1
|
Wang JJT, Steenwyk JL, Brem RB. Natural trait variation across Saccharomycotina species. FEMS Yeast Res 2024; 24:foae002. [PMID: 38218591 PMCID: PMC10833146 DOI: 10.1093/femsyr/foae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 01/15/2024] Open
Abstract
Among molecular biologists, the group of fungi called Saccharomycotina is famous for its yeasts. These yeasts in turn are famous for what they have in common-genetic, biochemical, and cell-biological characteristics that serve as models for plants and animals. But behind the apparent homogeneity of Saccharomycotina species lie a wealth of differences. In this review, we discuss traits that vary across the Saccharomycotina subphylum. We describe cases of bright pigmentation; a zoo of cell shapes; metabolic specialties; and species with unique rules of gene regulation. We discuss the genetics of this diversity and why it matters, including insights into basic evolutionary principles with relevance across Eukarya.
Collapse
Affiliation(s)
- Johnson J -T Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob L Steenwyk
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rachel B Brem
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Hu B, Wang Q, Liu J, Xing L, Zhang X, Wang Y, Liu X. Environmental heterogeneity of cold seep by biological trait analysis of marine nematodes at Site F cold seep in South China Sea. MARINE POLLUTION BULLETIN 2024; 198:115932. [PMID: 38104383 DOI: 10.1016/j.marpolbul.2023.115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Cold seeps provide high environmental heterogeneity for marine benthos. Site F is one of the active cold seeps in the South China Sea. In this study, free-living marine nematode communities were investigated at Site F and the adjacent deep-sea area. A total of 67 genera and 32 families were identified. The mean density at cold seep sites ranged from 13.6 to 181.8 ind./10 cm2, and that at the adjacent deep-sea sites ranged from 36.9 to 301.4 ind./10 cm2. At cold seep sites, the most dominant nematode genera were Desmoscolex, Pierrickia, Sabatieria, Halalaimus, and Dorylaimopsis while at deep-sea sites, the most dominant genera were Retrotheristus, Thalassomonhystera, Desmoscolex, Cobbia, and Halalaimus. Deposit feeders of nematodes were dominant at all sites. Results of biological trait analysis showed that there was high environmental heterogeneity for nematodes at Site F. Water depth, sediment organic matter content, and sand proportion had important influences on nematode communities.
Collapse
Affiliation(s)
- Bingzhou Hu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Qi Wang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jiwen Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Lei Xing
- Key Lab of Submarine Geoscience and Prospecting, College of Marine Geosciences, Ocean University of China, China
| | - Xin Zhang
- CAS Key Laboratory of Marine Geology and Environment and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuqing Wang
- Trier College of Sustainable Technology, Yantai University, Yantai 264005, China
| | - Xiaoshou Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Grassi E, Montefalcone M, Cesaroni L, Guidi L, Balsamo M, Semprucci F. Taxonomic and functional nematode diversity in Maldivian coral degradation zones: patterns across reef typologies and depths. PeerJ 2022; 10:e13644. [PMID: 35791363 PMCID: PMC9250765 DOI: 10.7717/peerj.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
The intensification of dredging and infilling activities in lagoons and on coral reefs are common practices in the Maldivian archipelago, and these activities alter the biodiversity of the bioconstructors and the functioning of the ecosystem. The alteration of environmental factors can also affect inconspicuous fauna, such as free-living nematodes. The implications of a reduction in biodiversity may transcend decreased taxonomic diversity, resulting in changes in functional diversity and redundancy; however, how the environmental conditions and human pressure affects the functionality of nematodes in Maldivian coral degradation zones (CDZs) remain poorly understood. In this paper, we examined changes in the taxonomic and functional diversity and the functional redundancy in nematode communities regarding the geographic location (atolls with various levels of human pressure), the exposure and topography of the reef (lagoon and ocean), the slope of the reef, and the depth. The functional diversity and redundancy were evaluated by considering two main biological traits of nematodes: i) the trophic strategy, and ii) the life strategy. The extremely high number of nematode genera observed in the Maldives is supported by the high complexity of the carbonate sediments. The reef exposure and depth were the most relevant environmental factors that influenced the taxonomic and functional diversity. The functional diversity, according to the trophic strategies, mirrored the taxonomic diversity because the adaptive plasticity of nematode buccal cavity structures is closely associated with the high biodiversity of the phylum. The high abundance of k-strategists in ocean reefs may indicate a higher ecological quality when compared to lagoon reefs; however, the absence of significant differences in life strategy functional diversity and functional redundancy indicates that a recovery process is underway. Analyses of nematode communities should be combined with standard investigations of reef bioconstructors during monitoring activities to assess the vulnerability of CDZ systems to future disturbances and facilitate the adoption of the most appropriate preventative actions.
Collapse
Affiliation(s)
- Eleonora Grassi
- DiSB, University of Urbino, Urbino, Italy,Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | | | | | | | - Maria Balsamo
- DiSB, University of Urbino, Urbino, Italy,Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| | - Federica Semprucci
- DiSB, University of Urbino, Urbino, Italy,Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy
| |
Collapse
|
4
|
Sheehy L, Cutler J, Weedall GD, Rae R. Microbiome Analysis of Malacopathogenic Nematodes Suggests No Evidence of a Single Bacterial Symbiont Responsible for Gastropod Mortality. Front Immunol 2022; 13:878783. [PMID: 35515005 PMCID: PMC9065361 DOI: 10.3389/fimmu.2022.878783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Nematodes and bacteria are prevalent in soil ecosystems, and some have evolved symbiotic relationships. In some cases, symbionts carry out highly specialized functions: a prime example being entomopathogenic nematodes (EPNs), which vector bacteria (Xenorhabdus or Photorhabdus) into insect hosts, killing them to provide a food source for the nematodes. It is thought that the commercially available malacopathogenic (kills slugs and snails) biocontrol nematode Phasmarhabditis hermaphrodita vectors a bacterium (Moraxella osloensis) into slugs to kill them. To investigate this further we used a metagenomic approach to profile the bacteria present in the commercial strain of P. hermaphrodita, a wild strain of P. hermaphrodita and two other Phasmarhabditis species (P. californica and P. neopapillosa), after they had killed their slug host (Deroceras invadens). We show that these nematodes do not exclusively associate with one bacterium but a range of species, with members of the phyla Pseudomonadota, Bacillota, Actinobacteriota and Bacteroidota the most prevalent. The commercial strain of P. hermaphrodita had the least diverse bacterial community. Furthermore, we found that the bacterium P. hermaphrodita has been cultured on for 25 years is not the expected species M. osloensis but is Psychrobacter spp. and the only strain of the Phasmarhabditis species to associate with Psychrobacter spp. was the commercial strain of P. hermaphrodita. In summary, we found no evidence to show that P. hermaphrodita rely exclusively on one bacterium to cause host mortality but found variable and diverse bacterial communities associated with these nematodes in their slug hosts.
Collapse
Affiliation(s)
- Laura Sheehy
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - James Cutler
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gareth D Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Robbie Rae
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
5
|
García-Sánchez AM, Miller AZ, Caldeira AT, Cutillas C. Bacterial communities from Trichuris spp. A contribution to deciphering the role of parasitic nematodes as vector of pathogens. Acta Trop 2022; 226:106277. [PMID: 34919951 DOI: 10.1016/j.actatropica.2021.106277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/25/2023]
Abstract
Microbiome taxa associated with parasitic nematodes is unknown. These invertebrate parasites could act not only as reservoirs and vectors for horizontally transferred virulence factors, but could also provide a potential pool of future emerging pathogens. Trichuris trichiura and Trichuris suis are geohelminths parasitizing the caecum of primates, including humans, and pigs, respectively. The present work is a preliminary study to evaluate the bacterial communities associated with T. trichiura and T. suis, using High Throughput Sequencing and checking the possible presence of pathogens in these nematodes, to determine whether parasitic helminths act as vectors for bacterial pathogens in human and animal hosts. Five T. trichiura adult specimens were obtained from the caecum of macaque (Macaca sylvanus) and two T. suis adults were collected from the caecum of swine (Sus scrofa domestica). The 16S rRNA gene HTS approach was employed to investigate the composition and diversity of bacterial communities in Trichuris spp., with special emphasis at its intestinal level. All samples showed a rich colonization by bacteria, included, preferently, in the phyla Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria and Verrucomicrobia. A total of 36 phyla and more than 200 families were identified in the samples. Potential pathogen bacteria were detected in these helminths related to the genera Bartonella, Mycobacterium, Rickettsia, Salmonella, Escherichia/Shigella, Aeromonas and Clostridium. The presence of pathogenic bacteria in Trichuris spp. would position these species as a new threat to humans since these nematodes could spread new diseases. This study will also contribute to the understanding of the host-microbiota relation.
Collapse
|
6
|
Paredes GF, Viehboeck T, Lee R, Palatinszky M, Mausz MA, Reipert S, Schintlmeister A, Maier A, Volland JM, Hirschfeld C, Wagner M, Berry D, Markert S, Bulgheresi S, König L. Anaerobic Sulfur Oxidation Underlies Adaptation of a Chemosynthetic Symbiont to Oxic-Anoxic Interfaces. mSystems 2021; 6:e0118620. [PMID: 34058098 PMCID: PMC8269255 DOI: 10.1128/msystems.01186-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
Chemosynthetic symbioses occur worldwide in marine habitats, but comprehensive physiological studies of chemoautotrophic bacteria thriving on animals are scarce. Stilbonematinae are coated by thiotrophic Gammaproteobacteria. As these nematodes migrate through the redox zone, their ectosymbionts experience varying oxygen concentrations. However, nothing is known about how these variations affect their physiology. Here, by applying omics, Raman microspectroscopy, and stable isotope labeling, we investigated the effect of oxygen on "Candidatus Thiosymbion oneisti." Unexpectedly, sulfur oxidation genes were upregulated in anoxic relative to oxic conditions, but carbon fixation genes and incorporation of 13C-labeled bicarbonate were not. Instead, several genes involved in carbon fixation were upregulated under oxic conditions, together with genes involved in organic carbon assimilation, polyhydroxyalkanoate (PHA) biosynthesis, nitrogen fixation, and urea utilization. Furthermore, in the presence of oxygen, stress-related genes were upregulated together with vitamin biosynthesis genes likely necessary to withstand oxidative stress, and the symbiont appeared to proliferate less. Based on its physiological response to oxygen, we propose that "Ca. T. oneisti" may exploit anaerobic sulfur oxidation coupled to denitrification to proliferate in anoxic sand. However, the ectosymbiont would still profit from the oxygen available in superficial sand, as the energy-efficient aerobic respiration would facilitate carbon and nitrogen assimilation. IMPORTANCE Chemoautotrophic endosymbionts are famous for exploiting sulfur oxidization to feed marine organisms with fixed carbon. However, the physiology of thiotrophic bacteria thriving on the surface of animals (ectosymbionts) is less understood. One longstanding hypothesis posits that attachment to animals that migrate between reduced and oxic environments would boost sulfur oxidation, as the ectosymbionts would alternatively access sulfide and oxygen, the most favorable electron acceptor. Here, we investigated the effect of oxygen on the physiology of "Candidatus Thiosymbion oneisti," a gammaproteobacterium which lives attached to marine nematodes inhabiting shallow-water sand. Surprisingly, sulfur oxidation genes were upregulated under anoxic relative to oxic conditions. Furthermore, under anoxia, the ectosymbiont appeared to be less stressed and to proliferate more. We propose that animal-mediated access to oxygen, rather than enhancing sulfur oxidation, would facilitate assimilation of carbon and nitrogen by the ectosymbiont.
Collapse
Affiliation(s)
- Gabriela F. Paredes
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Tobias Viehboeck
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Raymond Lee
- Washington State University, School of Biological Sciences, Pullman, Washington, USA
| | - Marton Palatinszky
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Michaela A. Mausz
- University of Warwick, School of Life Sciences, Coventry, United Kingdom
| | - Siegfried Reipert
- University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Vienna, Austria
| | - Arno Schintlmeister
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- University of Vienna, Center for Microbiology and Environmental Systems Science, Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Vienna, Austria
| | - Andreas Maier
- University of Vienna, Faculty of Geosciences, Geography, and Astronomy, Department of Geography and Regional Research, Geoecology, Vienna, Austria
| | - Jean-Marie Volland
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Claudia Hirschfeld
- University of Greifswald, Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Greifswald, Germany
| | - Michael Wagner
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Aalborg University, Department of Chemistry and Bioscience, Aalborg, Denmark
| | - David Berry
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Stephanie Markert
- University of Greifswald, Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Greifswald, Germany
| | - Silvia Bulgheresi
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Lena König
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| |
Collapse
|
7
|
Caira JN, Jensen K. Electron microscopy reveals novel external specialized organs housing bacteria in eagle ray tapeworms. PLoS One 2021; 16:e0244586. [PMID: 33481793 PMCID: PMC7822281 DOI: 10.1371/journal.pone.0244586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/11/2020] [Indexed: 12/03/2022] Open
Abstract
Nutritionally-based mutualisms with bacteria are known to occur in a wide array of invertebrate phyla, although less commonly in the Platyhelminthes. Here we report what appears to be a novel example of this type of association in two geographically disparate and phylogenetically distant species of tapeworms of eagle rays-the lecanicephalidean Elicilacunosus dharmadii off the island of Borneo and the tetraphyllidean Caulobothrium multispelaeum off Senegal. Scanning and transmission electron microscopy revealed that the grooves and apertures on the outer surfaces of both tapeworms open into expansive cavities housing concentrations of bacteria. This led us to reject the original hypothesis that these structures, and their associated mucopolysaccharides, aid in attachment to the host mucosa. The cavities were found to be specialized in-foldings of the tapeworm body that were lined with particularly elongate filitriches. Given tapeworms lack a gut and employ filitriches to assist in nutrient absorption, enhanced nutrient uptake likely occurs in the cavities. Each tapeworm species appeared to host different bacterial monocultures; those in E. dharmadii were coccoid-like in form, while those in C. multispelaeum were bacillus-like. The presence of bacteria in a specialized structure of this nature suggests the structure is a symbiotic organ. Tapeworms are fully capable of obtaining their own nutrients, and thus the bacteria likely serve merely to supplement their diet. Given the bacteria were also extracellular, this structure is more consistent with a mycetome than a trophosome. To our knowledge, this is not only the first evidence of an external symbiotic organ of any type in a nutritionally-based mutualism, but also the first description of a mycetome in a group of invertebrates that lacks a digestive system. The factors that might account for the independent evolution of this unique association in these unrelated tapeworms are unclear-especially given that none of their closest relatives exhibit any evidence of the phenomenon.
Collapse
Affiliation(s)
- Janine N. Caira
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Kirsten Jensen
- Department of Ecology & Evolutionary Biology and the Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
8
|
Scharhauser F, Zimmermann J, Ott JA, Leisch N, Gruber‐Vodicka HR. Morphology of obligate ectosymbionts reveals Paralaxus gen. nov.: A new circumtropical genus of marine stilbonematine nematodes. ZOOL SCR 2020; 49:379-394. [PMID: 34857981 PMCID: PMC8614112 DOI: 10.1111/zsc.12399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 11/30/2022]
Abstract
Stilbonematinae are a subfamily of conspicuous marine nematodes, distinguished by a coat of sulphur-oxidizing bacterial ectosymbionts on their cuticle. As most nematodes, the worm hosts have a relatively simple anatomy and few taxonomically informative characters, and this has resulted in numerous taxonomic reassignments and synonymizations. Recent studies using a combination of morphological and molecular traits have helped to improve the taxonomy of Stilbonematinae but also raised questions on the validity of several genera. Here, we describe a new circumtropically distributed genus Paralaxus (Stilbonematinae) with three species: Paralaxus cocos sp. nov., P. bermudensis sp. nov. and P. columbae sp. nov. We used single worm metagenomes to generate host 18S rRNA and cytochrome c oxidase I (COI) as well as symbiont 16S rRNA gene sequences. Intriguingly, COI alignments and primer matching analyses suggest that the COI is not suitable for PCR-based barcoding approaches in Stilbonematinae as the genera have a highly diverse base composition and no conserved primer sites. The phylogenetic analyses of all three gene sets, however, confirm the morphological assignments and support the erection of the new genus Paralaxus as well as corroborate the status of the other stilbonematine genera. Paralaxus most closely resembles the stilbonematine genus Laxus in overlapping sets of diagnostic features but can be distinguished from Laxus by the morphology of the genus-specific symbiont coat. Our re-analyses of key parameters of the symbiont coat morphology as character for all Stilbonematinae genera show that with amended descriptions, including the coat, highly reliable genus assignments can be obtained.
Collapse
Affiliation(s)
- Florian Scharhauser
- Department of Limnology and Bio‐OceanographyUniversity of ViennaViennaAustria
| | | | - Jörg A. Ott
- Department of Limnology and Bio‐OceanographyUniversity of ViennaViennaAustria
| | | | | |
Collapse
|
9
|
Murakami T, Onouchi S, Igai K, Ohkuma M, Hongoh Y. Ectosymbiotic bacterial microbiota densely colonize the surface of thelastomatid nematodes in the gut of the wood-feeding cockroach Panesthia angustipennis. FEMS Microbiol Ecol 2019; 95:5250881. [PMID: 30561598 DOI: 10.1093/femsec/fiy238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/14/2018] [Indexed: 12/30/2022] Open
Abstract
Cockroaches generally harbor thelastomatid nematodes (pinworms) in their gut. In this study, we discovered that the surfaces of two undescribed thelastomatid species in the hindgut of the wood-feeding cockroach Panesthia angustipennis were consistently and densely colonized by bacteria. Epifluorescence microscopy using 4',6-diamidino-2-phenylindole and transmission electron microscopy revealed that several distinct morphotypes of bacteria covered almost the entire body surface of the nematodes in single or multiple layers. Sequencing analysis of 16S rRNA amplicons of either entire nematodes or sections of nematode body surfaces indicated that the associated bacterial microbiota consisted of several dominant phylotypes belonging to either Dysgonomonadaceae (Bacteroidales termite cluster V), Rikennellaceae or Ruminococcaceae. These phylotypes formed clades with sequences previously obtained from cockroach and/or termite guts. Comparisons of the bacterial community structure of the entire cockroach hindgut microbiota vs the nematode-associated microbiota suggested that these dominant bacterial phylotypes preferentially colonized the nematode surface. The two nematode species shared most of the dominant bacterial phylotypes, but the bacterial community structures differed significantly. Colonization by five predominant phylotypes was confirmed by fluorescence in situ hybridization analysis using phylotype-specific probes. Our study provides fundamental information on this previously unknown ectosymbiosis between gut bacteria and thelastomatid pinworms.
Collapse
Affiliation(s)
- Takumi Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-W3-48 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Shu Onouchi
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-W3-48 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Katsura Igai
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-W3-48 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyada, Tsukuba, Ibaraki 305-0074, Japan
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-W3-48 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyada, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
10
|
Schuelke T, Pereira TJ, Hardy SM, Bik HM. Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats. Mol Ecol 2018; 27:1930-1951. [DOI: 10.1111/mec.14539] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Taruna Schuelke
- Department of Nematology; University of California, Riverside; Riverside CA USA
| | - Tiago José Pereira
- Department of Nematology; University of California, Riverside; Riverside CA USA
| | - Sarah M. Hardy
- School of Fisheries and Ocean Sciences; University of Alaska; Fairbanks AK USA
| | - Holly M. Bik
- Department of Nematology; University of California, Riverside; Riverside CA USA
| |
Collapse
|
11
|
Leisch N, Pende N, Weber PM, Gruber-Vodicka HR, Verheul J, Vischer NOE, Abby SS, Geier B, den Blaauwen T, Bulgheresi S. Asynchronous division by non-ring FtsZ in the gammaproteobacterial symbiont of Robbea hypermnestra. Nat Microbiol 2016; 2:16182. [PMID: 27723729 DOI: 10.1038/nmicrobiol.2016.182] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/26/2016] [Indexed: 11/10/2022]
Abstract
The reproduction mode of uncultivable microorganisms deserves investigation as it can largely diverge from conventional transverse binary fission. Here, we show that the rod-shaped gammaproteobacterium thriving on the surface of the Robbea hypermnestra nematode divides by FtsZ-based, non-synchronous invagination of its poles-that is, the host-attached and fimbriae-rich pole invaginates earlier than the distal one. We conclude that, in a naturally occurring animal symbiont, binary fission is host-oriented and does not require native FtsZ to polymerize into a ring at any septation stage.
Collapse
Affiliation(s)
- Nikolaus Leisch
- Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Nika Pende
- Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Philipp M Weber
- Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | | | - Jolanda Verheul
- Bacterial Cell Biology, Swammerdam Institute of Life Sciences, Faculty of Science, University of Amsterdam, Boelelaan 1108, 1081 HZ Amsterdam, Netherlands
| | - Norbert O E Vischer
- Bacterial Cell Biology, Swammerdam Institute of Life Sciences, Faculty of Science, University of Amsterdam, Boelelaan 1108, 1081 HZ Amsterdam, Netherlands
| | - Sophie S Abby
- Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Benedikt Geier
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Tanneke den Blaauwen
- Bacterial Cell Biology, Swammerdam Institute of Life Sciences, Faculty of Science, University of Amsterdam, Boelelaan 1108, 1081 HZ Amsterdam, Netherlands
| | - Silvia Bulgheresi
- Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
12
|
Abstract
As much as vertical transmission of microbial symbionts requires their deep integration into the host reproductive and developmental biology, symbiotic lifestyle might profoundly affect bacterial growth and proliferation. This review describes the reproductive oddities displayed by bacteria associated - more or less intimately - with multicellular eukaryotes.
Collapse
Affiliation(s)
- Silvia Bulgheresi
- Department of Ecogenetics & Systems Biology, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| |
Collapse
|
13
|
Zimmermann J, Wentrup C, Sadowski M, Blazejak A, Gruber-Vodicka HR, Kleiner M, Ott JA, Cronholm B, De Wit P, Erséus C, Dubilier N. Closely coupled evolutionary history of ecto- and endosymbionts from two distantly related animal phyla. Mol Ecol 2016; 25:3203-23. [PMID: 26826340 DOI: 10.1111/mec.13554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/23/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022]
Abstract
The level of integration between associated partners can range from ectosymbioses to extracellular and intracellular endosymbioses, and this range has been assumed to reflect a continuum from less intimate to evolutionarily highly stable associations. In this study, we examined the specificity and evolutionary history of marine symbioses in a group of closely related sulphur-oxidizing bacteria, called Candidatus Thiosymbion, that have established ecto- and endosymbioses with two distantly related animal phyla, Nematoda and Annelida. Intriguingly, in the ectosymbiotic associations of stilbonematine nematodes, we observed a high degree of congruence between symbiont and host phylogenies, based on their ribosomal RNA (rRNA) genes. In contrast, for the endosymbioses of gutless phallodriline annelids (oligochaetes), we found only a weak congruence between symbiont and host phylogenies, based on analyses of symbiont 16S rRNA genes and six host genetic markers. The much higher degree of congruence between nematodes and their ectosymbionts compared to those of annelids and their endosymbionts was confirmed by cophylogenetic analyses. These revealed 15 significant codivergence events between stilbonematine nematodes and their ectosymbionts, but only one event between gutless phallodrilines and their endosymbionts. Phylogenetic analyses of 16S rRNA gene sequences from 50 Cand. Thiosymbion species revealed seven well-supported clades that contained both stilbonematine ectosymbionts and phallodriline endosymbionts. This closely coupled evolutionary history of marine ecto- and endosymbionts suggests that switches between symbiotic lifestyles and between the two host phyla occurred multiple times during the evolution of the Cand. Thiosymbion clade, and highlights the remarkable flexibility of these symbiotic bacteria.
Collapse
Affiliation(s)
- Judith Zimmermann
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Cecilia Wentrup
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany.,Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Miriam Sadowski
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Anna Blazejak
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | | | - Manuel Kleiner
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany.,Department of Geoscience, University of Calgary, Calgary, 2500 University Drive, AB, T2N 1N4, Canada
| | - Jörg A Ott
- Department of Limnology and Oceanography, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Bodil Cronholm
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden
| | - Pierre De Wit
- Department of Marine Sciences, Sven Lovén Centre for Marine Sciences Tjärnö, University of Gothenburg, Hättebäcksvägen 7, SE-452 96, Strömstad, Sweden
| | - Christer Erséus
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany.,Faculty of Biology/Chemistry, University of Bremen, Bibliothekstrasse 1, D-28359, Bremen, Germany
| |
Collapse
|
14
|
Abstract
Be it their pervasiveness, experimental tractability or their impact on human health and agriculture, nematode–bacterium associations are far-reaching research subjects. Although the omics hype did not spare them and helped reveal mechanisms of communication and exchange between the associated partners, a huge amount of knowledge still awaits to be harvested from their study. Here, I summarize and compare the kind of research that has been already performed on the model nematode Caenorhabditis elegans and on symbiotic nematodes, both marine and entomopathogenic ones. The emerging picture highlights how complementing genetic studies with ecological ones (in the case of well-established genetic model systems such as C. elegans) and vice versa (in the case of the yet uncultured Stilbonematinae) will deepen our understanding of how microbial symbioses evolved and how they impact our environment. Nematode–bacterium associations are major research subjects. Complementing genetic studies with ecological ones is necessary to boost our understanding of how microbial symbioses evolved and how they impact the environment.
Collapse
Affiliation(s)
- Silvia Bulgheresi
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
15
|
Brown AMV, Howe DK, Wasala SK, Peetz AB, Zasada IA, Denver DR. Comparative Genomics of a Plant-Parasitic Nematode Endosymbiont Suggest a Role in Nutritional Symbiosis. Genome Biol Evol 2015; 7:2727-46. [PMID: 26362082 PMCID: PMC4607532 DOI: 10.1093/gbe/evv176] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacterial mutualists can modulate the biochemical capacity of animals. Highly coevolved nutritional mutualists do this by synthesizing nutrients missing from the host’s diet. Genomics tools have advanced the study of these partnerships. Here we examined the endosymbiont Xiphinematobacter (phylum Verrucomicrobia) from the dagger nematode Xiphinema americanum, a migratory ectoparasite of numerous crops that also vectors nepovirus. Previously, this endosymbiont was identified in the gut, ovaries, and eggs, but its role was unknown. We explored the potential role of this symbiont using fluorescence in situ hybridization, genome sequencing, and comparative functional genomics. We report the first genome of an intracellular Verrucomicrobium and the first exclusively intracellular non-Wolbachia nematode symbiont. Results revealed that Xiphinematobacter had a small 0.916-Mb genome with only 817 predicted proteins, resembling genomes of other mutualist endosymbionts. Compared with free-living relatives, conserved proteins were shorter on average, and there was large-scale loss of regulatory pathways. Despite massive gene loss, more genes were retained for biosynthesis of amino acids predicted to be essential to the host. Gene ontology enrichment tests showed enrichment for biosynthesis of arginine, histidine, and aromatic amino acids, as well as thiamine and coenzyme A, diverging from the profiles of relatives Akkermansia muciniphilia (in the human colon), Methylacidiphilum infernorum, and the mutualist Wolbachia from filarial nematodes. Together, these features and the location in the gut suggest that Xiphinematobacter functions as a nutritional mutualist, supplementing essential nutrients that are depleted in the nematode diet. This pattern points to evolutionary convergence with endosymbionts found in sap-feeding insects.
Collapse
Affiliation(s)
| | - Dana K Howe
- Department of Integrative Biology, Oregon State University
| | | | - Amy B Peetz
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, Oregon
| | - Inga A Zasada
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, Oregon
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University
| |
Collapse
|
16
|
Sitnikova TY, Zemskaya TI, Chernitsyna SM, Likhoshway AV, Klimenkov IV, Naumova TV. Structure of biocenoses formed on bitumen mounds in the abyssal zone of Lake Baikal. RUSS J ECOL+ 2015. [DOI: 10.1134/s106741361503011x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Ott JA, Gruber-Vodicka HR, Leisch N, Zimmermann J. Phylogenetic confirmation of the genus Robbea (Nematoda: Desmodoridae, Stilbonematinae) with the description of three new species. SYST BIODIVERS 2014; 12:434-455. [PMID: 27630534 PMCID: PMC5002938 DOI: 10.1080/14772000.2014.941038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/12/2014] [Indexed: 11/04/2022]
Abstract
The Stilbonematinae are a monophyletic group of marine nematodes that are characterized by a coat of thiotrophic bacterial symbionts. Among the ten known genera of the Stilbonematinae, the genus Robbea Gerlach 1956 had a problematic taxonomic history of synonymizations and indications of polyphyletic origin. Here we describe three new species of the genus, R. hypermnestra sp. nov., R. ruetzleri sp. nov. and R. agricola sp. nov., using conventional light microscopy, interference contrast microscopy and SEM. We provide 18S rRNA gene sequences of all three species, together with new sequences for the genera Catanema and Leptonemella. Both our morphological analyses as well as our phylogenetic reconstructions corroborate the genus Robbea. In our phylogenetic analysis the three species of the genus Robbea form a distinct clade in the Stilbonematinae radiation and are clearly separated from the clade of the genus Catanema, which has previously been synonymized with Robbea. Surprisingly, in R. hypermnestra sp. nov. all females are intersexes exhibiting male sexual characters. Our extended dataset of Stilbonematinae 18S rRNA genes for the first time allows the identification of the different genera, e.g. in a barcoding approach. http://zoobank.org/urn:lsid:zoobank.org:pub:D37C3F5A-CF2B-40E6-8B09-3C72EEED60B0.
Collapse
Affiliation(s)
- Jörg A. Ott
- Department of Limnology and Biooceanography, University of Vienna, Althanstr. 14, A-1090Vienna, Austria
| | - Harald R. Gruber-Vodicka
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359Bremen, Germany
| | - Nikolaus Leisch
- Department of Ecogenomics and System Biology, University of Vienna, Althanstr. 14, A-1090Vienna, Austria
| | - Judith Zimmermann
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359Bremen, Germany
| |
Collapse
|
18
|
Yousuf B, Kumar R, Mishra A, Jha B. Unravelling the carbon and sulphur metabolism in coastal soil ecosystems using comparative cultivation-independent genome-level characterisation of microbial communities. PLoS One 2014; 9:e107025. [PMID: 25225969 PMCID: PMC4167329 DOI: 10.1371/journal.pone.0107025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/07/2014] [Indexed: 11/23/2022] Open
Abstract
Bacterial autotrophy contributes significantly to the overall carbon balance, which stabilises atmospheric CO2 concentration and decelerates global warming. Little attention has been paid to different modes of carbon/sulphur metabolism mediated by autotrophic bacterial communities in terrestrial soil ecosystems. We studied these pathways by analysing the distribution and abundance of the diagnostic metabolic marker genes cbbM, apsA and soxB, which encode for ribulose-1,5-bisphosphate carboxylase/oxygenase, adenosine phosphosulphate reductase and sulphate thiohydrolase, respectively, among different contrasting soil types. Additionally, the abundance of community members was assessed by quantifying the gene copy numbers for 16S rRNA, cbbL, cbbM, apsA and soxB. Distinct compositional differences were observed among the clone libraries, which revealed a dominance of phylotypes associated with carbon and sulphur cycling, such as Gammaproteobacteria (Thiohalomonas, Allochromatium, Chromatium, Thiomicrospira) and Alphaproteobacteria (Rhodopseudomonas, Rhodovulum, Paracoccus). The rhizosphere soil was devoid of sulphur metabolism, as the soxB and apsA genes were not observed in the rhizosphere metagenome, which suggests the absence or inadequate representation of sulphur-oxidising bacteria. We hypothesise that the novel Gammaproteobacteria sulphur oxidisers might be actively involved in sulphur oxidation and inorganic carbon fixation, particularly in barren saline soil ecosystems, suggesting their significant putative ecological role and contribution to the soil carbon pool.
Collapse
Affiliation(s)
- Basit Yousuf
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Raghawendra Kumar
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Avinash Mishra
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
- * E-mail: (AM); (BJ)
| | - Bhavanath Jha
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
- * E-mail: (AM); (BJ)
| |
Collapse
|
19
|
Size-independent symmetric division in extraordinarily long cells. Nat Commun 2014; 5:4803. [PMID: 25221974 PMCID: PMC4175584 DOI: 10.1038/ncomms5803] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/24/2014] [Indexed: 11/17/2022] Open
Abstract
Two long-standing paradigms in biology are that cells belonging to the same population exhibit little deviation from their average size and that symmetric cell division is size limited. Here, ultrastructural, morphometric and immunocytochemical analyses reveal that two Gammaproteobacteria attached to the cuticle of the marine nematodes Eubostrichus fertilis and E. dianeae reproduce by constricting a single FtsZ ring at midcell despite being 45 μm and 120 μm long, respectively. In the crescent-shaped bacteria coating E. fertilis, symmetric FtsZ-based fission occurs in cells with lengths spanning one order of magnitude. In the E. dianeae symbiont, formation of a single functional FtsZ ring makes this the longest unicellular organism in which symmetric division has ever been observed. In conclusion, the reproduction modes of two extraordinarily long bacterial cells indicate that size is not the primary trigger of division and that yet unknown mechanisms time the localization of both DNA and the septum. Known mechanisms that determine symmetric division-plane positioning during cell division are unlikely to operate effectively over very long distances. Pende et al. show that extraordinarily long Gammaproteobacteria divide symmetrically despite reaching 120 microns in length
Collapse
|
20
|
Armenteros M, Ruiz-Abierno A, Decraemer W. Taxonomy of Stilbonematinae (Nematoda: Desmodoridae): description of two new and three known species and phylogenetic relationships within the family. Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maickel Armenteros
- Centro de Investigaciones Marinas; Universidad de La Habana; 16 # 114, Playa CP 11300 Habana Cuba
| | - Alexei Ruiz-Abierno
- Centro de Investigaciones Marinas; Universidad de La Habana; 16 # 114, Playa CP 11300 Habana Cuba
| | - Wilfrida Decraemer
- Royal Belgian Institute of Natural Sciences; Rue Vautier # 29 B-1000 Brussels Belgium
- Biology Department; Ghent University; Ledeganckstraat # 35 B-9000 Ghent Belgium
| |
Collapse
|
21
|
Ott JA, Leisch N, Gruber-Vodicka HR. Eubostrichus fertilis sp. n., a new marine nematode (Desmodoridae: Stilbonematinae) with an extraordinary reproductive potential from Belize, Central America. NEMATOLOGY 2014. [DOI: 10.1163/15685411-00002807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Eubostrichus fertilissp. n. is described from fine subtidal sands in the Belize Barrier Reef system using LM and SEM illustrations and the sequence of the 18S rRNA gene. The new species is one of the smallest (mature specimens ranging from 1.88 to 3.03 mm) and the stoutest (a = 36-80) of all previously describedEubostrichusspecies. The closest relatives areE. parasitiferusandE. hopperi. It differs from the former in the more posterior position of the vulva and the postanal porids, and from the latter in the smaller size of the amphids, the shorter cephalic setae and the shape of the tail. Furthermore, it is remarkable for the prominent extent of the female genital system. Females have up to 18 eggs of similar size in their uteri. The body of the worm is covered by large (up to 45 μm long) crescent-shaped bacteria attached with both poles to the cuticle of the worm in a spiral pattern. The genusEubostrichusis phylogenetically well supported on the basis of the 18S rRNA gene sequence.Eubostrichus gerlachinom. nov. (= E. parasitiferusapudGerlach, 1963necChitwood, 1936) is proposed.
Collapse
Affiliation(s)
- Jörg A. Ott
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Nikolaus Leisch
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Harald R. Gruber-Vodicka
- Department of Symbiosis, Max-Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| |
Collapse
|
22
|
Flot JF, Bauermeister J, Brad T, Hillebrand-Voiculescu A, Sarbu SM, Dattagupta S. Niphargus-Thiothrix associations may be widespread in sulphidic groundwater ecosystems: evidence from southeastern Romania. Mol Ecol 2013; 23:1405-1417. [PMID: 24044653 PMCID: PMC4282457 DOI: 10.1111/mec.12461] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/06/2013] [Accepted: 07/13/2013] [Indexed: 12/03/2022]
Abstract
Niphargus is a speciose amphipod genus found in groundwater habitats across Europe. Three Niphargus species living in the sulphidic Frasassi caves in Italy harbour sulphur-oxidizing Thiothrix bacterial ectosymbionts. These three species are distantly related, implying that the ability to form ectosymbioses with Thiothrix may be common among Niphargus. Therefore, Niphargus–Thiothrix associations may also be found in sulphidic aquifers other than Frasassi. In this study, we examined this possibility by analysing niphargids of the genera Niphargus and Pontoniphargus collected from the partly sulphidic aquifers of the Southern Dobrogea region of Romania, which are accessible through springs, wells and Movile Cave. Molecular and morphological analyses revealed seven niphargid species in this region. Five of these species occurred occasionally or exclusively in sulphidic locations, whereas the remaining two were restricted to nonsulphidic areas. Thiothrix were detected by PCR on all seven Dobrogean niphargid species and observed using microscopy to be predominantly attached to their hosts' appendages. 16S rRNA gene sequences of the Thiothrix epibionts fell into two main clades, one of which (herein named T4) occurred solely on niphargids collected in sulphidic locations. The other Thiothrix clade was present on niphargids from both sulphidic and nonsulphidic areas and indistinguishable from the T3 ectosymbiont clade previously identified on Frasassi-dwelling Niphargus. Although niphargids from Frasassi and Southern Dobrogea are not closely related, the patterns of their association with Thiothrix are remarkably alike. The finding of similar Niphargus–Thiothrix associations in aquifers located 1200 km apart suggests that they may be widespread in European groundwater ecosystems.
Collapse
Affiliation(s)
- Jean-François Flot
- Courant Research Center Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077, Göttingen, Germany; Max Planck Institute for Dynamics and Self-Organization, Biological Physics and Evolutionary Dynamics, Bunsenstraße 10, 37073, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Leisch N, Verheul J, Heindl NR, Gruber-Vodicka HR, Pende N, den Blaauwen T, Bulgheresi S. Growth in width and FtsZ ring longitudinal positioning in a gammaproteobacterial symbiont. Curr Biol 2013; 22:R831-2. [PMID: 23058799 DOI: 10.1016/j.cub.2012.08.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rod-shaped bacteria usually grow in length and place their FtsZ ring and division site at midcell, perpendicular to their long axis [1,2]. Here, we provide morphometric and immunocytochemical evidence that a nematode-associated gammaproteobacterium [3,4] grows in width, sets a constricting FtsZ ring parallel to its long axis, and divides longitudinally by default. Remarkably, the newly described FtsZ ring appears to be not only 90° shifted with respect to model rods, but also elliptical and discontinuous. This reveals an unexpected versatility of the gammaproteobacterial cytokinetic machinery.
Collapse
Affiliation(s)
- Nikolaus Leisch
- University of Vienna, Department of Genetics in Ecology, Althanstrasse 14, 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
24
|
Bauermeister J, Ramette A, Dattagupta S. Repeatedly evolved host-specific ectosymbioses between sulfur-oxidizing bacteria and amphipods living in a cave ecosystem. PLoS One 2012; 7:e50254. [PMID: 23209690 PMCID: PMC3510229 DOI: 10.1371/journal.pone.0050254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/17/2012] [Indexed: 11/18/2022] Open
Abstract
Ectosymbioses between invertebrates and sulfur-oxidizing bacteria are widespread in sulfidic marine environments and have evolved independently in several invertebrate phyla. The first example from a freshwater habitat, involving Niphargus ictus amphipods and filamentous Thiothrix ectosymbionts, was recently reported from the sulfide-rich Frasassi caves in Italy. Subsequently, two new Niphargus species, N. frasassianus and N. montanarius, were discovered within Frasassi and found to co-occur with N. ictus. Using a variety of microscopic and molecular techniques, we found that all three Frasassi-dwelling Niphargus species harbor Thiothrix ectosymbionts, which belong to three distinct phylogenetic clades (named T1, T2, and T3). T1 and T3 Thiothrix dominate the N. frasassianus ectosymbiont community, whereas T2 and T3 are prevalent on N. ictus and N. montanarius. Relative distribution patterns of the three ectosymbionts are host species-specific and consistent over different sampling locations and collection years. Free-living counterparts of T1-T3 are rare or absent in Frasassi cave microbial mats, suggesting that ectosymbiont transmission among Niphargus occurs primarily through inter- or intraspecific inoculations. Phylogenetic analyses indicate that the Niphargus-Thiothrix association has evolved independently at least two times. While ectosymbioses with T1 and T2 may have been established within Frasassi, T3 ectosymbionts seem to have been introduced to the cave system by Niphargus.
Collapse
Affiliation(s)
- Jan Bauermeister
- Geomicrobiology and Symbiosis Group, Courant Research Center Geobiology, University of Göttingen, Göttingen, Germany
| | - Alban Ramette
- HGF-MPG Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sharmishtha Dattagupta
- Geomicrobiology and Symbiosis Group, Courant Research Center Geobiology, University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
25
|
Murfin KE, Dillman AR, Foster JM, Bulgheresi S, Slatko BE, Sternberg PW, Goodrich-Blair H. Nematode-bacterium symbioses--cooperation and conflict revealed in the "omics" age. THE BIOLOGICAL BULLETIN 2012; 223:85-102. [PMID: 22983035 PMCID: PMC3508788 DOI: 10.1086/bblv223n1p85] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nematodes are ubiquitous organisms that have a significant global impact on ecosystems, economies, agriculture, and human health. The applied importance of nematodes and the experimental tractability of many species have promoted their use as models in various research areas, including developmental biology, evolutionary biology, ecology, and animal-bacterium interactions. Nematodes are particularly well suited for the investigation of host associations with bacteria because all nematodes have interacted with bacteria during their evolutionary history and engage in a variety of association types. Interactions between nematodes and bacteria can be positive (mutualistic) or negative (pathogenic/parasitic) and may be transient or stably maintained (symbiotic). Furthermore, since many mechanistic aspects of nematode-bacterium interactions are conserved, their study can provide broader insights into other types of associations, including those relevant to human diseases. Recently, genome-scale studies have been applied to diverse nematode-bacterial interactions and have helped reveal mechanisms of communication and exchange between the associated partners. In addition to providing specific information about the system under investigation, these studies also have helped inform our understanding of genome evolution, mutualism, and innate immunity. In this review we discuss the importance and diversity of nematodes, "omics"' studies in nematode-bacterial systems, and the wider implications of the findings.
Collapse
Affiliation(s)
- Kristen E. Murfin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Adler R. Dillman
- HHMI and Division of Biology, California Institute of Technology, 156-29, Pasadena, CA 91125, USA
| | - Jeremy M. Foster
- Parasitology Division, New England Biolabs, Inc., 240 County Rd, Ipswich, MA 01938, USA
| | - Silvia Bulgheresi
- Department of Genetics in Ecology, University of Vienna, Vienna, Austria
| | - Barton E. Slatko
- Parasitology Division, New England Biolabs, Inc., 240 County Rd, Ipswich, MA 01938, USA
| | - Paul W. Sternberg
- HHMI and Division of Biology, California Institute of Technology, 156-29, Pasadena, CA 91125, USA
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
- Corresponding author Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, , phone: 608-265-4537, fax: 608-262-9865
| |
Collapse
|
26
|
Bulgheresi S. Calling the roll on Laxus oneistus immune defense molecules. Symbiosis 2012; 55:127-135. [PMID: 22448084 PMCID: PMC3294214 DOI: 10.1007/s13199-012-0157-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 02/01/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Silvia Bulgheresi
- Center of Anatomy and Cell Biology, Laboratories of Genome Dynamics, Medical University of Vienna, Währingerstrasse 10, 1090 Vienna, Austria
- Department of Genetics in Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
27
|
Bhadury P, Bik H, Lambshead JD, Austen MC, Smerdon GR, Rogers AD. Molecular diversity of fungal phylotypes co-amplified alongside nematodes from coastal and deep-sea marine environments. PLoS One 2011; 6:e26445. [PMID: 22046287 PMCID: PMC3202548 DOI: 10.1371/journal.pone.0026445] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 09/26/2011] [Indexed: 11/18/2022] Open
Abstract
Nematodes and fungi are both ubiquitous in marine environments, yet few studies have investigated relationships between these two groups. Microbial species share many well-documented interactions with both free-living and parasitic nematode species, and limited data from previous studies have suggested ecological associations between fungi and nematodes in benthic marine habitats. This study aimed to further document the taxonomy and distribution of fungal taxa often co-amplified from nematode specimens. A total of 15 fungal 18S rRNA phylotypes were isolated from nematode specimens representing both deep-sea and shallow water habitats; all fungal isolates displayed high pairwise sequence identities with published data in Genbank (99–100%) and unpublished high-throughput 454 environmental datasets (>95%). BLAST matches indicate marine fungal sequences amplified in this study broadly represent taxa within the phyla Ascomycota and Basidiomycota, and several phylotypes showed robust groupings with known taxa in phylogenetic topologies. In addition, some fungal phylotypes appeared to be present in disparate geographic habitats, suggesting cosmopolitan distributions or closely related species complexes in at least some marine fungi. The present study was only able to isolate fungal DNA from a restricted set of nematode taxa; further work is needed to fully investigate the taxonomic scope and function of nematode-fungal interactions.
Collapse
Affiliation(s)
- Punyasloke Bhadury
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Kolkata, West Bengal, India
- * E-mail: (PB); (HB)
| | - Holly Bik
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, United States of America
- School of Ocean and Earth Sciences, University of Southampton, Southampton, United Kingdom
- * E-mail: (PB); (HB)
| | - John D. Lambshead
- School of Ocean and Earth Sciences, University of Southampton, Southampton, United Kingdom
| | | | | | - Alex D. Rogers
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Heindl NR, Gruber-Vodicka HR, Bayer C, Lücker S, Ott JA, Bulgheresi S. First detection of thiotrophic symbiont phylotypes in the pelagic marine environment. FEMS Microbiol Ecol 2011; 77:223-7. [PMID: 21434948 DOI: 10.1111/j.1574-6941.2011.01096.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Marine oligochaete and nematode thiotrophic symbionts (MONTS) form a phylogenetic cluster within the Gammaproteobacteria. For the symbionts that live on the nematode surface, environmental transmission is likely. However, until now, no free-living relatives have been found. In this study, we detected MONTS cluster members in offshore surface seawater of both the Caribbean and the Mediterranean Sea by PCR amplification of their 16S rRNA genes. This is the first evidence of members of this cluster in the pelagic environment. These may either be free-living forms of the symbionts or closely related, nonsymbiotic strains. In either case, their existence sheds light on the evolution of beneficial symbioses between shallow water invertebrates and sulfur-oxidizing bacteria.
Collapse
Affiliation(s)
- Niels R Heindl
- Department of Genetics in Ecology, University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
29
|
Bulgheresi S, Gruber-Vodicka HR, Heindl NR, Dirks U, Kostadinova M, Breiteneder H, Ott JA. Sequence variability of the pattern recognition receptor Mermaid mediates specificity of marine nematode symbioses. ISME JOURNAL 2011; 5:986-98. [PMID: 21228893 DOI: 10.1038/ismej.2010.198] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selection of a specific microbial partner by the host is an all-important process. It guarantees the persistence of highly specific symbioses throughout host generations. The cuticle of the marine nematode Laxus oneistus is covered by a single phylotype of sulfur-oxidizing bacteria. They are embedded in a layer of host-secreted mucus containing the mannose-binding protein Mermaid. This Ca(2+)-dependent lectin mediates symbiont aggregation and attachment to the nematode. Here, we show that Stilbonema majum-a symbiotic nematode co-occurring with L. oneistus in shallow water sediment-is covered by bacteria phylogenetically distinct to those covering L. oneistus. Mermaid cDNA analysis revealed extensive protein sequence variability in both the nematode species. We expressed three recombinant Mermaid isoforms, which based on the structural predictions display the most different carbohydrate recognition domains (CRDs). We show that the three CRDs (DNT, DDA and GDA types) possess different affinities for L. oneistus and S. majum symbionts. In particular, the GDA type, exclusively expressed by S. majum, displays highest agglutination activity towards its symbionts and lowest towards its L. oneistus symbionts. Moreover, incubation of L. oneistus in the GDA type does not result in complete symbiont detachment, whereas incubation in the other types does. This indicates that the presence of particular Mermaid isoforms on the nematode surface has a role in the attachment of specific symbionts. This is the first report of the functional role of sequence variability in a microbe-associated molecular patterns receptor in a beneficial association.
Collapse
|
30
|
Ruehland C, Dubilier N. Gamma- and epsilonproteobacterial ectosymbionts of a shallow-water marine worm are related to deep-sea hydrothermal vent ectosymbionts. Environ Microbiol 2010; 12:2312-26. [PMID: 21966922 DOI: 10.1111/j.1462-2920.2010.02256.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The marine oligochaete worm Tubificoides benedii is often found in high numbers in eutrophic coastal sediments with low oxygen and high sulfide concentrations. A dense biofilm of filamentous bacteria on the worm's tail end were morphologically described over 20 years ago, but no further studies of these epibiotic associations were done. In this study, we used fluorescence in situ hybridization and comparative sequence analysis of 16S rRNA and protein-coding genes to characterize the microbial community of the worm's tail ends. The presence of genes involved in chemoautotrophy (cbbL and cbbM) and sulfur metabolism (aprA) indicated the potential of the T. benedii microbial community for chemosynthesis. Two filamentous ectosymbionts were specific to the worm's tail ends: one belonged to the Leucothrix mucor clade within the Gammaproteobacteria and the other to the Thiovulgaceae within the Epsilonproteobacteria. Both T. benedii ectosymbionts belonged to clades that consisted almost exclusively of bacteria associated with invertebrates from deep-sea hydrothermal vents. Such close relationships between symbionts from shallow-water and deep-sea hosts that are not closely related to each other are unusual, and indicate that biogeography and host affiliation did not play a role in these associations. Instead, similarities between the dynamic environments of vents and organic-rich mudflats with their strong fluctuations in reductants and oxidants may have been the driving force behind the establishment and evolution of these symbioses.
Collapse
Affiliation(s)
- Caroline Ruehland
- Symbiosis Group, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | | |
Collapse
|
31
|
Ramos JL, Duque E, Daniels C, Molina L, Segura A. Exploiting environmental niches and the potential of environmental microbes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:275-278. [PMID: 23765879 DOI: 10.1111/j.1758-2229.2009.00072.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Juan L Ramos
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008 Granada, Spain
| | | | | | | | | |
Collapse
|