection. Human cognitive capabilities should remain available to process task- and stimulus-related information in the presence of an exosystem. Dynamic and cognitive fit are operationalized in a task-specific manner, while static fit can be considered for predefined postures. CONCLUSION A deeper understanding of how an exosystem fits an individual is needed to ensure good human-system performance. Development of methods for evaluating different fit characteristics is necessary. APPLICATION Methods are presented to inform exosystem evaluation across physical and cognitive characteristics.
Collapse
Affiliation(s)
| | | | - Richard Fineman
- 2167 Harvard-MIT Health Science and Technology Program, Cambridge, MA, USA
| | - Monica L H Jones
- 1259 University of Michigan Transportation Research Institute, Ann Arbor, USA
| | | | - Matthew P Reed
- 1259 University of Michigan Transportation Research Institute, Ann Arbor, USA
| | - Joseph Parham
- 155353 U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | - Hyeg Joo Choi
- 155353 U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| |
Collapse
|
22
|
Calcagni G, Caballero-Garrido E, Pellón R. Behavior Stability and Individual Differences in Pavlovian Extended Conditioning. Front Psychol 2020; 11:612. [PMID: 32390896 PMCID: PMC7189120 DOI: 10.3389/fpsyg.2020.00612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/16/2020] [Indexed: 12/05/2022] Open
Abstract
How stable and general is behavior once maximum learning is reached? To answer this question and understand post-acquisition behavior and its related individual differences, we propose a psychological principle that naturally extends associative models of Pavlovian conditioning to a dynamical oscillatory model where subjects have a greater memory capacity than usually postulated, but with greater forecast uncertainty. This results in a greater resistance to learning in the first few sessions followed by an over-optimal response peak and a sequence of progressively damped response oscillations. We detected the first peak and trough of the new learning curve in our data, but their dispersion was too large to also check the presence of oscillations with smaller amplitude. We ran an unusually long experiment with 32 rats over 3,960 trials, where we excluded habituation and other well-known phenomena as sources of variability in the subjects' performance. Using the data of this and another Pavlovian experiment by Harris et al. (2015), as an illustration of the principle we tested the theory against the basic associative single-cue Rescorla–Wagner (RW) model. We found evidence that the RW model is the best non-linear regression to data only for a minority of the subjects, while its dynamical extension can explain the almost totality of data with strong to very strong evidence. Finally, an analysis of short-scale fluctuations of individual responses showed that they are described by random white noise, in contrast with the colored-noise findings in human performance.
Collapse
Affiliation(s)
- Gianluca Calcagni
- Instituto de Estructura de la Materia, CSIC, Madrid, Spain
- *Correspondence: Gianluca Calcagni
| | | | - Ricardo Pellón
- Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| |
Collapse
|
23
|
van Geert PLC. Dynamic Systems, Process and Development. Hum Dev 2019; 63:153-179. [PMID: 32139922 DOI: 10.1159/000503825] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 11/19/2022]
Abstract
In this article, I answer the questions from Witherington and Boom's introduction to this special issue in the form of an imaginary interview, led by David Boom, equally imaginary editor of The Processual Inquirer, an obscure but interesting journal that appears in imaginary physical print only, and which, as a consequence, has so far left no traces on the Internet….
Collapse
|
24
|
González Sánchez V, Żelechowska A, Jensenius AR. Analysis of the Movement-Inducing Effects of Music through the Fractality of Head Sway during Standstill. J Mot Behav 2019; 52:734-749. [PMID: 31718527 DOI: 10.1080/00222895.2019.1689909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The links between music and human movement have been shown to provide insight into crucial aspects of human's perception, cognition, and sensorimotor systems. In this study, we examined the influence of music on movement during standstill, aiming at further characterizing the correspondences between movement, music, and perception, by analyzing head sway fractality. Eighty seven participants were asked to stand as still as possible for 500 seconds while being presented with alternating silence and audio stimuli. The audio stimuli were all rhythmic in nature, ranging from a metronome track to complex electronic dance music. The head position of each participant was captured with an optical motion capture system. Long-range correlations of head movement were estimated by detrended fluctuation analysis (DFA). Results agree with previous work on the movement-inducing effect of music, showing significantly greater head sway and lower head sway fractality during the music stimuli. In addition, patterns across stimuli suggest a two-way adaptation process to the effects of music, with musical stimuli influencing head sway while at the same time fractality modulated movement responses. Results indicate that fluctuations in head movement in both conditions exhibit long-range correlations, suggesting that the effects of music on head movement depended not only on the value of the most recent measured intervals, but also on the values of those intervals at distant times.
Collapse
Affiliation(s)
- Victor González Sánchez
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion Department of Musicology, University of Oslo, Oslo, Norway
| | - Agata Żelechowska
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion Department of Musicology, University of Oslo, Oslo, Norway
| | - Alexander Refsum Jensenius
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion Department of Musicology, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Mangalam M, Chen R, McHugh TR, Singh T, Kelty-Stephen DG. Bodywide fluctuations support manual exploration: Fractal fluctuations in posture predict perception of heaviness and length via effortful touch by the hand. Hum Mov Sci 2019; 69:102543. [PMID: 31715380 DOI: 10.1016/j.humov.2019.102543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/13/2023]
Abstract
The human haptic perceptual system respects a bodywide organization that responds to local stimulation through full-bodied coordination of nested tensions and compressions across multiple nonoverlapping scales. Under such an organization, the suprapostural task of manually hefting objects to perceive their heaviness and length should depend on roots extending into the postural control for maintaining upright balance on the ground surface. Postural sway of the whole body should thus carry signatures predicting what the hand can extract by hefting an object. We found that fractal fluctuations in Euclidean displacement in the participants' center of pressure (CoP) contributed to perceptual judgments by moderating how the participants' hand picked up the informational variable of the moment of inertia. The role of fractality in CoP displacement in supporting heaviness and length judgments increased across trials, indicating that the participants progressively implicate their fractal scaling in their perception of heaviness and length. Traditionally, we had to measure fractality in hand movements to predict perceptual judgments by manual hefting. However, our findings suggest that we can observe what is happening at hand in the relatively distant-from-hand measure of CoP. Our findings reveal the complex relationship through which posture supports manual exploration, entailing perception of the intended properties of hefted objects (heaviness or length) putatively through the redistribution of forces throughout the body.
Collapse
Affiliation(s)
- Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, United States of America.
| | - Ryan Chen
- Department of Kinesiology, University of Georgia, Athens, GA, United States of America
| | - Terrence R McHugh
- Department of Kinesiology, University of Georgia, Athens, GA, United States of America
| | - Tarkeshwar Singh
- Department of Kinesiology, University of Georgia, Athens, GA, United States of America
| | | |
Collapse
|
26
|
Karwowski W, Kern D, Murata A, Ahram T, Gutiérrez E, Sapkota N, Marek T. The complexity of human performance variability on watch standing task. APPLIED ERGONOMICS 2019; 79:169-177. [PMID: 30055764 DOI: 10.1016/j.apergo.2018.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
The primary objective of this study was to examine the complexity of human temporal variability of topside roving watch task in naval operations concerning the reported times of ship status and to explore the potential presence of chaotic behavior and fractal properties of the reported log times. Topside rover reporting time intervals recorded in the deck logs of the USS Jason Dunham over the 2013-2015 period were analyzed to understand the underlying complexity of the watch standing task that is critical to the success of naval operations. The results on the 0-1 test, analysis of the largest Lyapunov exponents, as well the exploration of the fractal dimension and 1/f spectral analyses, showed that the fluctuation of standing watch time reports data exhibits chaotic and fractal system properties. The critical implications of the study findings for the human-centered design of complex systems were also discussed.
Collapse
Affiliation(s)
- Waldemar Karwowski
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, 32816, USA.
| | - David Kern
- Kern Technology Group LLC, Virginia Beach, VA, USA.
| | - Atsuo Murata
- Graduate School of Natural Science and Technology, Okoyama University, Okoyama, Japan.
| | - Tareq Ahram
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA.
| | - Edgar Gutiérrez
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA.
| | - Nabin Sapkota
- Department of Engineering Technology, Northwestern State University of Louisiana, Natchitoches, LA, 71459, USA.
| | - Tadeusz Marek
- Faculty of Psychology, University of Social Sciences and Humanities, Warsaw, Poland.
| |
Collapse
|
27
|
Swann T, Ghelfi A. Pink organising: Notes on communication, self-organisation, noise and radical social movements. ORGANIZATION 2019. [DOI: 10.1177/1350508419855711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This article explores the presence of noise in processes of communication and organisation in social movements. While the concept of noise has always had a role in discussions of communication, it is in light of the influence and use of social media that it comes to the fore as crucial in terms of how we understand communication. Rather than being a factor that interferes with effective communication, we will argue that noise is in fact inseparable from the experience of receiving information and organising through social media. Furthermore, the emergence of different ‘nuances’ of noise tells us something about different dynamics of self-organisation via social media. This article analyses the online forms of organisation of the 15M movement and the experiences of Dutch radical left activists to inform a better appreciation of the radical potential of a certain variant of noise: pink noise.
Collapse
|
28
|
Avelar BS, Mancini MC, Fonseca ST, Kelty-Stephen DG, de Miranda DM, Romano-Silva MA, de Araújo PA, Silva PL. Fractal fluctuations in exploratory movements predict differences in dynamic touch capabilities between children with Attention-Deficit Hyperactivity Disorder and typical development. PLoS One 2019; 14:e0217200. [PMID: 31112590 PMCID: PMC6529007 DOI: 10.1371/journal.pone.0217200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
Children with Attention-Deficit Hyperactivity Disorder (ADHD) struggle to perform a host of daily activities. Many of these involve forceful interaction with objects and thus implicate dynamic touch. Therefore, deficits in dynamic touch could underlie functional difficulties presented by ADHD children. We investigated whether performance on a dynamic touch task (length perception by wielding) differ between children with ADHD and age-matched controls. We further examined whether this difference could be explained by fractal temporal correlations (wielding dynamics). Forty-two children (ADHD: 21; typically developing: 21) wielded unseen wooden rods and reported their perceived length in the form of magnitude productions. The rods varied in the magnitude of the first principal moment of inertia (I1). Three-dimensional displacements of hand and rod positions were submitted to Detrended Fluctuation Analysis to estimate trial-by-trial temporal correlations. Children with ADHD reported shorter length for rods with higher I1 than their typically developing peers, indicative of reduced sensitivity to mechanical information supporting dynamic touch. Importantly, temporal correlations in wielding dynamics moderated children’s usage of I1. This finding points to a role of exploratory movements in perceptual deficits presented by children with ADHD and, thus, should be considered a new potential target for interventions.
Collapse
Affiliation(s)
- Bruna S. Avelar
- Graduate Program in Rehabilitation Science, School of Physical Education, Physical Therapy, and Occupational Therapy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Marisa C. Mancini
- Graduate Program in Rehabilitation Science, School of Physical Education, Physical Therapy, and Occupational Therapy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Sergio T. Fonseca
- Graduate Program in Rehabilitation Science, School of Physical Education, Physical Therapy, and Occupational Therapy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Débora M. de Miranda
- Department of Pediatrics, School of Medicine, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | | | - Priscila A. de Araújo
- Graduate Program in Rehabilitation Science, School of Physical Education, Physical Therapy, and Occupational Therapy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Paula L. Silva
- Graduate Program in Rehabilitation Science, School of Physical Education, Physical Therapy, and Occupational Therapy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Center for Cognition, Action & Perception, Department of Psychology, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
29
|
de Bordes PF, Boom J, Schot WD, van den Heuvel-Panhuizen M, Leseman PP. Modelling children’s Gear task strategy use with the Dynamic Overlapping Waves Model. COGNITIVE DEVELOPMENT 2019. [DOI: 10.1016/j.cogdev.2019.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Aguilera M, Bedia MG. Exploring Criticality as a Generic Adaptive Mechanism. Front Neurorobot 2018; 12:55. [PMID: 30333741 PMCID: PMC6176217 DOI: 10.3389/fnbot.2018.00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022] Open
Abstract
The activity of many biological and cognitive systems is not poised deep within a specific regime of activity. Instead, they operate near points of critical behavior located at the boundary between different phases. Certain authors link some of the properties of criticality with the ability of living systems to generate autonomous or intrinsically generated behavior. However, these claims remain highly speculative. In this paper, we intend to explore the connection between criticality and autonomous behavior through conceptual models that show how embodied agents may adapt themselves toward critical points. We propose to exploit maximum entropy models and their formal descriptions of indicators of criticality to present a learning model that drives generic agents toward critical points. Specifically, we derive such a learning model in an embodied Boltzmann machine by implementing a gradient ascent rule that maximizes the heat capacity of the controller in order to make the network maximally sensitive to external perturbations. We test and corroborate the model by implementing an embodied agent in the Mountain Car benchmark test, which is controlled by a Boltzmann machine that adjusts its weights according to the model. We find that the neural controller reaches an apparent point of criticality, which coincides with a transition point of the behavior of the agent between two regimes of behavior, maximizing the synergistic information between its sensors and the combination of hidden and motor neurons. Finally, we discuss the potential of our learning model to answer questions about the connection between criticality and the capabilities of living systems to autonomously generate intrinsic constraints on their behavior. We suggest that these “critical agents” are able to acquire flexible behavioral patterns that are useful for the development of successful strategies in different contexts.
Collapse
Affiliation(s)
- Miguel Aguilera
- Information and Autonomous Systems-Research Center for Life, Mind, and Society, University of the Basque Country, Donostia, Spain.,Department of Computer Science and Systems Engineering, University of Zaragoza, Zaragoza, Spain
| | - Manuel G Bedia
- Department of Computer Science and Systems Engineering, University of Zaragoza, Zaragoza, Spain.,Interactive Systems, Adaptivity, Autonomy and Cognition Lab, Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
31
|
Vergotte G, Perrey S, Muthuraman M, Janaqi S, Torre K. Concurrent Changes of Brain Functional Connectivity and Motor Variability When Adapting to Task Constraints. Front Physiol 2018; 9:909. [PMID: 30042697 PMCID: PMC6048415 DOI: 10.3389/fphys.2018.00909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/21/2018] [Indexed: 01/08/2023] Open
Abstract
In behavioral neuroscience, the adaptability of humans facing different constraints has been addressed on one side at the brain level, where a variety of functional networks dynamically support the same performance, and on the other side at the behavioral level, where fractal properties in sensorimotor variables have been considered as a hallmark of adaptability. To bridge the gap between the two levels of observation, we have jointly investigated the changes of network connectivity in the sensorimotor cortex assessed by modularity analysis and the properties of motor variability assessed by multifractal analysis during a prolonged tapping task. Four groups of participants had to produce the same tapping performance while being deprived from 0, 1, 2, or 3 sensory feedbacks simultaneously (auditory and/or visual and/or tactile). Whereas tapping performance was not statistically different across groups, the number of brain networks involved and the degree of multifractality of the inter-tap interval series were significantly correlated, increasing as a function of feedback deprivation. Our findings provide first evidence that concomitant changes in brain modularity and multifractal properties characterize adaptations underlying unchanged performance. We discuss implications of our findings with respect to the degeneracy properties of complex systems, and the entanglement of adaptability and effective adaptation.
Collapse
Affiliation(s)
| | | | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Focus Program Translational Neuroscience (FTN), Department of Neurology, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Janaqi
- LGI2P, Institut Mines Télécom-Ecole des Mines d'Alès, Alès, France
| | | |
Collapse
|
32
|
Szokolszky A, Read C. Developmental Ecological Psychology and a Coalition of Ecological–Relational Developmental Approaches. ECOLOGICAL PSYCHOLOGY 2018. [DOI: 10.1080/10407413.2018.1410409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Catherine Read
- Department of Plant Biology, Rutgers University
- Department of Psychology, Ithaca College
| |
Collapse
|
33
|
Bohara G, Lambert D, West BJ, Grigolini P. Crucial events, randomness, and multifractality in heartbeats. Phys Rev E 2017; 96:062216. [PMID: 29347370 DOI: 10.1103/physreve.96.062216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Indexed: 11/07/2022]
Abstract
We study the connection between multifractality and crucial events. Multifractality is frequently used as a measure of physiological variability, where crucial events are known to play a fundamental role in the transport of information between complex networks. To establish the connection of interest we focus on the special case of heartbeat time series and on the search for a diagnostic prescription to distinguish healthy from pathologic subjects. Over the past 20 years two apparently different diagnostic techniques have been established: the first is based on the observation that the multifractal spectrum of healthy patients is broader than the multifractal spectrum of pathologic subjects; the second is based on the observation that heartbeat dynamics are a superposition of crucial and uncorrelated Poisson-like events, with pathologic patients hosting uncorrelated Poisson-like events with larger probability than the healthy patients. In this paper, we prove that increasing the percentage of uncorrelated Poisson-like events hosted by heartbeats has the effect of making their multifractal spectrum narrower, thereby establishing that the two different diagnostic techniques are compatible with one another and, at the same time, establishing a dynamic interpretation of multifractal processes that had been previously overlooked.
Collapse
Affiliation(s)
- Gyanendra Bohara
- Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, Texas 76203-1427, USA
| | - David Lambert
- Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, Texas 76203-1427, USA
| | - Bruce J West
- Information Science Directorate, Army Research Office, Research Triangle Park, North Carolina 27708, USA
| | - Paolo Grigolini
- Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, Texas 76203-1427, USA
| |
Collapse
|
34
|
Carver NS, Bojovic D, Kelty-Stephen DG. Multifractal foundations of visually-guided aiming and adaptation to prismatic perturbation. Hum Mov Sci 2017; 55:61-72. [PMID: 28763703 DOI: 10.1016/j.humov.2017.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 01/13/2023]
Abstract
Visually-guided action of tossing to a target allows examining coordination between mechanical information for maintaining posture while throwing and visual information for aiming. Previous research indicates that relationships between visual and mechanical information persist in tossing behavior long enough for mechanical cues to prompt recall of past visual impressions. Multifractal analysis might model the long-term coordinations among movement components as visual information changes. We asked 32 adult participants (6 female, 25 male, one not conforming to gender binary; aged M=19.77, SD=0.88) to complete an aimed-tossing task in three blocks of ten trials each. Block 1 oriented participants to the task. Participants wore right-shifting goggles in Block 2 and removed them for Block 3. Motion-capture suits collected movement data of the head, hips, and hands. According to regression modeling of tossing performance, multifractality at hand and at hips together supported use of visual information, and adaptation to wearing/removing of goggles depended on multifractality across the hips, head, and hands. Vector-autoregression modeling shows that hip multifractality promoted head multifractality but that hand fluctuations drew on head and hip multifractality. We propose that multifractality could be an information substrate whose spread across the movements systems supports the perceptual coordination for the development of dexterity.
Collapse
Affiliation(s)
| | - Danica Bojovic
- Grinnell College, 1116 8th Ave., Grinnell, IA 50112, USA.
| | | |
Collapse
|
35
|
Booth CR, Brown HL, Eason EG, Wallot S, Kelty-Stephen DG. Expectations on Hierarchical Scales of Discourse: Multifractality Predicts Both Short- and Long-Range Effects of Violating Gender Expectations in Text Reading. DISCOURSE PROCESSES 2016. [DOI: 10.1080/0163853x.2016.1197811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | | | - Sebastian Wallot
- Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
- Interacting Minds Centre, Department of Culture and Society, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
36
|
Vernon D, Lowe R, Thill S, Ziemke T. Embodied cognition and circular causality: on the role of constitutive autonomy in the reciprocal coupling of perception and action. Front Psychol 2015; 6:1660. [PMID: 26579043 PMCID: PMC4626623 DOI: 10.3389/fpsyg.2015.01660] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 11/13/2022] Open
Abstract
The reciprocal coupling of perception and action in cognitive agents has been firmly established: perceptions guide action but so too do actions influence what is perceived. While much has been said on the implications of this for the agent's external behavior, less attention has been paid to what it means for the internal bodily mechanisms which underpin cognitive behavior. In this article, we wish to redress this by reasserting that the relationship between cognition, perception, and action involves a constitutive element as well as a behavioral element, emphasizing that the reciprocal link between perception and action in cognition merits a renewed focus on the system dynamics inherent in constitutive biological autonomy. Our argument centers on the idea that cognition, perception, and action are all dependent on processes focussed primarily on the maintenance of the agent's autonomy. These processes have an inherently circular nature-self-organizing, self-producing, and self-maintaining-and our goal is to explore these processes and suggest how they can explain the reciprocity of perception and action. Specifically, we argue that the reciprocal coupling is founded primarily on their endogenous roles in the constitutive autonomy of the agent and an associated circular causality of global and local processes of self-regulation, rather than being a mutual sensory-motor contingency that derives from exogenous behavior. Furthermore, the coupling occurs first and foremost via the internal milieu realized by the agent's organismic embodiment. Finally, we consider how homeostasis and the related concept of allostasis contribute to this circular self-regulation.
Collapse
Affiliation(s)
- David Vernon
- Interaction Lab, School of Informatics, University of Skövde Skövde, Sweden
| | - Robert Lowe
- Interaction Lab, School of Informatics, University of Skövde Skövde, Sweden ; Division of Cognition and Communication, University of Gothenburg Gothenburg, Sweden
| | - Serge Thill
- Interaction Lab, School of Informatics, University of Skövde Skövde, Sweden
| | - Tom Ziemke
- Interaction Lab, School of Informatics, University of Skövde Skövde, Sweden ; Human-Centered Systems, Department of Computer and Information Science, Linköping University Linköping, Sweden
| |
Collapse
|
37
|
Fetterhoff D, Kraft RA, Sandler RA, Opris I, Sexton CA, Marmarelis VZ, Hampson RE, Deadwyler SA. Distinguishing cognitive state with multifractal complexity of hippocampal interspike interval sequences. Front Syst Neurosci 2015; 9:130. [PMID: 26441562 PMCID: PMC4585000 DOI: 10.3389/fnsys.2015.00130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/03/2015] [Indexed: 11/15/2022] Open
Abstract
Fractality, represented as self-similar repeating patterns, is ubiquitous in nature and the brain. Dynamic patterns of hippocampal spike trains are known to exhibit multifractal properties during working memory processing; however, it is unclear whether the multifractal properties inherent to hippocampal spike trains reflect active cognitive processing. To examine this possibility, hippocampal neuronal ensembles were recorded from rats before, during and after a spatial working memory task following administration of tetrahydrocannabinol (THC), a memory-impairing component of cannabis. Multifractal detrended fluctuation analysis was performed on hippocampal interspike interval sequences to determine characteristics of monofractal long-range temporal correlations (LRTCs), quantified by the Hurst exponent, and the degree/magnitude of multifractal complexity, quantified by the width of the singularity spectrum. Our results demonstrate that multifractal firing patterns of hippocampal spike trains are a marker of functional memory processing, as they are more complex during the working memory task and significantly reduced following administration of memory impairing THC doses. Conversely, LRTCs are largest during resting state recordings, therefore reflecting different information compared to multifractality. In order to deepen conceptual understanding of multifractal complexity and LRTCs, these measures were compared to classical methods using hippocampal frequency content and firing variability measures. These results showed that LRTCs, multifractality, and theta rhythm represent independent processes, while delta rhythm correlated with multifractality. Taken together, these results provide a novel perspective on memory function by demonstrating that the multifractal nature of spike trains reflects hippocampal microcircuit activity that can be used to detect and quantify cognitive, physiological, and pathological states.
Collapse
Affiliation(s)
- Dustin Fetterhoff
- Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA ; Department of Physiology and Pharmacology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Robert A Kraft
- Department of Biomedical Engineering, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Roman A Sandler
- Department of Biomedical Engineering, University of Southern California Los Angeles, CA, USA
| | - Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Cheryl A Sexton
- Department of Biomedical Engineering, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Vasilis Z Marmarelis
- Department of Biomedical Engineering, University of Southern California Los Angeles, CA, USA
| | - Robert E Hampson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Sam A Deadwyler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
38
|
Vaz DV. Direct Perception Requires an Animal-Dependent Concept of Specificity and of Information. ECOLOGICAL PSYCHOLOGY 2015. [DOI: 10.1080/10407413.2015.1027128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Aguilera M, Barandiaran XE, Bedia MG, Seron F. Self-organized criticality, plasticity and sensorimotor coupling. Explorations with a neurorobotic model in a behavioural preference task. PLoS One 2015; 10:e0117465. [PMID: 25706744 PMCID: PMC4338039 DOI: 10.1371/journal.pone.0117465] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/22/2014] [Indexed: 11/19/2022] Open
Abstract
During the last two decades, analysis of 1/ƒ noise in cognitive science has led to a considerable progress in the way we understand the organization of our mental life. However, there is still a lack of specific models providing explanations of how 1/ƒ noise is generated in coupled brain-body-environment systems, since existing models and experiments typically target either externally observable behaviour or isolated neuronal systems but do not address the interplay between neuronal mechanisms and sensorimotor dynamics. We present a conceptual model of a minimal neurorobotic agent solving a behavioural task that makes it possible to relate mechanistic (neurodynamic) and behavioural levels of description. The model consists of a simulated robot controlled by a network of Kuramoto oscillators with homeostatic plasticity and the ability to develop behavioural preferences mediated by sensorimotor patterns. With only three oscillators, this simple model displays self-organized criticality in the form of robust 1/ƒ noise and a wide multifractal spectrum. We show that the emergence of self-organized criticality and 1/ƒ noise in our model is the result of three simultaneous conditions: a) non-linear interaction dynamics capable of generating stable collective patterns, b) internal plastic mechanisms modulating the sensorimotor flows, and c) strong sensorimotor coupling with the environment that induces transient metastable neurodynamic regimes. We carry out a number of experiments to show that both synaptic plasticity and strong sensorimotor coupling play a necessary role, as constituents of self-organized criticality, in the generation of 1/ƒ noise. The experiments also shown to be useful to test the robustness of 1/ƒ scaling comparing the results of different techniques. We finally discuss the role of conceptual models as mediators between nomothetic and mechanistic models and how they can inform future experimental research where self-organized critically includes sensorimotor coupling among the essential interaction-dominant process giving rise to 1/ƒ noise.
Collapse
Affiliation(s)
- Miguel Aguilera
- Dept. of Computer Science and Engineering Systems, Universidad de Zaragoza, Zaragoza, Spain
| | - Xabier E. Barandiaran
- Department of Philosophy, University School of Social Work, UPV/EHU University of the Basque Country, Vitoria-Gasteiz, Spain
- Department of Logic and Philosophy of Science, IAS-Research Center for Life, Mind, and Society, UPV/EHU University of the Basque Country, Donostia-San Sebastián, Spain
| | - Manuel G. Bedia
- Dept. of Computer Science and Engineering Systems, Universidad de Zaragoza, Zaragoza, Spain
| | - Francisco Seron
- Dept. of Computer Science and Engineering Systems, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
40
|
Eddy CL, Kelty-Stephen DG. Nesting of Focal Within Peripheral Vision Promotes Interactions Across Nested Time Scales in Head Sway: Multifractal Evidence From Accelerometry During Manual and Walking-Based Fitts Tasks. ECOLOGICAL PSYCHOLOGY 2015. [DOI: 10.1080/10407413.2015.991663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Bedia MG, Aguilera M, Gómez T, Larrode DG, Seron F. Quantifying long-range correlations and 1/f patterns in a minimal experiment of social interaction. Front Psychol 2014; 5:1281. [PMID: 25429277 PMCID: PMC4228835 DOI: 10.3389/fpsyg.2014.01281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/22/2014] [Indexed: 11/16/2022] Open
Abstract
In recent years, researchers in social cognition have found the “perceptual crossing paradigm” to be both a theoretical and practical advance toward meeting particular challenges. This paradigm has been used to analyze the type of interactive processes that emerge in minimal interactions and it has allowed progress toward understanding of the principles of social cognition processes. In this paper, we analyze whether some critical aspects of these interactions could not have been observed by previous studies. We consider alternative indicators that could complete, or even lead us to rethink, the current interpretation of the results obtained from both experimental and simulated modeling in the fields of social interactions and minimal perceptual crossing. In particular, we discuss the possibility that previous experiments have been analytically constrained to a short-term dynamic type of player response. Additionally, we propose the possibility of considering these experiments from a more suitable framework based on the use and analysis of long-range correlations and fractal dynamics. We will also reveal evidence supporting the idea that social interactions are deployed along many scales of activity. Specifically, we propose that the fractal structure of the interactions could be a more adequate framework to understand the type of social interaction patterns generated in a social engagement.
Collapse
Affiliation(s)
- Manuel G Bedia
- Department of Computer Science and Engineering Systems, University of Zaragoza Zaragoza, Spain
| | - Miguel Aguilera
- Department of Computer Science and Engineering Systems, University of Zaragoza Zaragoza, Spain
| | - Tomás Gómez
- Department of Computer Science and Engineering Systems, University of Zaragoza Zaragoza, Spain
| | - David G Larrode
- Department of Computer Science and Engineering Systems, University of Zaragoza Zaragoza, Spain
| | - Francisco Seron
- Department of Computer Science and Engineering Systems, University of Zaragoza Zaragoza, Spain
| |
Collapse
|
42
|
Laroche J, Berardi AM, Brangier E. Embodiment of intersubjective time: relational dynamics as attractors in the temporal coordination of interpersonal behaviors and experiences. Front Psychol 2014; 5:1180. [PMID: 25400598 PMCID: PMC4215825 DOI: 10.3389/fpsyg.2014.01180] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/29/2014] [Indexed: 11/23/2022] Open
Abstract
This paper addresses the issue of “being together,” and more specifically the issue of “being together in time.” We provide with an integrative framework that is inspired by phenomenology, the enactive approach and dynamical systems theories. To do so, we first define embodiment as a living and lived phenomenon that emerges from agent-world coupling. We then show that embodiment is essentially dynamical and therefore we describe experiential, behavioral and brain dynamics. Both lived temporality and the temporality of the living appear to be complex, multiscale phenomena. Next we discuss embodied dynamics in the context of interpersonal interactions, and briefly review the empirical literature on between-persons temporal coordination. Overall, we propose that being together in time emerges from the relational dynamics of embodied interactions and their flexible co-regulation.
Collapse
Affiliation(s)
- Julien Laroche
- Akoustic Arts R&D Laboratory Paris, France ; PErSEUs, Université de Lorraine Metz, France
| | | | | |
Collapse
|
43
|
Anastas JR, Kelty-Stephen DG, Dixon JA. Executive Function as an Interaction-Dominant Process. ECOLOGICAL PSYCHOLOGY 2014. [DOI: 10.1080/10407413.2014.957985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Multifractal analysis of information processing in hippocampal neural ensembles during working memory under Δ⁹-tetrahydrocannabinol administration. J Neurosci Methods 2014; 244:136-53. [PMID: 25086297 DOI: 10.1016/j.jneumeth.2014.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/06/2014] [Accepted: 07/16/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Multifractal analysis quantifies the time-scale-invariant properties in data by describing the structure of variability over time. By applying this analysis to hippocampal interspike interval sequences recorded during performance of a working memory task, a measure of long-range temporal correlations and multifractal dynamics can reveal single neuron correlates of information processing. NEW METHOD Wavelet leaders-based multifractal analysis (WLMA) was applied to hippocampal interspike intervals recorded during a working memory task. WLMA can be used to identify neurons likely to exhibit information processing relevant to operation of brain-computer interfaces and nonlinear neuronal models. RESULTS Neurons involved in memory processing ("Functional Cell Types" or FCTs) showed a greater degree of multifractal firing properties than neurons without task-relevant firing characteristics. In addition, previously unidentified FCTs were revealed because multifractal analysis suggested further functional classification. The cannabinoid type-1 receptor (CB1R) partial agonist, tetrahydrocannabinol (THC), selectively reduced multifractal dynamics in FCT neurons compared to non-FCT neurons. COMPARISON WITH EXISTING METHODS WLMA is an objective tool for quantifying the memory-correlated complexity represented by FCTs that reveals additional information compared to classification of FCTs using traditional z-scores to identify neuronal correlates of behavioral events. CONCLUSION z-Score-based FCT classification provides limited information about the dynamical range of neuronal activity characterized by WLMA. Increased complexity, as measured with multifractal analysis, may be a marker of functional involvement in memory processing. The level of multifractal attributes can be used to differentially emphasize neural signals to improve computational models and algorithms underlying brain-computer interfaces.
Collapse
|
45
|
Abney DH, Dale R, Yoshimi J, Kello CT, Tylén K, Fusaroli R. Joint perceptual decision-making: a case study in explanatory pluralism. Front Psychol 2014; 5:330. [PMID: 24795679 PMCID: PMC4006048 DOI: 10.3389/fpsyg.2014.00330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/30/2014] [Indexed: 11/23/2022] Open
Abstract
Traditionally different approaches to the study of cognition have been viewed as competing explanatory frameworks. An alternative view, explanatory pluralism, regards different approaches to the study of cognition as complementary ways of studying the same phenomenon, at specific temporal and spatial scales, using appropriate methodological tools. Explanatory pluralism has been often described abstractly, but has rarely been applied to concrete cases. We present a case study of explanatory pluralism. We discuss three separate ways of studying the same phenomenon: a perceptual decision-making task (Bahrami et al., 2010), where pairs of subjects share information to jointly individuate an oddball stimulus among a set of distractors. Each approach analyzed the same corpus but targeted different units of analysis at different levels of description: decision-making at the behavioral level, confidence sharing at the linguistic level, and acoustic energy at the physical level. We discuss the utility of explanatory pluralism for describing this complex, multiscale phenomenon, show ways in which this case study sheds new light on the concept of pluralism, and highlight good practices to critically assess and complement approaches.
Collapse
Affiliation(s)
- Drew H. Abney
- Cognitive and Information Sciences, School of Social Sciences, Humanities and Arts, University of CaliforniaMerced, CA, USA
| | - Rick Dale
- Cognitive and Information Sciences, School of Social Sciences, Humanities and Arts, University of CaliforniaMerced, CA, USA
| | - Jeff Yoshimi
- Cognitive and Information Sciences, School of Social Sciences, Humanities and Arts, University of CaliforniaMerced, CA, USA
| | - Chris T. Kello
- Cognitive and Information Sciences, School of Social Sciences, Humanities and Arts, University of CaliforniaMerced, CA, USA
| | - Kristian Tylén
- Center for Semiotics, Aarhus UniversityAarhus, Denmark
- Interacting Minds Center, Aarhus UniversityAarhus, Denmark
| | - Riccardo Fusaroli
- Center for Semiotics, Aarhus UniversityAarhus, Denmark
- Interacting Minds Center, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
46
|
Mattei TA. Unveiling complexity: non-linear and fractal analysis in neuroscience and cognitive psychology. Front Comput Neurosci 2014; 8:17. [PMID: 24600384 PMCID: PMC3930866 DOI: 10.3389/fncom.2014.00017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tobias A Mattei
- Department of Neurological Surgery, The Ohio State University Medical Center Columbus, OH, USA
| |
Collapse
|
47
|
Abstract
Fractal characteristics of chromatin, revealed by light or electron microscopy, have been reported during the last 20 years. Fractal features can easily be estimated in digitalized microscopic images and are helpful for diagnosis and prognosis of neoplasias. During carcinogenesis and tumor progression, an increase of the fractal dimension (FD) of stained nuclei has been shown in intraepithelial lesions of the uterine cervix and the anus, oral squamous cell carcinomas or adenocarcinomas of the pancreas. Furthermore, an increased FD of chromatin is an unfavorable prognostic factor in squamous cell carcinomas of the oral cavity and the larynx, melanomas and multiple myelomas. High goodness-of-fit of the regression line of the FD is a favorable prognostic factor in acute leukemias and multiple myelomas. The nucleus has fractal and power-law organization in several different levels, which might in part be interrelated. Some possible relations between modifications of the chromatin organization during carcinogenesis and tumor progression and an increase of the FD of stained chromatin are suggested. Furthermore, increased complexity of the chromatin structure, loss of heterochromatin and a less-perfect self-organization of the nucleus in aggressive neoplasias are discussed.
Collapse
Affiliation(s)
- Konradin Metze
- Department of Pathology, Faculty of Medical Sciences Research Group, 'Analytical Cellular Pathology' and National Institute of Photonics Applied to Cell Biology, University of Campinas, Campinas, Brazil +55 19 32893897 kmetze.at.fcm.unicamp.br
| |
Collapse
|
48
|
Takehara T, Ochiai F, Watanabe H, Suzuki N. The relationship between fractal dimension and other-race and inversion effects in recognising facial emotions. Cogn Emot 2013; 27:577-88. [DOI: 10.1080/02699931.2012.725655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Palatinus Z, Dixon JA, Kelty-Stephen DG. Fractal fluctuations in quiet standing predict the use of mechanical information for haptic perception. Ann Biomed Eng 2012. [PMID: 23188561 DOI: 10.1007/s10439-012-0706-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Movement science has traditionally understood high-dimensional fluctuations as either antithetical or irrelevant to low-dimensional control. However, fluctuations incident to changeful, sometimes unpredictable stimulation must somehow reshape low-dimensional aspects of control through perception. The movement system's fluctuations may reflect cascade dynamics in which many-sized events interact nonlinearly across many scales. Cascades yield fractal fluctuations, and fractality of fluctuations may provide a window on the interactions across scale supporting perceptual processes. To test these ideas, we asked adult human participants to judge whole or partial length for unseen rods (with and without added masses). The participants' only experience with the objects came from supporting them across their shoulders during quiet standing. First, the degree of fractal temporal correlations in trial-by-trial series of planar Euclidean displacements in center of pressure (COP) significantly improved prediction of subsequent trial-by-trial judgments, above and beyond prediction by traditional predictors of haptic perception and conventional measures of COP variability. Second, comparison with linear surrogate data indicated the presence of nonlinear interactions across scale in these time series. These results demonstrate that high-dimensional fluctuations may serve a crucial role in the cascade dynamics supporting apparently low-dimensional control strategies.
Collapse
Affiliation(s)
- Zsolt Palatinus
- Department of Psychology, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269-1020, USA
| | | | | |
Collapse
|
50
|
Goldfield EC, Park YL, Chen BR, Hsu WH, Young D, Wehner M, Kelty-Stephen DG, Stirling L, Weinberg M, Newman D, Nagpal R, Saltzman E, Holt KG, Walsh C, Wood RJ. Bio-Inspired Design of Soft Robotic Assistive Devices: The Interface of Physics, Biology, and Behavior. ECOLOGICAL PSYCHOLOGY 2012. [DOI: 10.1080/10407413.2012.726179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|