1
|
Yuan J, Deng X, Xie X, Chen L, Wei C, Feng C, Qiu G. Blind spots of universal primers and specific FISH probes for functional microbe and community characterization in EBPR systems. ISME COMMUNICATIONS 2024; 4:ycae011. [PMID: 38524765 PMCID: PMC10958769 DOI: 10.1093/ismeco/ycae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/26/2024]
Abstract
Fluorescence in situ hybridization (FISH) and 16S rRNA gene amplicon sequencing are commonly used for microbial ecological analyses in biological enhanced phosphorus removal (EBPR) systems, the successful application of which was governed by the oligonucleotides used. We performed a systemic evaluation of commonly used probes/primers for known polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs). Most FISH probes showed blind spots and covered nontarget bacterial groups. Ca. Competibacter probes showed promising coverage and specificity. Those for Ca. Accumulibacter are desirable in coverage but targeted out-group bacteria, including Ca. Competibacter, Thauera, Dechlorosoma, and some polyphosphate-accumulating Cyanobacteria. Defluviicoccus probes are good in specificity but poor in coverage. Probes targeting Tetrasphaera or Dechloromonas showed low coverage and specificity. Specifically, DEMEF455, Bet135, and Dech453 for Dechloromonas covered Ca. Accumulibacter. Special attentions are needed when using these probes to resolve the PAO/GAO phenotype of Dechloromonas. Most species-specific probes for Ca. Accumulibacter, Ca. Lutibacillus, Ca. Phosphoribacter, and Tetrasphaera are highly specific. Overall, 1.4% Ca. Accumulibacter, 9.6% Ca. Competibacter, 43.3% Defluviicoccus, and 54.0% Dechloromonas in the MiDAS database were not covered by existing FISH probes. Different 16S rRNA amplicon primer sets showed distinct coverage of known PAOs and GAOs. None of them covered all members. Overall, 520F-802R and 515F-926R showed the most balanced coverage. All primers showed extremely low coverage of Microlunatus (<36.0%), implying their probably overlooked roles in EBPR systems. A clear understanding of the strength and weaknesses of each probe and primer set is a premise for rational evaluation and interpretation of obtained community results.
Collapse
Affiliation(s)
- Jing Yuan
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Xiaojing Xie
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| |
Collapse
|
2
|
Huang H, Wei T, Wang H, Xue B, Chen S, Wang X, Wu H, Dong B, Xu Z. In-situ sludge reduction based on Mn 2+-catalytic ozonation conditioning: Feasibility study and microbial mechanisms. J Environ Sci (China) 2024; 135:185-197. [PMID: 37778794 DOI: 10.1016/j.jes.2022.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 10/03/2023]
Abstract
To improve the sludge conditioning efficiency without increasing the ozone dose, an in-situ sludge reduction process based on Mn2+-catalytic ozonation conditioning was proposed. Using ozone conditioning alone as a control, a lab-scale sequencing batch reactor coupled with ozonated sludge recycle was evaluated for its operating performance at an ozone dose of 75 mg O3/g VSS and 1.5 mmol/L Mn2+ addition. The results showed a 39.4% reduction in MLSS and an observed sludge yield of 0.236 kg MLSS/kg COD for the O3+Mn2+ group compared to the O3 group (15.3% and 0.292 kg MLSS/kg COD), accompanied by better COD, NH4+-N, TN and TP removal, improved effluent SS and limited impact on excess sludge properties. Subsequently, activity tests, BIOLOG ECO microplates and 16S rRNA sequencing were applied to elucidate the changing mechanisms of Mn2+-catalytic ozonation related to microbial action: (1) Dehydrogenase activity reached a higher peak. (2) Microbial utilization of total carbon sources had an elevated effect, up to approximately 18%, and metabolic levels of six carbon sources were also increased, especially for sugars and amino acids most pronounced. (3) The abundance of Defluviicoccus under the phylum Proteobacteria was enhanced to 12.0% and dominated in the sludge, they had strong hydrolytic activity and metabolic capacity. Denitrifying bacteria of the genus Ferruginibacter also showed an abundance of 7.6%, they contributed to the solubilization and reduction of sludge biomass. These results could guide researchers to further reduce ozonation conditioning costs, improve sludge management and provide theoretical support.
Collapse
Affiliation(s)
- Haozhe Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tingting Wei
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hui Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bing Xue
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Sisi Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiankai Wang
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Haibin Wu
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Bin Dong
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zuxin Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Diaz R, Hong S, Goel R. Effect of different types of volatile fatty acids on the performance and bacterial population in a batch reactor performing biological nutrient removal. BIORESOURCE TECHNOLOGY 2023; 388:129675. [PMID: 37625655 DOI: 10.1016/j.biortech.2023.129675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Different ratios of four volatile fatty acids (VFAs) were used as the primary feed to a laboratory scale biological nutrient reactor during four operational stages. The reactor performed efficiently over 500 days of operation with over 90% dissolved phosphorus and over 98% ammonium-nitrogen (NH4+-N) removal. Through in the first experimental phase, acetate and propionate were present in a significant proportion as carbon sources, the relative abundance of Candidatus Accumulibacter, a potential polyphosphate accumulating organism, increased from 10% to 57% and the Defluviicoccus genus, a known glycogen accumulating organism (GAO), decreased from 41% to 5%. Further tests indicated the presence of denitrifying phosphorus accumulating organisms (DPAO) belonging to Clade IIC, that could use nitrite as the electron acceptor during P-uptake. In general, VFAs favored the increase of the genus Defluviicoccus and Candidatus Accumulibacter. High relative abundance of Defluviicoccus did not affect the stability and the performance of the BNR process.
Collapse
Affiliation(s)
- Ruby Diaz
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Soklida Hong
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Maszenan AM, Bessarab I, Williams RBH, Petrovski S, Seviour RJ. The phylogeny, ecology and ecophysiology of the glycogen accumulating organism (GAO) Defluviicoccus in wastewater treatment plants. WATER RESEARCH 2022; 221:118729. [PMID: 35714465 DOI: 10.1016/j.watres.2022.118729] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
This comprehensive review looks critically what is known about members of the genus Defluviicoccus, an example of a glycogen accumulating organism (GAO), in wastewater treatment plants, but found also in other habitats. It considers the operating conditions thought to affect its performance in activated sludge plants designed to remove phosphorus microbiologically, including the still controversial view that it competes with the polyphosphate accumulating bacterium Ca. Accumulibacter for readily biodegradable substrates in the anaerobic zone receiving the influent raw sewage. It looks at its present phylogeny and what is known about it's physiology and biochemistry under the highly selective conditions of these plants, where the biomass is recycled continuously through alternative anaerobic (feed); aerobic (famine) conditions encountered there. The impact of whole genome sequence data, which have revealed considerable intra- and interclade genotypic diversity, on our understanding of its in situ behaviour is also addressed. Particular attention is paid to the problems in much of the literature data based on clone library and next generation DNA sequencing data, where Defluviicoccus identification is restricted to genus level only. Equally problematic, in many publications no attempt has been made to distinguish between Defluviicoccus and the other known GAO, especially Ca. Competibacter, which, as shown here, has a very different ecophysiology. The impact this has had and continues to have on our understanding of members of this genus is discussed, as is the present controversy over its taxonomy. It also suggests where research should be directed to answer some of the important research questions raised in this review.
Collapse
Affiliation(s)
- Abdul M Maszenan
- E2S2, NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia
| | - Robert J Seviour
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia.
| |
Collapse
|
5
|
Bessarab I, Maszenan AM, Haryono MAS, Arumugam K, Saw NMMT, Seviour RJ, Williams RBH. Comparative Genomics of Members of the Genus Defluviicoccus With Insights Into Their Ecophysiological Importance. Front Microbiol 2022; 13:834906. [PMID: 35495637 PMCID: PMC9041414 DOI: 10.3389/fmicb.2022.834906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Members of the genus Defluviicoccus occur often at high abundances in activated sludge wastewater treatment plants designed to remove phosphorus, where biomass is subjected to alternating anaerobic feed/aerobic famine conditions, believed to favor the proliferation of organisms like Ca. Accumulibacter and other phosphate-accumulating organisms (PAO), and Defluviicoccus. All have a capacity to assimilate readily metabolizable substrates and store them intracellularly during the anaerobic feed stage so that under the subsequent famine aerobic stage, these can be used to synthesize polyphosphate reserves by the PAO and glycogen by Defluviicoccus. Consequently, Defluviicoccus is described as a glycogen-accumulating organism or GAO. Because they share a similar anaerobic phenotype, it has been proposed that at high Defluviicoccus abundance, the PAO are out-competed for assimilable metabolites anaerobically, and hence aerobic P removal capacity is reduced. Several Defluviicoccus whole genome sequences have been published (Ca. Defluviicoccus tetraformis, Defluviicoccus GAO-HK, and Ca. Defluviicoccus seviourii). The available genomic data of these suggest marked metabolic differences between them, some of which have ecophysiological implications. Here, we describe the whole genome sequence of the type strain Defluviicoccus vanusT, the only cultured member of this genus, and a detailed comparative re-examination of all extant Defluviicoccus genomes. Each, with one exception, which appears not to be a member of this genus, contains the genes expected of GAO members, in possessing multiple copies of those for glycogen biosynthesis and catabolism, and anaerobic polyhydroxyalkanoate (PHA) synthesis. Both 16S rRNA and genome sequence data suggest that the current recognition of four clades is insufficient to embrace their phylogenetic biodiversity, but do not support the view that they should be re-classified into families other than their existing location in the Rhodospirillaceae. As expected, considerable variations were seen in the presence and numbers of genes encoding properties associated with key substrate assimilation and metabolic pathways. Two genomes also carried the pit gene for synthesis of the low-affinity phosphate transport protein, pit, considered by many to distinguish all PAO from GAO. The data re-emphasize the risks associated with extrapolating the data generated from a single Defluviicoccus population to embrace all members of that genus.
Collapse
Affiliation(s)
- Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Abdul Majid Maszenan
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Krithika Arumugam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Robert J Seviour
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Close K, Marques R, Carvalho VCF, Freitas EB, Reis MAM, Carvalho G, Oehmen A. The storage compounds associated with Tetrasphaera PAO metabolism and the relationship between diversity and P removal. WATER RESEARCH 2021; 204:117621. [PMID: 34500182 DOI: 10.1016/j.watres.2021.117621] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
In enhanced biological phosphorus removal (EBPR), Tetrasphaera can potentially be an abundant and important polyphosphate accumulating organism (PAO), however ongoing questions remain concerning its storage compounds, phosphorus (P) removal capabilities and metabolic behaviour. This study investigated each of these points in an enriched Tetrasphaera culture (95% biovolume). The enriched Tetrasphaera culture fermented amino acids, while also converting and storing diverse amino acids as aspartic and glutamic acid within cells. Subsequent intracellular consumption of these two amino acids during the aerobic phase supports their importance in the metabolism of Tetrasphaera. Polyhydroxyalkanoate (PHA) cycling was also observed in this study, in contrast to some previous studies on Tetrasphaera. While exhibiting anaerobic phosphorus release and aerobic uptake, the highly enriched Tetrasphaera culture was unable to completely remove phosphorus in sequencing batch reactors (SBR) cycles, with an average removal efficiency of 72.3 ± 7.8%. This is unlike a previous study containing both Tetrasphaera (70%) and Accumulibacter (22%), which regularly performed complete phosphorus removal under otherwise similar operational conditions, at efficiencies of > 99%. Notably, the phylodiversity of organisms belonging to Tetrasphaera was substantially different in the present work, consisting mainly of organisms within Clade 2, likely impacting PHA cycling. These results suggest that the contribution of Tetrasphaera towards P removal is highly dependent on the composition of its Clades within this microbial group and an observed higher abundance of Tetrasphaera in WWTPs does not necessarily imply overall higher P removal. This study improves our understanding of the role of Tetrasphaera within EBPR systems and key factors impacting its metabolism.
Collapse
Affiliation(s)
- Kylie Close
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Ricardo Marques
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Virginia C F Carvalho
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elisabete B Freitas
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Gilda Carvalho
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
7
|
Borsodi AK, Mucsi M, Krett G, Szabó A, Felföldi T, Szili-Kovács T. Variation in Sodic Soil Bacterial Communities Associated with Different Alkali Vegetation Types. Microorganisms 2021; 9:microorganisms9081673. [PMID: 34442752 PMCID: PMC8402138 DOI: 10.3390/microorganisms9081673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined the effect of salinity and alkalinity on the metabolic potential and taxonomic composition of microbiota inhabiting the sodic soils in different plant communities. The soil samples were collected in the Pannonian steppe (Hungary, Central Europe) under extreme dry and wet weather conditions. The metabolic profiles of microorganisms were analyzed using the MicroResp method, the bacterial diversity was assessed by cultivation and next-generation amplicon sequencing based on the 16S rRNA gene. Catabolic profiles of microbial communities varied primarily according to the alkali vegetation types. Most members of the strain collection were identified as plant associated and halophilic/alkaliphilic species of Micrococcus, Nesterenkonia, Nocardiopsis, Streptomyces (Actinobacteria) and Bacillus, Paenibacillus (Firmicutes) genera. Based on the pyrosequencing data, the relative abundance of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Gemmatimonadetes and Bacteroidetes also changed mainly with the sample types, indicating distinctions within the compositions of bacterial communities according to the sodic soil alkalinity-salinity gradient. The effect of weather extremes was the most pronounced in the relative abundance of the phyla Actinobacteria and Acidobacteria. The type of alkali vegetation caused greater shifts in both the diversity and activity of sodic soil microbial communities than the extreme aridity and moisture.
Collapse
Affiliation(s)
- Andrea K. Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary; (M.M.); (G.K.); (T.F.)
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary;
- Correspondence: (A.K.B.); (T.S.-K.); Tel.: +36-13812177 (A.K.B.); +36-309617452 (T.S.-K.)
| | - Márton Mucsi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary; (M.M.); (G.K.); (T.F.)
- Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó út 15, H-1022 Budapest, Hungary
| | - Gergely Krett
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary; (M.M.); (G.K.); (T.F.)
| | - Attila Szabó
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary;
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary; (M.M.); (G.K.); (T.F.)
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary;
| | - Tibor Szili-Kovács
- Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó út 15, H-1022 Budapest, Hungary
- Correspondence: (A.K.B.); (T.S.-K.); Tel.: +36-13812177 (A.K.B.); +36-309617452 (T.S.-K.)
| |
Collapse
|
8
|
Wang Z, Woo SG, Yao Y, Cheng HH, Wu YJ, Criddle CS. Nitrogen removal as nitrous oxide for energy recovery: Increased process stability and high nitrous yields at short hydraulic residence times. WATER RESEARCH 2020; 173:115575. [PMID: 32058151 DOI: 10.1016/j.watres.2020.115575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
The Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) is a two-stage process for nitrogen removal and resource recovery: in the first, ammonia is oxidized to nitrite in an aerobic bioreactor; in the second, oxidation of polyhydroxyalkanoate (PHA) drives reduction of nitrite to nitrous oxide (N2O) which is stripped for use as a biogas oxidant. Because ammonia oxidation is well-studied, tests of CANDO to date have focused on N2O production in anaerobic/anoxic sequencing batch reactors. In these reactors, nitrogen is provided as nitrite; PHA is produced from acetate or other dissolved COD, and PHA oxidation is coupled to N2O production from nitrite. In a pilot-scale study, N2O recovery was affected by COD/N ratio, total cycle time, and relative time periods for PHA synthesis and N2O production. In follow-up bench-scale studies, different reactor cycle times were used to investigate these operational parameters. Increasing COD/N ratio improved nitrite removal and increased biosolids concentration. Shortening the anaerobic phase prevented fermentation of PHA and improved its utilization. Efficient PHA synthesis and utilization in the anaerobic phase correlated with high N2O production in the anoxic phase. Shortening the anoxic phase prevented reduction of N2O to N2. By shortening both phases, total cycle time was reduced from 24 to 12 h. This optimized operation enabled increased biomass concentrations, increased N2O yields (from 71 to 87%), increased N loading rates (from 0.1 to 0.25 kg N/m3-d), and shorter hydraulic residence times (from 10 to 2 days). Long-term changes in operational performance for the different bioreactor systems tested were generally similar despite significant differences in microbial community structure. Long-term operation at short anaerobic phases selected for a glycogen-accumulating community dominated by a Defluviicoccus-related strain.
Collapse
Affiliation(s)
- Zhiyue Wang
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA; U.S. National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA
| | - Sung-Geun Woo
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA; U.S. National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA
| | - Yinuo Yao
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA; U.S. National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA
| | - Hai-Hsuan Cheng
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ju Wu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA; U.S. National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA.
| |
Collapse
|
9
|
Wang X, Ya T, Zhang M, Liu L, Hou P, Lu S. Cadmium (II) alters the microbial community structure and molecular ecological network in activated sludge system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113225. [PMID: 31557558 DOI: 10.1016/j.envpol.2019.113225] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/08/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (II) can potentially alter the microbial community structure and molecular ecological network in activated sludge systems. In this study, we used Illumina sequencing combined with an RMT-based network approach to show the response of the microbial community and its network structure to Cd (II) in activated sludge systems. The results demonstrated that 1 mg/L Cd (II) did not have chronic negative effects on chemical oxygen demand (COD) reduction and denitrification processes, but negatively affected the nitrification process and phosphorus removal. In contrast, 10 mg/L Cd (II) adversely affected both COD and nutrient removal, and reduced the microbial diversity and changed the overall microbial community structure. The relative abundances of Nitrosomonadaceae, Nitrospira, Accumulibacter and Acinetobacter, which are involved in nitrogen removal, significantly decreased with increases in the Cd (II) concentration. In addition, molecular ecological network analysis showed that the networks sizes in the presence of higher levels of Cd (II) were smaller than in the control, but the nodes were more closely connected with neighbors. These shifts in bacterial abundance and the bacterial network structure may be responsible for the deterioration of COD and nutrient removal. Overall, this study provides new insights into the effects of Cd (II) on the bacterial community and its interactions in activated sludge systems.
Collapse
Affiliation(s)
- Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tao Ya
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minglu Zhang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Lin Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengfei Hou
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
10
|
Dorofeev AG, Nikolaev YA, Mardanov AV, Pimenov NV. Cyclic Metabolism as a Mode of Microbial Existence. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719040052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Onetto CA, Grbin PR, McIlroy SJ, Eales KL. Genomic insights into the metabolism of ‘CandidatusDefluviicoccus seviourii’, a member ofDefluviicoccuscluster III abundant in industrial activated sludge. FEMS Microbiol Ecol 2018; 95:5210054. [DOI: 10.1093/femsec/fiy231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/24/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Cristobal A Onetto
- Department of Wine & Food Science, University of Adelaide, Adelaide 5064, Australia
| | - Paul R Grbin
- Department of Wine & Food Science, University of Adelaide, Adelaide 5064, Australia
| | - Simon J McIlroy
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Brisbane, Australia
| | - Kathryn L Eales
- Department of Wine & Food Science, University of Adelaide, Adelaide 5064, Australia
| |
Collapse
|
12
|
Onetto CA, Eales KL, Guagliardo P, Kilburn MR, Gambetta JM, Grbin PR. Managing the excessive proliferation of glycogen accumulating organisms in industrial activated sludge by nitrogen supplementation: A FISH-NanoSIMS approach. Syst Appl Microbiol 2017; 40:500-507. [DOI: 10.1016/j.syapm.2017.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 10/18/2022]
|
13
|
Wang X, Li J, Liu R, Hai R, Zou D, Zhu X, Luo N. Responses of Bacterial Communities to CuO Nanoparticles in Activated Sludge System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5368-5376. [PMID: 28410439 DOI: 10.1021/acs.est.6b06137] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The main objectives of this study were to investigate the influence of copper oxide nanoparticles (CuO NPs) on wastewater nutrient removal, bacterial community and molecular ecological network in activated sludge. The results showed that long-term exposure to 1 mg/L CuO NPs induced an increase of effluent concentrations of ammonia and total phosphorus, which was consistent with the inhibition of enzyme activities of ammonia monooxygenase, nitrite oxidoreductase, exopolyphosphatase, and polyphosphate in the presence of CuO NPs. MiSeq sequencing data indicated that CuO NPs significantly decreased the bacterial diversity and altered the overall bacterial community structure in activated sludge. Some genera involved in nitrogen and phosphorus removal, such as Nitrosomonas, Acinetobacter, and Pseudomonas decreased significantly. Molecular ecological network analysis showed that network interactions among different phylogenetic populations were markedly changed by CuO NPs. For example, β-Proteobacteria, playing an important role in nutrients removal, had less complex interactions in the presence of CuO NPs. These shifts of the abundance of related genera, together with the network interactions may be associated with the deterioration of ammonia and phosphorus removal. This study provides insights into our understanding of shifts in the bacteria community and their molecular ecological network under CuO NPs in activated sludge systems.
Collapse
Affiliation(s)
- Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Jing Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Rui Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Reti Hai
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Dexun Zou
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Xiaobiao Zhu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Nan Luo
- China Sciences MapUniverse Technology Co., Ltd. (MAPUNI), Beijing, 100101, China
| |
Collapse
|
14
|
Stokholm-Bjerregaard M, McIlroy SJ, Nierychlo M, Karst SM, Albertsen M, Nielsen PH. A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems. Front Microbiol 2017; 8:718. [PMID: 28496434 PMCID: PMC5406452 DOI: 10.3389/fmicb.2017.00718] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/06/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding the microbiology of phosphorus (P) removal is considered essential to knowledge-based optimization of enhanced biological P removal (EBPR) systems. Biological P removal is achieved in these systems by promoting the growth of organisms collectively known as the polyphosphate accumulating organisms (PAOs). Also considered important to EBPR are the glycogen accumulating organisms (GAOs), which are theorized to compete with the PAOs for resources at the expense of P removal efficiency. Numerous studies have sought to identify the PAOs and their GAOs competitors, with several candidates proposed for each over the last few decades. The current study collectively assessed the abundance and diversity of all proposed PAOs and GAOs in 18 Danish full-scale wastewater treatment plants with well-working biological nutrient removal over a period of 9 years using 16S rRNA gene amplicon sequencing. The microbial community structure in all plants was relatively stable over time. Evidence for the role of the proposed PAOs and GAOs in EBPR varies and is critically assessed, in light of their calculated amplicon abundances, to indicate which of these are important in full-scale systems. Bacteria from the genus Tetrasphaera were the most abundant of the PAOs. The “Candidatus Accumulibacter” PAOs were in much lower abundance and appear to be biased by the amplicon-based method applied. The genera Dechloromonas, Microlunatus, and Tessaracoccus were identified as abundant putative PAO that require further research attention. Interestingly, the actinobacterial Micropruina and sbr-gs28 phylotypes were among the most abundant of the putative GAOs. Members of the genera Defluviicoccus, Propionivibrio, the family Competibacteraceae, and the spb280 group were also relatively abundant in some plants. Despite observed high abundances of GAOs (periodically exceeding 20% of the amplicon reads), P removal performance was maintained, indicating that these organisms were not outcompeting the PAOs in these EBPR systems. Phylogenetic diversity within each of the PAOs and GAOs genera was observed, which is consistent with reported metabolic diversity for these. Whether or not key traits can be assigned to sub-genus level clades requires further investigation.
Collapse
Affiliation(s)
- Mikkel Stokholm-Bjerregaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Simon J McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| |
Collapse
|
15
|
Mao Y, Wang Z, Li L, Jiang X, Zhang X, Ren H, Zhang T. Exploring the Shift in Structure and Function of Microbial Communities Performing Biological Phosphorus Removal. PLoS One 2016; 11:e0161506. [PMID: 27547976 PMCID: PMC4993488 DOI: 10.1371/journal.pone.0161506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/05/2016] [Indexed: 01/26/2023] Open
Abstract
A sequencing batch reactor fed mainly by acetate was operated to perform enhanced biological phosphorus removal (EBPR). A short-term pH shock from 7.0 to 6.0 led to a complete loss of phosphate-removing capability and a drastic change of microbial communities. 16S rRNA gene pyrosequencing showed that large proportions of glycogen accumulating organisms (GAOs) (accounted for 16% of bacteria) bloomed, including Candidatus Competibacter phosphatis and Defluviicoccus-related tetrad-forming organism, causing deteriorated EBPR performance. The EBPR performance recovered with time and the dominant Candidatus Accumulibacter (Accumulibacter) clades shifted from Clade IIC to IIA while GAOs populations shrank significantly. The Accumulibacter population variation provided a good opportunity for genome binning using a bi-dimensional coverage method, and a genome of Accumulibacter Clade IIC was well retrieved with over 90% completeness. Comparative genomic analysis demonstrated that Accumulibacter clades had different abilities in nitrogen metabolism and carbon fixation, which shed light on enriching different Accumulibacter populations selectively.
Collapse
Affiliation(s)
- Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhiping Wang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liguan Li
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaotao Jiang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuxiang Zhang
- School of Environment, Nanjing University, Nanjing, China
| | - Hongqiang Ren
- School of Environment, Nanjing University, Nanjing, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- * E-mail:
| |
Collapse
|
16
|
Albertsen M, McIlroy SJ, Stokholm-Bjerregaard M, Karst SM, Nielsen PH. "Candidatus Propionivibrio aalborgensis": A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants. Front Microbiol 2016; 7:1033. [PMID: 27458436 PMCID: PMC4930944 DOI: 10.3389/fmicb.2016.01033] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023] Open
Abstract
Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency as they compete for substrates with PAOs, but do not store excessive amounts of polyphosphate. PAOs and GAOs are thought to be phylogenetically unrelated, with the model PAO being the betaproteobacterial “Candidatus Accumulibacter phosphatis” (Accumulibacter) and the model GAO being the gammaproteobacterial “Candidatus Competibacter phosphatis”. Here, we report the discovery of a GAO from the genus Propionivibrio, which is closely related to Accumulibacter. Propionivibrio sp. are targeted by the canonical fluorescence in situ hybridization probes used to target Accumulibacter (PAOmix), but do not store excessive amounts of polyphosphate in situ. A laboratory scale reactor, operated to enrich for PAOs, surprisingly contained co-dominant populations of Propionivibrio and Accumulibacter. Metagenomic sequencing of multiple time-points enabled recovery of near complete population genomes from both genera. Annotation of the Propionivibrio genome confirmed their potential for the GAO phenotype and a basic metabolic model is proposed for their metabolism in the EBPR environment. Using newly designed fluorescence in situ hybridization (FISH) probes, analyses of full-scale EBPR plants revealed that Propionivibrio is a common member of the community, constituting up to 3% of the biovolume. To avoid overestimation of Accumulibacter abundance in situ, we recommend the use of the FISH probe PAO651 instead of the commonly applied PAOmix probe set.
Collapse
Affiliation(s)
- Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| | - Simon J McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| | - Mikkel Stokholm-Bjerregaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark; Krüger A/SAalborg, Denmark
| | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| |
Collapse
|
17
|
Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions. Sci Rep 2016; 6:25719. [PMID: 27193869 PMCID: PMC4872125 DOI: 10.1038/srep25719] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/19/2016] [Indexed: 02/01/2023] Open
Abstract
Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.
Collapse
|
18
|
Franca RDG, Vieira A, Mata AMT, Carvalho GS, Pinheiro HM, Lourenço ND. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater. WATER RESEARCH 2015; 85:327-336. [PMID: 26343991 DOI: 10.1016/j.watres.2015.08.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/18/2015] [Accepted: 08/22/2015] [Indexed: 06/05/2023]
Abstract
This study analyzed the effect of an azo dye (Acid Red 14) on the performance of an aerobic granular sludge (AGS) sequencing batch reactor (SBR) system operated with 6-h anaerobic-aerobic cycles for the treatment of a synthetic textile wastewater. In this sense, two SBRs inoculated with AGS from a domestic wastewater treatment plant were run in parallel, being one supplied with the dye and the other used as a dye-free control. The AGS successfully adapted to the new hydrodynamic conditions forming smaller, denser granules in both reactors, with optimal sludge volume index values of 19 and 17 mL g(-1) after 5-min and 30-min settling, respectively. As a result, high biomass concentration levels and sludge age values were registered, up to 13 gTSS L(-1) and 40 days, respectively, when deliberate biomass wastage was limited to the sampling needs. Stable dye removal yields above 90% were attained during the anaerobic reaction phase, confirmed by the formation of one of the aromatic amines arising from azo bond reduction. The control of the sludge retention time (SRT) to 15 days triggered a 30% reduction in the biodecolorization yield. However, the increase of the SRT values back to levels above 25 days reverted this effect and also promoted the complete bioconversion of the identified aromatic amine during the aerobic reaction phase. The dye and its breakdown products did not negatively affect the treatment performance, as organic load removal yields higher than 80% were attained in both reactors, up to 77% occurring in the anaerobic phase. These high anaerobic organic removal levels were correlated to an increase of Defluviicoccus-related glycogen accumulating organisms in the biomass. Also, the capacity of the system to deal with shocks of high dye concentration and organic load was successfully demonstrated. Granule breakup after long-term operation only occurred in the dye-free control SBR, suggesting that the azo dye plays an important role in improving granule stability. Fluorescence in situ hybridization (FISH) analysis confirmed the compact structure of the dye-fed granules, microbial activity being apparently maintained in the granule core, as opposed to the dye-free control. These findings support the potential application of the AGS technology for textile wastewater treatment.
Collapse
Affiliation(s)
- Rita D G Franca
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, ULisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Anabela Vieira
- Microbiology of Man-Made Environments Laboratory, iBET - Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal; ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Quinta do Marquês, 2780-157 Oeiras, Portugal.
| | - Ana M T Mata
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, ULisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Gilda S Carvalho
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Helena M Pinheiro
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, ULisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Nídia D Lourenço
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, ULisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
19
|
McIlroy SJ, Nittami T, Kanai E, Fukuda J, Saunders AM, Nielsen PH. Re-appraisal of the phylogeny and fluorescence in situ hybridization probes for the analysis of the Competibacteraceae in wastewater treatment systems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:166-174. [PMID: 25224028 DOI: 10.1111/1758-2229.12215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/19/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
Members of the family Competibacteraceae are common in wastewater treatment plants (WWTPs) designed for enhanced biological phosphorus removal (EBPR) and are putatively deleterious to the process of P removal. Their ability to accumulate large amounts of polyhydroxyalkanoates is also suggested to be of potential commercial interest for bioplastic production. In this study we have updated the 16S rRNA-based phylogeny of the Competibacter and the Plasticicumulans lineages. The former is delineated by 13 clades including two described genera; 'Ca. Competibacter' and 'Ca. Contendobacter'. The oligonucleotide probes used for detection of the family by fluorescence in situ hybridization (FISH) were re-evaluated and designed for coverage of these clades. Surveys of full-scale WWTPs based on 16S rRNA gene amplicon sequencing and FISH analysis indicate that a number of member clades always coexist, with their relative abundances varying substantially between and temporally within plants. The hypothesis that these differences are based on niche partitioning is supported by marked phenotypic differences between clades. An in-depth understanding of the ecology of the family requires further studies of the metabolism of individual clades in situ. The proposed phylogeny and FISH probes will provide the foundation for such studies.
Collapse
Affiliation(s)
- Simon J McIlroy
- Centre for Microbial Communities, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | | | | | | | | | | |
Collapse
|
20
|
Carvalheira M, Oehmen A, Carvalho G, Eusébio M, Reis MAM. The impact of aeration on the competition between polyphosphate accumulating organisms and glycogen accumulating organisms. WATER RESEARCH 2014; 66:296-307. [PMID: 25222333 DOI: 10.1016/j.watres.2014.08.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/01/2014] [Accepted: 08/23/2014] [Indexed: 05/08/2023]
Abstract
In wastewater treatment plants (WWTPs), aeration is the major energetic cost, thus its minimisation will improve the cost-effectiveness of the process. This study shows that both the dissolved oxygen (DO) concentration and aerobic hydraulic retention time (HRT) affect the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). At low DO levels, Accumulibacter PAOs were shown to have an advantage over Competibacter GAOs, as PAOs had a higher oxygen affinity and thus largely maintained their aerobic activity at low DO levels, while GAO activity decreased. Bioreactor operation at low DO levels was found to increase the PAO fraction of the sludge. Furthermore, an increase in aerobic HRT (at a DO level of 2 mg O2/L), promoted the proliferation of GAOs over PAOs, decreasing the EBPR efficiency. Overall, this study shows that low aeration can be beneficial for EBPR performance through selecting for PAOs over GAOs, which should be incorporated into WWTP models in order to minimise energetic costs and improve WWTP sustainability.
Collapse
Affiliation(s)
- Mónica Carvalheira
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Adrian Oehmen
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Gilda Carvalho
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal; Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras, Portugal.
| | - Mário Eusébio
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Maria A M Reis
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
21
|
Wang Z, Guo F, Mao Y, Xia Y, Zhang T. Metabolic characteristics of a glycogen-accumulating organism in Defluviicoccus cluster II revealed by comparative genomics. MICROBIAL ECOLOGY 2014; 68:716-728. [PMID: 24889288 DOI: 10.1007/s00248-014-0440-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
Glycogen-accumulating organisms (GAOs) may compete with phosphate-accumulating organisms (PAOs) for short-chain fatty acids (VFAs) in anaerobic polyhydroxyalkanoates (PHA) synthesis, but no consequently aerobic polyphosphate accumulation in enhanced biological phosphorus removal (EBPR) process, thus deteriorating the EBPR process. They are detected frequently in the deteriorated EBPR process, but their metabolisms are still far from our comprehensions for there is seldom pure culture. In this study, a nearly complete draft genome of a GAOs in Defluviicoccus cluster II, GAO-HK, is recruited from the metagenome of activated sludge in a full-scale industrial anoxic/aerobic wastewater plant. Comparative genomics reveal similar metabolisms of PHA and glycogen in GAOs of GAO-HK, Defluviicoccus tetraformis TFO71 (TFO71) and Competibacter phosphatis clade IIA (CPIIA), and PAOs of Accumulibacter clade IIA UW-1 (UW-1) and Tetrasphaera elongata Lp2 (Lp2). Although there are similar gene cassettes related with polyphosphate metabolism in these GAOs and PAOs, especially for Defluviicoccus-relative bacteria and UW-1, ppk1 in GAOs are diverse from those in the identified PAOs, implying the difference of polyphosphate metabolism in GAOs and PAOs. Additionally, genes related to the dissimilatory denitrification are absent in TFO71 and GAO-HK, implying that additional nitrate or nitrite may favor PAOs over Defluviicoccus-relative GAOs. Therefore, PAOs suffering from competition of Defluviicoccus-relative GAOs might be rescued with the additional nitrate/nitrite, which is important to improve the stability of EBPR processes.
Collapse
Affiliation(s)
- Zhiping Wang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, SAR, China
| | | | | | | | | |
Collapse
|
22
|
Carvalheira M, Oehmen A, Carvalho G, Reis MAM. The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs). WATER RESEARCH 2014; 64:149-159. [PMID: 25051162 DOI: 10.1016/j.watres.2014.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/24/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
The type of carbon source present in the wastewater is one factor that affects the competition between polyphosphate accumulating organisms (PAO) and glycogen accumulating organisms (GAO) and therefore, the efficiency of the enhanced biological phosphorus removal (EBPR) process. This study investigated the impact of the carbon source composition on the anaerobic and aerobic kinetics of PAOs and the EBPR performance of an 85% PAO enrichment. When both acetate (HAc) and propionate (HPr) were present, propionate was depleted more quickly, with a constant uptake rate of 0.18 ± 0.02 C-mol/(C-mol biomass·h), while the acetate uptake rate decreased with an increase in propionate concentration, due to the substrate competition between acetate and propionate. The metabolic model for PAOs was modified to incorporate the anaerobic substrate competition effect. The aerobic rates for phosphorus (P) uptake, glycogen production and polyhydroxyalkanoates (PHA) degradation were within the same range for all tests, indicating that these rates are essentially independent of the acetate and propionate concentration, simplifying the calibration procedure for metabolic models. The metabolic model applied to describe the anaerobic and aerobic activity agreed well with the experimental data of HAc, HPr, P, PHA and biomass growth. The low glycogen consumption observed suggest that some reducing equivalents were generated anaerobically through the TCA cycle. The results of this work suggest that the propionate uptake kinetics by PAOs can provide them an advantage over GAOs in EBPR systems, even when the propionate fraction of the influent is relatively low.
Collapse
Affiliation(s)
- Mónica Carvalheira
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Gilda Carvalho
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal; Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras, Portugal
| | - Maria A M Reis
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
23
|
Hai R, Wang Y, Wang X, Du Z, Li Y. Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge. PLoS One 2014; 9:e107345. [PMID: 25238404 PMCID: PMC4169552 DOI: 10.1371/journal.pone.0107345] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/15/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The increasing use of multiwalled carbon nanotubes (MWCNTs) will inevitably lead to the exposure of wastewater treatment facilities. However, knowledge of the impacts of MWCNTs on wastewater nutrient removal and bacterial community structure in the activated sludge process is sparse. AIMS To investigate the effects of MWCNTs on wastewater nutrient removal, and bacterial community structure in activated sludge. METHODS Three triplicate sequencing batch reactors (SBR) were exposed to wastewater which contained 0, 1, and 20 mg/L MWCNTs. MiSeq sequencing was used to investigate the bacterial community structures in activated sludge samples which were exposed to different concentrations of MWCNTs. RESULTS Exposure to 1 and 20 mg/L MWCNTs had no acute (1 day) impact on nutrient removal from wastewater. After long-term (180 days) exposure to 1 mg/L MWCNTs, the average total nitrogen (TN) removal efficiency was not significantly affected. TN removal efficiency decreased from 84.0% to 71.9% after long-term effects of 20 mg/L MWCNTs. After long-term exposure to 1 and 20 mg/L MWCNTs, the total phosphorus removal efficiencies decreased from 96.8% to 52.3% and from 98.2% to 34.0% respectively. Further study revealed that long-term exposure to 20 mg/L MWCNTs inhibited activities of ammonia monooxygenase and nitrite oxidoreductase. Long-term exposure to 1 and 20 mg/L MWCNTs both inhibited activities of exopolyphosphatase and polyphosphate kinase. MiSeq sequencing data indicated that 20 mg/L MWCNTs significantly decreased the diversity of bacterial community in activated sludge. Long-term exposure to 1 and 20 mg/L MWCNTs differentially decreased the abundance of nitrifying bacteria, especially ammonia-oxidizing bacteria. The abundance of PAOs was decreased after long-term exposure to 20 mg/L MWCNTs. The abundance of glycogen accumulating organisms (GAOs) was increased after long-term exposure to 1 mg/L MWCNTs. CONCLUSION MWCNTs have adverse effects on biological wastewater nutrient removal, and altered the diversity and structure of bacterial community in activated sludge.
Collapse
Affiliation(s)
- Reti Hai
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, China
| | - Yulin Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, China
- * E-mail:
| | - Zhize Du
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, China
| | - Yuan Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
24
|
Nobu MK, Tamaki H, Kubota K, Liu WT. Metagenomic characterization of ‘Candidatus Defluviicoccus tetraformis strain TFO71’, a tetrad-forming organism, predominant in an anaerobic-aerobic membrane bioreactor with deteriorated biological phosphorus removal. Environ Microbiol 2014; 16:2739-51. [DOI: 10.1111/1462-2920.12383] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 01/01/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Masaru K. Nobu
- Department of Civil and Environmental Engineering; University of Illinois at Urbana-Champaign; 205 North Mathews Ave Urbana IL 61801 USA
| | - Hideyuki Tamaki
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Central 6, Higashi 1-1-1 Tsukuba Ibaraki 305-8566 Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering; Tohoku University; 6-6-06 Aza-Aoba, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering; University of Illinois at Urbana-Champaign; 205 North Mathews Ave Urbana IL 61801 USA
| |
Collapse
|
25
|
McIlroy SJ, Albertsen M, Andresen EK, Saunders AM, Kristiansen R, Stokholm-Bjerregaard M, Nielsen KL, Nielsen PH. 'Candidatus Competibacter'-lineage genomes retrieved from metagenomes reveal functional metabolic diversity. ISME JOURNAL 2013; 8:613-624. [PMID: 24173461 DOI: 10.1038/ismej.2013.162] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/19/2013] [Accepted: 08/17/2013] [Indexed: 11/09/2022]
Abstract
The glycogen-accumulating organism (GAO) 'Candidatus Competibacter' (Competibacter) uses aerobically stored glycogen to enable anaerobic carbon uptake, which is subsequently stored as polyhydroxyalkanoates (PHAs). This biphasic metabolism is key for the Competibacter to survive under the cyclic anaerobic-'feast': aerobic-'famine' regime of enhanced biological phosphorus removal (EBPR) wastewater treatment systems. As they do not contribute to phosphorus (P) removal, but compete for resources with the polyphosphate-accumulating organisms (PAO), thought responsible for P removal, their proliferation theoretically reduces the EBPR capacity. In this study, two complete genomes from Competibacter were obtained from laboratory-scale enrichment reactors through metagenomics. Phylogenetic analysis identified the two genomes, 'Candidatus Competibacter denitrificans' and 'Candidatus Contendobacter odensis', as being affiliated with Competibacter-lineage subgroups 1 and 5, respectively. Both have genes for glycogen and PHA cycling and for the metabolism of volatile fatty acids. Marked differences were found in their potential for the Embden-Meyerhof-Parnas and Entner-Doudoroff glycolytic pathways, as well as for denitrification, nitrogen fixation, fermentation, trehalose synthesis and utilisation of glucose and lactate. Genetic comparison of P metabolism pathways with sequenced PAOs revealed the absence of the Pit phosphate transporter in the Competibacter-lineage genomes--identifying a key metabolic difference with the PAO physiology. These genomes are the first from any GAO organism and provide new insights into the complex interaction and niche competition between PAOs and GAOs in EBPR systems.
Collapse
Affiliation(s)
- Simon J McIlroy
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Eva K Andresen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Aaron M Saunders
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Rikke Kristiansen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Mikkel Stokholm-Bjerregaard
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark.,Krüger A/S, Veolia Water Solutions and Technologies, Aalborg, Denmark
| | - Kåre L Nielsen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
26
|
Tayà C, Garlapati VK, Guisasola A, Baeza JA. The selective role of nitrite in the PAO/GAO competition. CHEMOSPHERE 2013; 93:612-618. [PMID: 23845433 DOI: 10.1016/j.chemosphere.2013.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 06/02/2023]
Abstract
Proliferation of Glycogen Accumulating Organisms (GAOs) accounts as one of the major bottlenecks in biological phosphorus removal systems. GAO outcompeting polyphosphate accumulating organisms (PAOs) results in lower P-removal. Thus, finding optimal conditions that favour PAO in front of GAO is a current focus of research. This work shows how nitrite can provide a novel strategy for PAO enrichment. A propionate-fed GAO-enriched biomass (70% Defluviicoccus I, 18% Defluviicoccus II and 10% PAO) was subjected more than 50 d under anaerobic-anoxic conditions with nitrite as electron acceptor. These operational conditions led to a PAO-enriched sludge (85%) where GAO were washed out of the system (<10%), demonstrating the validity of the new approach for PAO enrichment. In addition, the presented suppression of Defluviicocus GAO with nitrite represents an add-on benefit to the nitrite-based systems since the proliferation of non-desirable GAO can be easily ruled out and added to the other benefits (i.e. lower aeration and COD requirements).
Collapse
Affiliation(s)
- Carlota Tayà
- Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | |
Collapse
|
27
|
Mielczarek AT, Nguyen HTT, Nielsen JL, Nielsen PH. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants. WATER RESEARCH 2013; 47:1529-1544. [PMID: 23317522 DOI: 10.1016/j.watres.2012.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint".
Collapse
Affiliation(s)
- Artur Tomasz Mielczarek
- Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | |
Collapse
|
28
|
From macro to lab-scale: Changes in bacterial community led to deterioration of EBPR in lab reactor. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0116-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractA laboratory scale sequencing batch reactor (SBR), fed with synthetic wastewater containing a mixture of organic compounds, was operated for nearly six months. Despite maintaining the same operational conditions, a deterioration of enhanced biological phosphorus removal (EBPR) occurred after 40 days of SBR operation. The Prel/Cupt ratio decreased from 0.28 to 0.06 P-mol C-mol−1, and C requirements increased from 11 to 32 mg C h−1 g−1 of mixed liquor suspended solids. A FISH analysis showed that the percentage of Accumulibacter in an overall community of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) dropped from 93% to 13%. An increase in abundance of Gammaproteobacteria (from 2.6% to 22%) and Alphaproteobacteria (from 1.8% to 10%) was observed. The number of Competibacter increased from 0.5% to nearly 9%. Clusters 1 and 2 of Defluviicoccus-related GAOs, not detected before deterioration, constituted 35% and 27% of Alphaproteobacteria, respectively. We concluded that lab-scale experiments should not be extended implicitly to full-scale EBPR systems because some bacterial groups are detected mainlyin lab-scale reactors. Well-defined, lab-scale operational conditions reduce the number of ecological niches available to bacteria.
Collapse
|
29
|
McIlroy SJ, Speirs LBM, Tucci J, Seviour RJ. In situ profiling of microbial communities in full-scale aerobic sequencing batch reactors treating winery waste in australia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:8794-8803. [PMID: 21875070 DOI: 10.1021/es2018576] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
On-site aerobic sequencing batch reactor (SBR) treatment plants are implemented in many Australian wineries to treat the large volumes of associated wastewater they generate. Yet very little is known about their microbiology. This paper represents the first attempt to analyze the communities of three such systems sampled during both vintage and nonvintage operational periods using molecular methods. Alphaproteobacterial tetrad forming organisms (TFO) related to members of the genus Defluviicoccus and Amaricoccus dominated all three systems in both operational periods. Candidatus 'Alysiosphaera europaea' and Zoogloea were codominant in two communities. Production of high levels of exocellular capsular material by Zoogloea and Amaricoccus is thought to explain the poor settleability of solids in one of these plants. The dominance of these organisms is thought to result from the high COD to N/P ratios that characterize winery wastes, and it is suggested that manipulating this ratio with nutrient dosing may help control the problems they cause.
Collapse
Affiliation(s)
- Simon J McIlroy
- Biotechnology Research Centre, Department of Pharmacy and Applied Science, La Trobe University, Bendigo, Victoria, Australia
| | | | | | | |
Collapse
|
30
|
Tayà C, Guisasola A, Baeza JA. Assessment of a bioaugmentation strategy with polyphosphate accumulating organisms in a nitrification/denitrification sequencing batch reactor. BIORESOURCE TECHNOLOGY 2011; 102:7678-7684. [PMID: 21683580 DOI: 10.1016/j.biortech.2011.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 05/30/2023]
Abstract
Different alternative configurations and strategies for the simultaneous biological removal of organic matter and nutrients (N and P) in wastewater have been proposed in the literature. This work demonstrates a new successful strategy to bring in enhanced biological phosphorus removal (EBPR) to a conventional nitrification/denitrification system by means of bioaugmentation with an enriched culture of phosphorus accumulating organisms (PAO). This strategy was tested in a sequencing batch reactor (SBR), where an 8h configuration with 3h anoxic, 4.5h aerobic and 25 min of settling confirmed that nitrification, denitrification and PAO activity could be maintained for a minimum of 60 days of operation after the bioaugmentation step. The successful bioaugmentation strategy opens new possibilities for retrofitting full-scale WWTP originally designed for only nitrification/denitrification. These systems could remove P simultaneously to COD and N if they were bioaugmented with waste purge of an anaerobic/aerobic SBR operated in parallel treating part of the influent wastewater.
Collapse
Affiliation(s)
- Carlota Tayà
- Departament d'Enginyeria Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | | | | |
Collapse
|
31
|
Gebremariam SY, Beutel MW, Christian D, Hess TF. Research advances and challenges in the microbiology of enhanced biological phosphorus removal--a critical review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2011; 83:195-219. [PMID: 21466069 DOI: 10.2175/106143010x12780288628534] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is a well-established technology for removing phosphorus from wastewater. However, the process remains operationally unstable in many systems, primarily because there is a lack of understanding regarding the microbiology of EBPR. This paper presents a review of advances made in the study of EBPR microbiology and focuses on the identification, enrichment, classification, morphology, and metabolic capacity of polyphosphate- and glycogen-accumulating organisms. The paper also highlights knowledge gaps and research challenges in the field of EBPR microbiology. Based on the review, the following recommendations regarding the future direction of EBPR microbial research were developed: (1) shifting from a reductionist approach to a more holistic system-based approach, (2) using a combination of culture-dependent and culture-independent techniques in characterizing microbial composition, (3) integrating ecological principles into system design to enhance stability, and (4) reexamining current theoretical explanations of why and how EBPR occurs.
Collapse
Affiliation(s)
- Seyoum Yami Gebremariam
- Washington State University, Department of Civil and Environmental Engineering, Pullman, Washington 99164-2910, USA.
| | | | | | | |
Collapse
|
32
|
Oehmen A, Carvalho G, Lopez-Vazquez CM, van Loosdrecht MCM, Reis MAM. Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms. WATER RESEARCH 2010; 44:4992-5004. [PMID: 20650504 DOI: 10.1016/j.watres.2010.06.071] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/25/2010] [Accepted: 06/30/2010] [Indexed: 05/29/2023]
Abstract
In the enhanced biological phosphorus removal (EBPR) process, the competition between polyphosphate accumulating organisms (PAO) and glycogen accumulating organisms (GAO) has been studied intensively in recent years by both microbiologists and engineers, due to its important effects on phosphorus removal performance and efficiency. This study addresses the impact of microbial ecology on assessing the PAO-GAO competition through metabolic modelling, focussing on reviewing recent developments, discussion of how the results from molecular studies can impact the way we model the process, and offering perspectives for future research opportunities based on unanswered questions concerning PAO and GAO metabolism. Indeed, numerous findings that are seemingly contradictory could in fact be explained by the metabolic behaviour of different sub-groups of PAOs and/or GAOs exposed to different environmental and operational conditions. Some examples include the glycolysis pathway (i.e. Embden-Meyerhof-Parnas (EMP) vs. Entner-Doudoroff (ED)), denitrification capacity, anaerobic tricarboxylic acid (TCA) cycle activity and PAOs' ability to adjust their metabolism to e.g. a GAO-like metabolism. Metabolic modelling may further yield far-reaching influences on practical applications as well, and serves as a bridge between molecular/biochemical research studies and the optimisation of wastewater treatment plant operation.
Collapse
Affiliation(s)
- A Oehmen
- REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | |
Collapse
|
33
|
McIlroy SJ, Nittami T, Seviour EM, Seviour RJ. Filamentous members of cluster III Defluviicoccus have the in situ phenotype expected of a glycogen-accumulating organism in activated sludge. FEMS Microbiol Ecol 2010; 74:248-56. [PMID: 20633046 DOI: 10.1111/j.1574-6941.2010.00934.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The in situ ecophysiology of alphaproteobacterial filamentous Cluster III Defluviicoccus present in enhanced biological phosphorus removal (EBPR)-activated sludge systems was evaluated using FISH-MAR and histochemical staining methods. These organisms, sharing the Nostocoida limicola morphotype, are known to be responsible for serious episodes of activated sludge bulking. The data presented here also demonstrate an ability to assimilate short-chain fatty acids and synthesize poly-β-hydroxyalkanoates (PHA) anaerobically, and then utilize this stored PHA under aerobic conditions, but with no corresponding synthesis of polyphosphate. These features are consistent with an in situ phenotype of glycogen-accumulating organisms (GAO), populations thought to lower the efficiency of EBPR systems by outcompeting polyphosphate-accumulating organisms (PAO) for substrates in their anaerobic feed phase. Survey data indicate that these GAO are as commonly seen as the known PAO in full-scale EBPR-activated sludge systems, which suggest that they might play important roles there, and therefore should not be viewed just as laboratory curiosities.
Collapse
Affiliation(s)
- Simon J McIlroy
- Biotechnology Research Centre, La Trobe University, Bendigo, Victoria, Australia
| | | | | | | |
Collapse
|