1
|
Moreno-Velandia CA, Ongena M, Kloepper JW, Cotes AM. Biosynthesis of Cyclic Lipopeptides by Bacillus velezensis Bs006 and its Antagonistic Activity are Modulated by the Temperature and Culture Media Conditions. Curr Microbiol 2021; 78:3505-3515. [PMID: 34292378 DOI: 10.1007/s00284-021-02612-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/09/2021] [Indexed: 11/30/2022]
Abstract
Antagonistic activity of strains from Bacillus species has made them among the preferred agricultural biological control agents against phytopathogenic fungi. These microorganisms' success is mostly based on the production of antagonistic secondary metabolites, mainly those of the non-ribosomal cyclic lipopeptides (CLPs) nature, which can affect phytopathogens directly (iturins and fengycins) or indirectly (surfactins and fengycins). However, abiotic factors in the target site can influence the behavior of the biocontrol traits, but to date, few studies attempting to decipher this kind of interaction have been conducted. This work aimed to evaluate the effect of temperature and culture medium on growth, antagonistic activity against Fusarium oxysporum f. sp. physali (Foph), and the profile of CLPs produced by Bacillus velezensis Bs006. The data showed that measured traits in Bs006 varied with temperature and medium interaction. The concentration of CLPs, as well as the antagonistic activity against Foph, was increased as the nutritional wealth, temperature, and time of incubation increased. The concentration of fengycins and iturins was higher than surfactins at high temperatures. However, a bacteriostatic effect was detected with a combination of Landy medium and 15 °C, which prevented both the biosynthesis of CLPs and the antagonistic activity. The results of this work highlight the importance of abiotic conditions of the target site where a biocontrol agent will be applied to stay active and develop its full antagonistic potential. This response by Bs006 could partly explain the variability of its biocontrol efficacy in the Foph-golden berry pathosystem.
Collapse
Affiliation(s)
- Carlos A Moreno-Velandia
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Km 14 vía Bogotá a Mosquera, 250047, Mosquera, Colombia.
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2 5030, Gembloux, Belgium
| | - Joseph W Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Alba M Cotes
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Km 14 vía Bogotá a Mosquera, 250047, Mosquera, Colombia
| |
Collapse
|
2
|
Abdallah DB, Krier F, Jacques P, Tounsi S, Frikha-Gargouri O. Agrobacterium tumefaciens C58 presence affects Bacillus velezensis 32a ecological fitness in the tomato rhizosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28429-28437. [PMID: 32415456 DOI: 10.1007/s11356-020-09124-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The persistence of pathogenic Agrobacterium strains as soil-associated saprophytes may cause an inconsistency in the efficacy of the biocontrol inoculants under field condition. The study of the interaction occurring in the rhizosphere between the beneficial and the pathogenic microbes is thus interesting for the development of effective biopesticides for the management of crown gall disease. However, very little is still known about the influence of these complex interactions on the biocontrol determinants of beneficial bacteria, especially Bacillus strains. This study aimed to evaluate the effect of the soil borne pathogen Agrobacterium tumefaciens C58 on root colonization and lipopeptide production by Bacillus velezensis strain 32a during interaction with tomato plants. Results show that the presence of A. tumefaciens C58 positively impacted the root colonization level of the Bacillus strain. However, negative impact on surfactin production was observed in Agrobacterium-treated seedling, compared with control. Further investigation suggests that these modulations are due to a modified tomato root exudate composition during the tripartite interaction. Thus, this work contributes to enhance the knowledge on the impact of interspecies interaction on the ecological fitness of Bacillus cells living in the rhizosphere.
Collapse
Affiliation(s)
- Dorra Ben Abdallah
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, P.O. Box 1177, 3018, Sfax, Tunisia
| | - François Krier
- Université de Lille, INRA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394 - ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Philippe Jacques
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech University of Liege, B-5030, Gembloux, Belgium
| | - Slim Tounsi
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Olfa Frikha-Gargouri
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, P.O. Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
3
|
Zihalirwa Kulimushi P, Argüelles Arias A, Franzil L, Steels S, Ongena M. Stimulation of Fengycin-Type Antifungal Lipopeptides in Bacillus amyloliquefaciens in the Presence of the Maize Fungal Pathogen Rhizomucor variabilis. Front Microbiol 2017; 8:850. [PMID: 28555132 PMCID: PMC5430075 DOI: 10.3389/fmicb.2017.00850] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
Most isolates belonging to the Bacillus amyloliquefaciens subsp. plantarum clade retain the potential to produce a vast array of structurally diverse antimicrobial compounds that largely contribute to their efficacy as biocontrol agents against numerous plant fungal pathogens. In that context, the role of cyclic lipopeptides (CLPs) has been well-documented but still little is known about the impact of interactions with other soil-inhabiting microbes on the expression of these molecules. In this work, we wanted to investigate the antagonistic activity developed by this bacterium against Rhizomucor variabilis, a pathogen isolated from diseased maize cobs in Democratic Republic of Congo. Our data show that fengycins are the major compounds involved in the inhibitory activity but also that production of this type of CLP is significantly upregulated when co-cultured with the fungus compared to pure cultures. B. amyloliquefaciens is thus able to perceive fungal molecules that are emitted and, as a response, up-regulates the biosynthesis of some specific components of its antimicrobial arsenal.
Collapse
Affiliation(s)
- Parent Zihalirwa Kulimushi
- Microbial Processes and Interactions Research Unit, Gembloux Agro-Bio Tech Faculty, University of LiègeGembloux, Belgium.,Laboratory of Biotechnology and Molecular Biology, Faculté des Sciences Agronomiques et Environnement, Université Evangélique en AfriqueBukavu, Congo
| | - Anthony Argüelles Arias
- Microbial Processes and Interactions Research Unit, Gembloux Agro-Bio Tech Faculty, University of LiègeGembloux, Belgium
| | - Laurent Franzil
- Microbial Processes and Interactions Research Unit, Gembloux Agro-Bio Tech Faculty, University of LiègeGembloux, Belgium
| | - Sébastien Steels
- Microbial Processes and Interactions Research Unit, Gembloux Agro-Bio Tech Faculty, University of LiègeGembloux, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions Research Unit, Gembloux Agro-Bio Tech Faculty, University of LiègeGembloux, Belgium
| |
Collapse
|
4
|
Diomandé SE, Nguyen-The C, Guinebretière MH, Broussolle V, Brillard J. Role of fatty acids in Bacillus environmental adaptation. Front Microbiol 2015; 6:813. [PMID: 26300876 PMCID: PMC4525379 DOI: 10.3389/fmicb.2015.00813] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/23/2015] [Indexed: 11/23/2022] Open
Abstract
The large bacterial genus Bacillus is widely distributed in the environment and is able to colonize highly diverse niches. Some Bacillus species harbor pathogenic characteristics. The fatty acid (FA) composition is among the essential criteria used to define Bacillus species. Some elements of the FA pattern composition are common to Bacillus species, whereas others are specific and can be categorized in relation to the ecological niches of the species. Bacillus species are able to modify their FA patterns to adapt to a wide range of environmental changes, including changes in the growth medium, temperature, food processing conditions, and pH. Like many other Gram-positive bacteria, Bacillus strains display a well-defined FA synthesis II system that is equilibrated with a FA degradation pathway and regulated to efficiently respond to the needs of the cell. Like endogenous FAs, exogenous FAs may positively or negatively affect the survival of Bacillus vegetative cells and the spore germination ability in a given environment. Some of these exogenous FAs may provide a powerful strategy for preserving food against contamination by the Bacillus pathogenic strains responsible for foodborne illness.
Collapse
Affiliation(s)
- Sara E Diomandé
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Christophe Nguyen-The
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Marie-Hélène Guinebretière
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Véronique Broussolle
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| | - Julien Brillard
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; UMR 1333 DGIMI, INRA, Université de Montpellier Montpellier, France
| |
Collapse
|
5
|
Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol 2014; 8:281-95. [PMID: 25529983 PMCID: PMC4353342 DOI: 10.1111/1751-7915.12238] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 11/30/2022] Open
Abstract
Some isolates of the Bacillus subtilis/amyloliquefaciens species are known for their plant protective activity against fungal phytopathogens. It is notably due to their genetic potential to form an impressive array of antibiotics including non-ribosomal lipopeptides (LPs). In the work presented here, we wanted to gain further insights into the relative role of these LPs in the global antifungal activity of B. subtilis/amyloliquefaciens. To that end, a comparative study was conducted involving multiple strains that were tested against four different phytopathogens. We combined various approaches to further exemplify that secretion of those LPs is a crucial trait in direct pathogen ward off and this can actually be generalized to all members of these species. Our data illustrate that for each LP family, the fungitoxic activity varies in function of the target species and that the production of iturins and fengycins is modulated by the presence of pathogens. Our data on the relative involvement of these LPs in the biocontrol activity and modulation of their production are discussed in the context of natural conditions in the rhizosphere.
Collapse
Affiliation(s)
- Hélène Cawoy
- Walloon Center for Industrial Microbiology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
6
|
Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P, Dommes J, Ongena M. Plant defense stimulation by natural isolates of bacillus depends on efficient surfactin production. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:87-100. [PMID: 24156767 DOI: 10.1094/mpmi-09-13-0262-r] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Some plant-associated Bacillus strains produce induced systemic resistance (ISR) in the host, which contributes to their protective effect against phytopathogens. Little is known about the variety of elicitors responsible for ISR that are produced by Bacillus strains. Working with a particular strain, we have previously identified the surfactin lipopeptide as a main compound stimulating plant immune-related responses. However, with the perspective of developing Bacillus strains as biocontrol agents, it is important to establish whether a central role of surfactin is generally true for isolates belonging to the B. subtilis/amyloliquefaciens complex. To that end, we set up a comparative study involving a range of natural strains. Their secretomes were first tested for triggering early defense events in cultured tobacco cells. Six isolates with contrasting activities were further evaluated for ISR in plants, based both on macroscopic disease reduction and on stimulation of the oxylipin pathway as defense mechanism. A strong correlation was found between defense-inducing activity and the amount of surfactin produced by the isolates. These results support the idea of a widespread role for surfactin as a nonvolatile elicitor formed by B. subtilis/amyloliquefaciens, and screening for strong surfactin producers among strains naturally secreting multiple antibiotics could be an efficient approach to select good candidates as biopesticides.
Collapse
|
7
|
Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK. Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. J Basic Microbiol 2013; 55:82-90. [PMID: 24277414 DOI: 10.1002/jobm.201300528] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/19/2013] [Indexed: 11/09/2022]
Abstract
To investigate the biocontrol mechanism of two antagonistic Bacillus strains (Bacillus subtilis MB14 and Bacillus amyloliquefaciens MB101), three in vitro antagonism assays were screened and the results were concluded that both strains inhibited Rhizoctonia solani growth in a similar manner by dual culture assay, but the maximum percent of inhibition only resulted with MB101 by volatile and diffusible metabolite assays. Moreover, cell free supernatant (CFS) of MB101 also showed significant (p > 0.05) growth inhibition as compared to MB14, when 10 and 20% CFS mix with the growth medium of R. solani. After in vitro-validation, both strains were evaluated under greenhouse and the results concluded that strain MB101 had significant biocontrol potential as compared to MB14. Strain MB101 was enhanced the plant height, biomass and chlorophyll content of tomato plant through a higher degree of root colonization. In field trials, strain MB101 showed higher lessening in root rot symptoms with significant fruit yield as compare to strain MB14 and infected control. Next to the field study, the presence of four antibiotic genes (srfAA, fenD, ituC, and bmyB) also concluded the antifungal nature of both Bacillus strains. Phylogenetic analysis of protein sequences revealed a close relatedness of three genes (srfAA, fenD, and ituC) with earlier reported sequences of B. subtilis and B. amyloliquefaciens. However, bmyB showed heterogeneity in among both strains (MB14 and MB101) and it may be concluded that higher degree of antagonism, root colonization and different antibiotic producing genes may play an important role in biocontrol mechanism of strain MB101.
Collapse
Affiliation(s)
- Manoj Kumar Solanki
- National Bureau of Agriculturally Important Microorganisms, Kusmaur, Mau, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
8
|
Debois D, Ongena M, Cawoy H, De Pauw E. MALDI-FTICR MS imaging as a powerful tool to identify Paenibacillus antibiotics involved in the inhibition of plant pathogens. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1202-13. [PMID: 23636858 DOI: 10.1007/s13361-013-0620-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 05/24/2023]
Abstract
Nowadays, microorganisms are more and more often used as biocontrol agents for crop protection against diseases. Among them, bacteria of Bacillus and Paenibacillus genders are already used as commercial biocontrol agents. Their mode of action is supposed to be related to their production of antibiotics, such as cyclic lipopeptides, which exhibit great antimicrobial activities. We chose to work with a Paenibacillus polymyxa strain (Pp56) very resistant to various microorganisms. The bacteria were grown simultaneously with Fusarium oxysporum and we applied matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance (MALDI-FTICR) mass spectrometry to identify the antibiotics compounds present in the fungus growth inhibition area. We, therefore, identified fusaricidins A, B, and C and numerous members of the LI-F antibiotics family. MALDI-FTICR mass spectrometry imaging was then used to follow the diffusion of lipopeptides involved in the inhibitory activity over time. We analyzed the molecular content of the inhibitory area at different Pp56 and Fusarium incubation durations and concluded that some lipopeptides such as fusaricidin B and a mixture of LI-F05b/06b/08a were mainly involved in the defense mechanism of Pp56. Our study confirms that MALDI imaging may be a powerful tool to quickly determine which molecular species is involved in an antagonism with another microorganism, avoiding time-consuming steps of extraction, purification, and activity tests, which are still commonly used in microbiology.
Collapse
Affiliation(s)
- Delphine Debois
- Mass Spectrometry Laboratory (LSM-GIGA-R), Chemistry Department, University of Liege, Liege, Belgium.
| | | | | | | |
Collapse
|
9
|
Pertot I, Puopolo G, Hosni T, Pedrotti L, Jourdan E, Ongena M. Limited impact of abiotic stress on surfactin productionin plantaand on disease resistance induced byBacillus amyloliquefaciensS499 in tomato and bean. FEMS Microbiol Ecol 2013; 86:505-19. [DOI: 10.1111/1574-6941.12177] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/01/2013] [Accepted: 07/01/2013] [Indexed: 01/28/2023] Open
Affiliation(s)
- Ilaria Pertot
- Department of Sustainable Agro-Ecosystems and Bioresources; Research and Innovation Centre; Fondazione Edmund Mach (FEM); S. Michele all'Adige Italy
| | - Gerardo Puopolo
- Department of Sustainable Agro-Ecosystems and Bioresources; Research and Innovation Centre; Fondazione Edmund Mach (FEM); S. Michele all'Adige Italy
| | - Taha Hosni
- Department of Sustainable Agro-Ecosystems and Bioresources; Research and Innovation Centre; Fondazione Edmund Mach (FEM); S. Michele all'Adige Italy
| | - Lorenzo Pedrotti
- Department of Sustainable Agro-Ecosystems and Bioresources; Research and Innovation Centre; Fondazione Edmund Mach (FEM); S. Michele all'Adige Italy
| | - Emmanuel Jourdan
- Walloon Centre for Industrial Biology; Bioindustry Unit; Gembloux Agro-Bio Tech; University of Liège; Gembloux Belgium
| | - Marc Ongena
- Walloon Centre for Industrial Biology; Bioindustry Unit; Gembloux Agro-Bio Tech; University of Liège; Gembloux Belgium
| |
Collapse
|
10
|
García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, Vicente A, Pérez-García A. The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microb Biotechnol 2013; 6:264-74. [PMID: 23302493 PMCID: PMC3815921 DOI: 10.1111/1751-7915.12028] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 12/27/2022] Open
Abstract
Biological control of plant diseases has gained acceptance in recent years. Bacillus subtilis UMAF6639 is an antagonistic strain specifically selected for the efficient control of the cucurbit powdery mildew fungus Podosphaera fusca, which is a major threat to cucurbits worldwide. The antagonistic activity relies on the production of the antifungal compounds iturin and fengycin. In a previous study, we found that UMAF6639 was able to induce systemic resistance (ISR) in melon and provide additional protection against powdery mildew. In the present work, we further investigated in detail this second mechanism of biocontrol by UMAF6639. First, we examined the signalling pathways elicited by UMAF6639 in melon plants, as well as the defence mechanisms activated in response to P. fusca. Second, we analysed the role of the lipopeptides produced by UMAF6639 as potential determinants for ISR activation. Our results demonstrated that UMAF6639 confers protection against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses, which include the production of reactive oxygen species and cell wall reinforcement. We also showed that surfactin lipopeptide is a major determinant for stimulation of the immune response. These results reinforce the biotechnological potential of UMAF6639 as a biological control agent.
Collapse
Affiliation(s)
- Laura García-Gutiérrez
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain
| | - Houda Zeriouh
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain
| | - Jaime Cubero
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Ctra de La Coruña km 7.5, 28040, Madrid, Spain
| | - Antonio Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain
| |
Collapse
|
11
|
Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol 2012; 79:176-91. [PMID: 22029651 DOI: 10.1111/j.1574-6941.2011.01208.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cyclic lipopeptides (cLPs) of the surfactin, iturin and fengycin families synthesized by plant-associated Bacilli represent an important class of antibiotics as they may be tightly involved in the protective effect of selected strains against phytopathogens. However, their production by Bacillus cells developing on roots under rhizosphere conditions is still poorly understood. In this work, we combined electrospray and imaging mass spectrometry-based approaches to determine the detailed pattern of surfactins, iturins and fengycins produced in planta by Bacillus amyloliquefaciens S499. Very different production rates were observed for the three cLPs families. Whereas surfactin accumulated in significant amounts, much lower quantities of iturins and fengycins were detected in the environment of colonized roots in comparison with laboratory medium. In addition, the surfactin pattern produced by strain S499 evolving on roots is enriched in homologues with long fatty acid chains (C15) compared with the chains typically secreted under in vitro conditions. Additional experiments revealed that lipopeptide production by root-associated S499 cells is qualitatively and quantitatively dictated by the specific nutritional context of the rhizosphere (exudates enriched in organic acids, oxygen limitation) but also by the formation of biofilm-related structures around root hairs. As surfactins, iturins and fengycins retain specific functions and bioactivities, the biological relevance of their differential production observed in planta is discussed in the context of biocontrol of plant diseases.
Collapse
Affiliation(s)
- Venant Nihorimbere
- Walloon Center for Industrial Biology, University of Liège/Gembloux Agro-Bio Tech, Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
12
|
Abderrahmani A, Tapi A, Nateche F, Chollet M, Leclère V, Wathelet B, Hacene H, Jacques P. Bioinformatics and molecular approaches to detect NRPS genes involved in the biosynthesis of kurstakin from Bacillus thuringiensis. Appl Microbiol Biotechnol 2011; 92:571-81. [PMID: 21751008 DOI: 10.1007/s00253-011-3453-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 06/17/2011] [Accepted: 06/19/2011] [Indexed: 11/28/2022]
Abstract
Degenerated primers designed for the detection by polymerase chain reaction of nonribosomal peptide synthetases (NRPS) genes involved in the biosynthesis of lipopeptides were used on genomic DNA from a new isolate of Bacillus thuringiensis CIP 110220. Primers dedicated to surfactin and bacillomycin detection amplified sequences corresponding respectively to the surfactin synthetase operon and to a gene belonging to a new NRPS operon identified in the genome of B. thuringiensis serovar pondicheriensis BSCG 4BA1. A bioinformatics analysis of this operon led to the prediction of an NRPS constituted of seven modules beginning with a condensation starter domain and which could be involved in the biosynthesis of a heptalipopeptide similar to kurstakin. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) performed on whole cells of B. thuringiensis CIP 110220 confirmed the production of kurstakin by this strain. The kurstakin operon was thus used to design a new set of degenerated primers specifically to detect kurstakin genes. These primers were used to screen kurstakin producers in a collection of nine B. thuringiensis strains isolated from different areas in Algeria and two from the Pasteur Institute collection. For eight among the 11 tested strains, the amplified fragment matched with an operon similar to the kurstakin operon and found in the newly sequenced genome of Bacillus cereus or B. thuringiensis serovar pulsiensis, kurstaki, and thuringiensis. Kurstakin production was detected by MALDI-ToF-MS on whole cells for six strains. This production was compared with the spreading of the strains and their antimicrobial activity. Only the spreading can be correlated with the kurstakin production.
Collapse
Affiliation(s)
- Ahmed Abderrahmani
- Laboratoire des Procédés Biologiques, Génie Enzymatique et Microbien, ProBioGEM, UPRES-EA 1026, Polytech'Lille/IUT A, Université Lille Nord de France-Sciences et Technologies, USTL, Avenue Paul Langevin, 59655, Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. Natural functions of lipopeptides fromBacillusandPseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 2010; 34:1037-62. [DOI: 10.1111/j.1574-6976.2010.00221.x] [Citation(s) in RCA: 719] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
14
|
Stimulation of defense reactions in Medicago truncatula by antagonistic lipopeptides from Paenibacillus sp. strain B2. Appl Environ Microbiol 2010; 76:7420-8. [PMID: 20870792 DOI: 10.1128/aem.00171-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With the aim of obtaining new strategies to control plant diseases, we investigated the ability of antagonistic lipopolypeptides (paenimyxin) from Paenibacillus sp. strain B2 to elicit hydrogen peroxide (H₂O₂) production and several defense-related genes in the model legume Medicago truncatula. For this purpose, M. truncatula cell suspensions were used and a pathosystem between M. truncatula and Fusarium acuminatum was established. In M. truncatula cell cultures, the induction of H₂O₂ reached a maximum 20 min after elicitation with paenimyxin, whereas concentrations higher than 20 μM inhibited H₂O₂ induction and this was correlated with a lethal effect. In plant roots incubated with different concentrations of paenimyxin for 24 h before inoculation with F. acuminatum, paenimyxin at a low concentration (ca. 1 μM) had a protective effect and suppressed 95% of the necrotic symptoms, whereas a concentration higher than 10 μM had an inhibitory effect on plant growth. Gene responses were quantified in M. truncatula by semiquantitative reverse transcription-PCR (RT-PCR). Genes involved in the biosynthesis of phytoalexins (phenylalanine ammonia-lyase, chalcone synthase, chalcone reductase), antifungal activity (pathogenesis-related proteins, chitinase), or cell wall (invertase) were highly upregulated in roots or cells after paenimyxin treatment. The mechanisms potentially involved in plant protection are discussed.
Collapse
|
15
|
Ramos JL, Duque E, Daniels C, Molina L, Segura A. Exploiting environmental niches and the potential of environmental microbes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:275-278. [PMID: 23765879 DOI: 10.1111/j.1758-2229.2009.00072.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Juan L Ramos
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008 Granada, Spain
| | | | | | | | | |
Collapse
|
16
|
High-level biosynthesis of the anteiso-C(17) isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity. Appl Environ Microbiol 2009; 75:4636-40. [PMID: 19429561 DOI: 10.1128/aem.00548-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-level production (880 mg liter(-1)) and isolation of the anteiso-C(17) isoform of the lipopeptide mycosubtilin produced by a genetically engineered Bacillus subtilis strain are reported. Antifungal activity of this isoform, as determined via culture and fluorometric and cell leakage assays, suggests its potential therapeutic use as an antifungal agent, in particular against Candida spp.
Collapse
|