1
|
Ling X, Gu X, Shen Y, Fu C, Zhou Y, Yin Y, Gao Y, Zhu Y, Lou Y, Zheng M. Comparative genomic analysis of Acanthamoeba from different sources and horizontal transfer events of antimicrobial resistance genes. mSphere 2024; 9:e0054824. [PMID: 39352766 PMCID: PMC11520307 DOI: 10.1128/msphere.00548-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Acanthamoeba species are among the most common free-living amoeba and ubiquitous protozoa, mainly distributed in water and soil, and cause Acanthamoeba keratitis (AK) and severe visual impairment in patients. Although several studies have reported genomic characteristics of Acanthamoeba, limited sample sizes and sources have resulted in an incomplete understanding of the genetic diversity of Acanthamoeba from different sources. While endosymbionts exert a significant influence on the phenotypes of Acanthamoeba, including pathogenicity, virulence, and drug resistance, the species diversity and functional characterization remain largely unexplored. Herein, our study sequenced and analyzed the whole genomes of 19 Acanthamoeba pathogenic strains that cause AK, and by integrating publicly available genomes, we sampled 29 Acanthamoeba strains from ocular, environmental, and other sources. Combined pan-genomic and comparative functional analyses revealed genetic differences and evolutionary relationships among the different sources of Acanthamoeba, as well as classification into multiple functional groups, with ocular isolates in particular showing significant differences that may account for differences in pathogenicity. Phylogenetic and rhizome gene mosaic analyses of ocular Acanthamoeba strains suggested that genomic exchanges between Acanthamoeba and endosymbionts, particularly potential antimicrobial resistance genes trafficking including the adeF, amrA, and amrB genes exchange events, potentially contribute to Acanthamoeba drug resistance. In conclusion, this study elucidated the adaptation of Acanthamoeba to different ecological niches and the influence of gene exchange on the evolution of ocular Acanthamoeba genome, guiding the clinical diagnosis and treatment of AK and laying a theoretical groundwork for developing novel therapeutic approaches. IMPORTANCE Acanthamoeba causes a serious blinding keratopathy, Acanthamoeba keratitis, which is currently under-recognized by clinicians. In this study, we analyzed 48 strains of Acanthamoeba using a whole-genome approach, revealing differences in pathogenicity and function between strains of different origins. Horizontal transfer events of antimicrobial resistance genes can help provide guidance as potential biomarkers for the treatment of specific Acanthamoeba keratitis cases.
Collapse
Affiliation(s)
- Xinyi Ling
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaobin Gu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunyan Fu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yumei Zhou
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiling Yin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanqiu Gao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiwei Zhu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meiqin Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Rayamajhee B, Willcox M, Sharma S, Mooney R, Petsoglou C, Badenoch PR, Sherchan S, Henriquez FL, Carnt N. Zooming in on the intracellular microbiome composition of bacterivorous Acanthamoeba isolates. ISME COMMUNICATIONS 2024; 4:ycae016. [PMID: 38500701 PMCID: PMC10945361 DOI: 10.1093/ismeco/ycae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 01/22/2024] [Indexed: 03/20/2024]
Abstract
Acanthamoeba, a free-living amoeba in water and soil, is an emerging pathogen causing severe eye infection known as Acanthamoeba keratitis. In its natural environment, Acanthamoeba performs a dual function as an environmental heterotrophic predator and host for a range of microorganisms that resist digestion. Our objective was to characterize the intracellular microorganisms of phylogenetically distinct Acanthamoeba spp. isolated in Australia and India through directly sequencing 16S rRNA amplicons from the amoebae. The presence of intracellular bacteria was further confirmed by in situ hybridization and electron microscopy. Among the 51 isolates assessed, 41% harboured intracellular bacteria which were clustered into four major phyla: Pseudomonadota (previously known as Proteobacteria), Bacteroidota (previously known as Bacteroidetes), Actinomycetota (previously known as Actinobacteria), and Bacillota (previously known as Firmicutes). The linear discriminate analysis effect size analysis identified distinct microbial abundance patterns among the sample types; Pseudomonas species was abundant in Australian corneal isolates (P < 0.007), Enterobacteriales showed higher abundance in Indian corneal isolates (P < 0.017), and Bacteroidota was abundant in Australian water isolates (P < 0.019). The bacterial beta diversity of Acanthamoeba isolates from keratitis patients in India and Australia significantly differed (P < 0.05), while alpha diversity did not vary based on the country of origin or source of isolation (P > 0.05). More diverse intracellular bacteria were identified in water isolates as compared with clinical isolates. Confocal and electron microscopy confirmed the bacterial cells undergoing binary fission within the amoebal host, indicating the presence of viable bacteria. This study sheds light on the possibility of a sympatric lifestyle within Acanthamoeba, thereby emphasizing its crucial role as a bunker and carrier of potential human pathogens.
Collapse
Affiliation(s)
- Binod Rayamajhee
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, NSW 2052, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, NSW 2052, Australia
| | - Savitri Sharma
- Jhaveri Microbiology Centre, Prof Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L. V. Prasad Eye Institute (LVPEI), Hyderabad, 500034, India
| | - Ronnie Mooney
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, PA1 2BE, United Kingdom
| | - Constantinos Petsoglou
- Sydney and Sydney Eye Hospital, South-Eastern Sydney Local Health District, Sydney, NSW 2000, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW 2000, Australia
| | - Paul R Badenoch
- College of Medicine and Public Health, Flinders University, Adelaide, 5042, Australia
| | - Samendra Sherchan
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Fiona L Henriquez
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, PA1 2BE, United Kingdom
| | - Nicole Carnt
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Rayamajhee B, Willcox M, Henriquez FL, Vijay AK, Petsoglou C, Shrestha GS, Peguda HK, Carnt N. The role of naturally acquired intracellular Pseudomonas aeruginosa in the development of Acanthamoeba keratitis in an animal model. PLoS Negl Trop Dis 2024; 18:e0011878. [PMID: 38166139 PMCID: PMC10795995 DOI: 10.1371/journal.pntd.0011878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 12/21/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Acanthamoeba is an environmental host for various microorganisms. Acanthamoeba is also becoming an increasingly important pathogen as a cause of keratitis. In Acanthamoeba keratitis (AK), coinfections involving pathogenic bacteria have been reported, potentially attributed to the carriage of microbes by Acanthamoeba. This study assessed the presence of intracellular bacteria in Acanthamoeba species recovered from domestic tap water and corneas of two different AK patients and examined the impact of naturally occurring intracellular bacteria within Acanthamoeba on the severity of corneal infections in rats. METHODOLOGY/PRINCIPAL FINDINGS Household water and corneal swabs were collected from AK patients. Acanthamoeba strains and genotypes were confirmed by sequencing. Acanthamoeba isolates were assessed for the presence of intracellular bacteria using sequencing, fluorescence in situ hybridization (FISH), and electron microscopy. The viability of the bacteria in Acanthamoeba was assessed by labelling with alkyne-functionalized D-alanine (alkDala). Primary human macrophages were used to compare the intracellular survival and replication of the endosymbiotic Pseudomonas aeruginosa and a wild type strain. Eyes of rats were challenged intrastromally with Acanthamoeba containing or devoid of P. aeruginosa and evaluated for the clinical response. Domestic water and corneal swabs were positive for Acanthamoeba. Both strains belonged to genotype T4F. One of the Acanthamoeba isolates harboured P. aeruginosa which was seen throughout the Acanthamoeba's cytoplasm. It was metabolically active and could be seen undergoing binary fission. This motile strain was able to replicate in macrophage to a greater degree than strain PAO1 (p<0.05). Inoculation of Acanthamoeba containing the intracellular P. aeruginosa in rats eyes resulted in a severe keratitis with increased neutrophil response. Acanthamoeba alone induced milder keratitis. CONCLUSIONS/SIGNIFICANCE Our findings indicate the presence of live intracellular bacteria in Acanthamoeba can increase the severity of acute keratitis in vivo. As P. aeruginosa is a common cause of keratitis, this may indicate the potential for these intracellular bacteria in Acanthamoeba to lead to severe polymicrobial keratitis.
Collapse
Affiliation(s)
- Binod Rayamajhee
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Fiona L. Henriquez
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, Scotland, United Kingdom
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Constantinos Petsoglou
- Sydney and Sydney Eye Hospital, Southeastern Sydney Local Health District, Sydney, Australia
- Save Sight Institute, University of Sydney, Sydney, Australia
| | - Gauri Shankar Shrestha
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Hari Kumar Peguda
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Nicole Carnt
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, Australia
| |
Collapse
|
4
|
Fatemi M, Niyyati M, Rouhani S, Karamati SA, Mirjalali H, Karanis P. Contamination of fresh vegetables in municipal stores with pathogenic Acanthamoeba genotypes; a public health concern. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1010-1021. [PMID: 35443833 DOI: 10.1080/09603123.2022.2067328] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/12/2022] [Indexed: 05/23/2023]
Abstract
Acanthamoeba spp. cause keratitis and encephalitis, and are a proper carrier of foodborne pathogens. A total of 70 samples including garden cress, chives, mint, parsley, and basil were collected. Samples were cultured onto a 2% non-nutrient agar medium. The cultures were analyzed using morphological and molecular techniques. In total, 18 (25.7%) out of 70 samples were positive including garden cress 10/22 (45.45%), chives 3/12 (25%), mint 2/13 (15.38%), basil 2/13 (15.38%), and parsley 1/10 (10%). The diagnostic fragment 3 was successfully sequenced in 15 samples and represented 11 (73.3%) T4, three (20%) T5, and one T9 genotypes. In addition, three, two, and one strains, belonging to the genotypes T4, T5, and T9 were ranked highly pathogenic. This is the first study reporting contamination of the most commonly consumed fresh vegetables with pathogenic Acanthamoeba genotypes. Our findings signify the public health concerns due the contamination of vegetables in municipal public markets.
Collapse
Affiliation(s)
- Marziye Fatemi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Rouhani
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ahmad Karamati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, Cologne 50931, Germany
- Department of Basic and Clinical Sciences, Nicosia University Medical School, Nicosia, Cyprus
| |
Collapse
|
5
|
Castelli M, Lanzoni O, Giovannini M, Lebedeva N, Gammuto L, Sassera D, Melekhin M, Potekhin A, Fokin S, Petroni G. 'Candidatus Gromoviella agglomerans', a novel intracellular Holosporaceae parasite of the ciliate Paramecium showing marked genome reduction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:34-49. [PMID: 34766443 DOI: 10.1111/1758-2229.13021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Holosporales are an alphaproteobacterial lineage encompassing bacteria obligatorily associated with multiple diverse eukaryotes. For most representatives, little is known on the interactions with their hosts. In this study, we characterized a novel Holosporales symbiont of the ciliate Paramecium polycaryum. This bacterium inhabits the host cytoplasm, frequently forming quite large aggregates. Possibly due to such aggregates, host cells sometimes displayed lethal division defects. The symbiont was also able to experimentally stably infect another Paramecium polycaryum strain. The bacterium is phylogenetically related with symbionts of other ciliates and diplonemids, forming a putatively fast-evolving clade within the family Holosporaceae. Similarly to many close relatives, it presents a very small genome (<600 kbp), and, accordingly, a limited predicted metabolism, implying a heavy dependence on Paramecium, thanks also to some specialized membrane transporters. Characterized features, including the presence of specific secretion systems, are overall suggestive of a mild parasitic effect on the host. From an evolutionary perspective, a potential ancestral trend towards pronounced genome reduction and possibly linked to parasitism could be inferred, at least among fast-evolving Holosporaceae, with some lineage-specific traits. Interestingly, similar convergent features could be observed in other host-associated lineages, in particular Rickettsiales among Alphaproteobacteria.
Collapse
Affiliation(s)
- Michele Castelli
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
| | - Olivia Lanzoni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | | | - Natalia Lebedeva
- Centre of Core Facilities "Culture Collections of Microorganisms", Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Davide Sassera
- Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy
| | - Maksim Melekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Sergei Fokin
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| |
Collapse
|
6
|
Rayamajhee B, Subedi D, Peguda HK, Willcox MD, Henriquez FL, Carnt N. A Systematic Review of Intracellular Microorganisms within Acanthamoeba to Understand Potential Impact for Infection. Pathogens 2021; 10:pathogens10020225. [PMID: 33670718 PMCID: PMC7922382 DOI: 10.3390/pathogens10020225] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Acanthamoeba, an opportunistic pathogen is known to cause an infection of the cornea, central nervous system, and skin. Acanthamoeba feeds different microorganisms, including potentially pathogenic prokaryotes; some of microbes have developed ways of surviving intracellularly and this may mean that Acanthamoeba acts as incubator of important pathogens. A systematic review of the literature was performed in order to capture a comprehensive picture of the variety of microbial species identified within Acanthamoeba following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Forty-three studies met the inclusion criteria, 26 studies (60.5%) examined environmental samples, eight (18.6%) studies examined clinical specimens, and another nine (20.9%) studies analysed both types of samples. Polymerase chain reaction (PCR) followed by gene sequencing was the most common technique used to identify the intracellular microorganisms. Important pathogenic bacteria, such as E. coli, Mycobacterium spp. and P. aeruginosa, were observed in clinical isolates of Acanthamoeba, whereas Legionella, adenovirus, mimivirus, and unidentified bacteria (Candidatus) were often identified in environmental Acanthamoeba. Increasing resistance of Acanthamoeba associated intracellular pathogens to antimicrobials is an increased risk to public health. Molecular-based future studies are needed in order to assess the microbiome residing in Acanthamoeba, as a research on the hypotheses that intracellular microbes can affect the pathogenicity of Acanthamoeba infections.
Collapse
Affiliation(s)
- Binod Rayamajhee
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences (KRIBS), Lalitpur 44700, Nepal
- Correspondence: or
| | - Dinesh Subedi
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Hari Kumar Peguda
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
| | - Mark Duncan Willcox
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
| | - Fiona L. Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland (UWS), Paisley PA1 2BE, UK;
| | - Nicole Carnt
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (H.K.P.); (M.D.W.); (N.C.)
| |
Collapse
|
7
|
Okude M, Matsuo J, Yamazaki T, Saito K, Furuta Y, Nakamura S, Thapa J, Okubo T, Higashi H, Yamaguchi H. Distribution of amoebal endosymbiotic environmental chlamydia Neochlamydia S13 via amoebal cytokinesis. Microbiol Immunol 2021; 65:115-124. [PMID: 33368645 DOI: 10.1111/1348-0421.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/01/2022]
Abstract
We previously isolated a symbiotic environmental amoeba, harboring an environmental chlamydia, Neochlamydia S13. Interestingly, this bacterium failed to survive outside of host cells and was immediately digested inside other amoebae, indicating bacterial distribution via cytokinesis. This may provide a model for understanding organelle development and chlamydial pathogenesis and evolution; therefore, we assessed our hypothesis of Neochlamydia S13 distribution via cytokinesis by comparative analysis with other environmental Chlamydiae (Protochlamydia R18 and Parachlamydia Bn9 ). Dual staining with 4',6-diamidino-2-phenylindole and phalloidin revealed that the progeny of Neochlamydia S13 and Protochlamydia R18 existed in both daughter cells with a contractile ring on the verge of separation. However, in contrast to other environmental Chlamydiae, little Neochlamydia S13 16S ribosomal DNA was amplified from the culture supernatant. Interestingly, Neochlamydia S13 failed to infect aposymbiotic amoebae, indicating an intimate interaction with the host cells. Furthermore, its infectious rates in cultures expanded from a single amoeba were always maintained at 100%, indicating distribution via cytokinesis. We concluded that unlike other environmental Chlamydiae, Neochlamydia S13 has a unique ability to divide its progeny only via host amoebal cytokinesis. This may be a suitable model to elucidate the mechanism of cell organelle distribution and of chlamydial pathogenesis and evolution.
Collapse
Affiliation(s)
- Miho Okude
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.,School of Medical Technology, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Tomohiro Yamazaki
- School of Medical Technology, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Kentaro Saito
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jeewan Thapa
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Complete genome and bimodal genomic structure of the amoebal symbiont Neochlamydia strain S13 revealed by ultra-long reads obtained from MinION. J Hum Genet 2019; 65:41-48. [PMID: 31723216 DOI: 10.1038/s10038-019-0684-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Abstract
Neochlamydia strain S13 is an amoebal symbiont of an Acanthamoeba sp. The symbiont confers resistance to Legionella pneumophila on its host; however, the molecular mechanism underlying this resistance is not completely understood. Genome analyses have been crucial for understanding the complicated host-symbiont relationship but segregating the host's genome DNA from the symbiont's DNA is often challenging. In this study, we successfully identified a bimodal genomic structure in Neochlamydia strain S13 using PacBio RS II supported by ultra-long reads derived from MinION. One mode consisted of circular sequences of 2,586,667 and 231,307 bp; the other was an integrated sequence of the two via long homologous regions. They encoded 2175 protein-coding regions, some of which were implied to be acquired via horizontal gene transfer. They were specifically conserved in the genus Neochlamydia and formed a cluster in the genome, presumably by multiplication through genome replication. Moreover, it was notable that the sequenced DNA was obtained without segregating the symbiont DNA from the host. This is an easy and versatile technique that facilitates the characterization of diverse hosts and symbionts in nature.
Collapse
|
9
|
Abstract
Bacterial pathogens are generally investigated in the context of disease. To prevent outbreaks, it is essential to understand their lifestyle and interactions with other microbes in their natural environment. Legionella pneumophila is an important human respiratory pathogen that survives and multiplies in biofilms or intracellularly within protists, such as amoebae. Importantly, transmission to humans occurs from these environmental sources. Legionella infection generally leads to rapid host cell lysis. It was therefore surprising to observe that amoebae, including fresh environmental isolates, were well protected during Legionella infection when the bacterial symbiont Protochlamydia amoebophila was also present. Legionella was not prevented from invading amoebae but was impeded in its ability to develop fully virulent progeny and were ultimately cleared in the presence of the symbiont. This study highlights how ecology and virulence of an important human pathogen is affected by a defensive amoeba symbiont, with possibly major consequences for public health. Legionella pneumophila is an important opportunistic pathogen for which environmental reservoirs are crucial for the infection of humans. In the environment, free-living amoebae represent key hosts providing nutrients and shelter for highly efficient intracellular proliferation of L. pneumophila, which eventually leads to lysis of the protist. However, the significance of other bacterial players for L. pneumophila ecology is poorly understood. In this study, we used a ubiquitous amoeba and bacterial endosymbiont to investigate the impact of this common association on L. pneumophila infection. We demonstrate that L. pneumophila proliferation was severely suppressed in Acanthamoeba castellanii harboring the chlamydial symbiont Protochlamydia amoebophila. The amoebae survived the infection and were able to resume growth. Different environmental amoeba isolates containing the symbiont were equally well protected as different L. pneumophila isolates were diminished, suggesting ecological relevance of this symbiont-mediated defense. Furthermore, protection was not mediated by impaired L. pneumophila uptake. Instead, we observed reduced virulence of L. pneumophila released from symbiont-containing amoebae. Pronounced gene expression changes in the presence of the symbiont indicate that interference with the transition to the transmissive phase impedes the L. pneumophila infection. Finally, our data show that the defensive response of amoebae harboring P. amoebophila leaves the amoebae with superior fitness reminiscent of immunological memory. Given that mutualistic associations between bacteria and amoebae are widely distributed, P. amoebophila and potentially other amoeba endosymbionts could be key in shaping environmental survival, abundance, and virulence of this important pathogen, thereby affecting the frequency of human infection.
Collapse
|
10
|
Watanabe T, Yamazaki S, Maita C, Matushita M, Matsuo J, Okubo T, Yamaguchi H. Lateral Gene Transfer Between Protozoa-Related Giant Viruses of Family Mimiviridae and Chlamydiae. Evol Bioinform Online 2018; 14:1176934318788337. [PMID: 30038484 PMCID: PMC6050620 DOI: 10.1177/1176934318788337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022] Open
Abstract
Obligate intracellular chlamydiae diverged into pathogenic and environmental
chlamydiae 0.7-1.4 billion years ago. While pathogenic chlamydiae have adapted
to a wide range of vertebrates, environmental chlamydiae inhabit unicellular
amoebae, the free-living Acanthamoeba. However, how and why
this divergence occurred remains unclear. Meanwhile, giant viruses consisting of
protozoa-related and protozoa-unrelated viruses have been discovered, with the
former group being suggested to have more influenced environmental chlamydiae
during their evolution while cohabiting host amoebae. Against this background,
we attempted to visualize genes of giant viruses in chlamydial genomes by
bioinformatic analysis mainly with comparative genome and phylogenic analysis,
seeking genes present in chlamydiae that are specifically shared with
protozoa-related giant viruses. As a result, in contrast to protozoa-unrelated
giant viruses, the genes of protozoa-related giant viruses were significantly
shared in both the chlamydia genomes depending on the giant virus type. In
particular, the prevalence of Mimiviridae genes among the
protozoa-related giant virus genes in chlamydial genomes was significantly high.
Meanwhile, the prevalence of protozoa-related giant virus genes in pathogenic
chlamydia genomes was consistently higher than those of environmental
chlamydiae; the actual number of sequences similar to giant virus was also
significantly predominant compared with those in the environmental chlamydial
genomes. Among them, the most prevalent of giant virus was in the case of
chlamydiae with Megavirus chiliensis; total of 1338 genes of
the chlamydiae were found to be shared with the virus (444 genes specific to
environmental chlamydiae, 892 genes shared between both chlamydiae, only two
genes in the pathogenic chlamydiae). Phylogenic analysis with most prevalent
sets (Megavirus chiliensis and Protochlamydia
EI2 or Chlamydia trachomatis L2 434Bu) showed the presence of
orthologs between these with several clustered. In addition, Pearson’s single
regression analysis revealed that almost the prevalence of the genes from the
giant viruses in chlamydial genomes was negatively and specifically correlated
with the number of chlamydial open reading frames (ORFs). Thus, these results
indicated the trace of lateral gene transfer between protozoa-related giant
viruses of family Mimiviridae and chlamydiae. This is the first
demonstration of a putative linkage between chlamydiae and the giant viruses,
providing us with a hint to understand chlamydial evolution.
Collapse
Affiliation(s)
- Takanori Watanabe
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sumire Yamazaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chinatsu Maita
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Mizue Matushita
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Okubo T, Matsushita M, Nakamura S, Matsuo J, Nagai H, Yamaguchi H. Acanthamoeba S13WT relies on its bacterial endosymbiont to backpack human pathogenic bacteria and resist Legionella infection on solid media. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:344-354. [PMID: 29611898 DOI: 10.1111/1758-2229.12645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Soil-borne amoeba Acanthamoeba S13WT has an endosymbiotic relationship with an environmental Neochlamydia bacterial strain. However, regardless of extensive experiments in liquid media, the biological advantage of the symbiosis remained elusive. We therefore explored the role of the endosymbiont in predator-prey interactions on solid media. A mixed culture of the symbiotic or aposymbiotic amoebae and GFP-expressing Escherichia coli or Salmonella Enteritidis was spotted onto the centre of a LB or B-CYE agar plate preinoculated with a ring of mCherry-expressing Legionella pneumophila (Legionella 'wall'). The spread of the amoebae on the plate was assessed using a fluorescence imaging system or scanning electron microscopy. As a result, in contrast to the aposymbiotic amoebae, the symbiotic amoebae backpacked these GFP-expressing bacteria and formed flower-like fluorescence patterns in an anticlockwise direction. Other bacteria (Pseudomonas aeruginosa and Stenotrophomonas maltophilia), but not Staphylococcus aureus, were also backpacked by the symbiotic amoebae on LB agar, although lacked the movement to anticlockwise direction. Furthermore, in contrast to the aposymbiotic amoebae, the symbiotic amoebae backpacking the E. coli broke through the Legionella 'wall' on B-CYE agar plates. Thus, we concluded that Acanthamoeba S13WT required the Neochlamydia endosymbiont to backpack human pathogenic bacteria and resist Legionella infection on solid agar.
Collapse
Affiliation(s)
- Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| | - Mizue Matsushita
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroki Nagai
- Department of Microbiology, Gifu University School of Medicine, Yanagido 1-1, Gifu, Gifu 501-1194, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
12
|
Matsuo J, Nakamura S, Okubo T, Fukui M, Yamaguchi H. Long-term survival of Naegleria polaris from Antarctica after 10 years of storage at 4 °C. Parasitol Res 2018; 117:937-941. [PMID: 29380051 DOI: 10.1007/s00436-018-5779-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/22/2018] [Indexed: 11/27/2022]
Abstract
A free-living amoeba, Naegleria is ubiquitously distributed in various natural environments. Since some Naegleria spp. are exclusively distributed in the Arctic and sub-Antarctic regions, we hypothesized that the amoeba may be useful to determine long-term survival of Naegleria in laboratory conditions at 4 °C. The main objective of the study is to determine that a species of an environmental amoebal isolated can live at low temperatures after a long time. Here, we therefore show long-term survival of an amoeba, Naegleria polaris isolated from a sediment sample, which was collected from Antarctica 10 years ago, and since stored at 4 °C. The sample was put on non-nutrient agar plates with heat-killed Escherichia coli, and then the plate was incubated at 4, 15, or 30 °C. Motile amoebae were seen only when the plate was incubated at 15 °C. The sequencing of ribosomal DNA including internal transcribed spacers (ITS) 1, 5.8S rDNA, and ITS2 region revealed the amoebae to be N. polaris, which is exclusively distributed in the Arctic and sub-Antarctic regions. Scanning electron microscopic observation showed that no typical sucker-like structure was seen on the surface of N. polaris, but the cysts were similar to those of Naegleria fowleri. Thus, our result shows, for the first time, that N. polaris can survive after 10 years of storage at 4 °C. This finding may help us understand the still undescribed effects of environmental samples on viability of amoebae.
Collapse
Affiliation(s)
- Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Shinji Nakamura
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, North-19, West-8, Kita-ku, Sapporo, 060-0819, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
13
|
Maita C, Matsushita M, Miyoshi M, Okubo T, Nakamura S, Matsuo J, Takemura M, Miyake M, Nagai H, Yamaguchi H. Amoebal endosymbiont Neochlamydia protects host amoebae against Legionella pneumophila infection by preventing Legionella entry. Microbes Infect 2018; 20:236-244. [PMID: 29317310 DOI: 10.1016/j.micinf.2017.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
Acanthamoeba isolated from environmental soil harbors the obligate intracellular symbiont Neochlamydia, which has a critical role in host amoebal defense against Legionella pneumophila infection. Here, by using morphological analysis with confocal laser scanning fluorescence microscopy and transmission electron microscopy, proteome analyses with two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and liquid chromatography-mass spectrometry (LC/MS), and transcriptome analysis with DNA microarray, we explored the mechanism by which the Neochlamydia affected this defense. We observed that when rare uptake did occur, the symbiotic amoebae allowed Legionella to grow normally. However, the symbiotic amoebae had severely reduced uptake of Legionella when compared with the aposymbiotic amoebae. Also, in contrast to amoebae carrying the endosymbiont, the actin cytoskeleton was significantly disrupted by Legionella infection in aposymbiotic amoebae. Furthermore, despite Legionella exposure, there was little change in Neochlamydia gene expression. Taken together, we concluded that the endosymbiont, Neochlamydia prevents Legionella entry to the host amoeba, resulting in the host defense against Legionella infection.
Collapse
Affiliation(s)
- Chinatsu Maita
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Mizue Matsushita
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Masahiro Miyoshi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Masaharu Takemura
- Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science (RIKADAI), Kagurazaka 1-3, Shinjuku, Tokyo, 162-8601, Japan.
| | - Masaki Miyake
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| | - Hiroki Nagai
- Gifu University School of Medicine, 1-1 Yanagido, Gifu City, 501-1193, Japan.
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
14
|
Purssell A, Lau R, Boggild AK. Azithromycin and Doxycycline Attenuation of Acanthamoeba Virulence in a Human Corneal Tissue Model. J Infect Dis 2017; 215:1303-1311. [PMID: 27578848 DOI: 10.1093/infdis/jiw410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/15/2016] [Indexed: 01/31/2023] Open
Abstract
Background Amoebic keratitis is a potentially blinding eye infection caused by ubiquitous, free-living, environmental acanthamoebae, which are known to harbor bacterial endosymbionts. A Chlamydia-like endosymbiont has previously enhanced Acanthamoeba virulence in vitro. We investigated the potential effect of Acanthamoeba-endosymbiont coinfection in a human corneal tissue model representing clinical amoebic keratitis infection. Methods Environmental and corneal Acanthamoeba isolates from the American Type Culture Collection were screened for endosymbionts by amplifying and sequencing bacterial 16S as well as Chlamydiales-specific DNA. Each Acanthamoeba isolate was used to infect EpiCorneal cells, a 3-dimensional human corneal tissue model. EpiCorneal cells were then treated with azithromycin, doxycycline, or control medium to determine whether antibiotics targeting common classes of bacterial endosymbionts attenuated Acanthamoeba virulence, as indicated by decreased observed cytopathic effect and inflammatory biomarker production. Results A novel endosymbiont closely related to Mycobacterium spp. was identified in Acanthamoeba polyphaga 50495. Infection of EpiCorneal cells with Acanthamoeba castellanii 50493 and A. polyphaga 50372 led to increased production of inflammatory cytokines and cytopathic effects visible under microscopy. These increases were attenuated by azithromycin and doxycycline. Conclusions Our findings suggest that azithromycin and doxycycline may be effective adjuvants to standard antiacanthamoebal chemotherapy by potentially abrogating virulence-enhancing properties of bacterial endosymbionts.
Collapse
Affiliation(s)
- Andrew Purssell
- Faculty of Medicine, University of British Columbia, Vancouver
| | | | - Andrea K Boggild
- Public Health Ontario Laboratories.,Tropical Disease Unit, Toronto General Hospital.,Department of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
15
|
Number of Bacteria and Time of Coincubation With Bacteria Required for the Development of Acanthamoeba Keratitis. Cornea 2017; 36:353-357. [DOI: 10.1097/ico.0000000000001129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Fukumoto T, Matsuo J, Okubo T, Nakamura S, Miyamoto K, Oka K, Takahashi M, Akizawa K, Shibuya H, Shimizu C, Yamaguchi H. Acanthamoeba containing endosymbiotic chlamydia isolated from hospital environments and its potential role in inflammatory exacerbation. BMC Microbiol 2016; 16:292. [PMID: 27978822 PMCID: PMC5160005 DOI: 10.1186/s12866-016-0906-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 11/29/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Environmental chlamydiae belonging to the Parachlamydiaceae are obligate intracellular bacteria that infect Acanthamoeba, a free-living amoeba, and are a risk for hospital-acquired pneumonia. However, whether amoebae harboring environmental chlamydiae actually survive in hospital environments is unknown. We therefore isolated living amoebae with symbiotic chlamydiae from hospital environments. RESULTS One hundred smear samples were collected from Hokkaido University Hospital, Sapporo, Japan; 50 in winter (February to March, 2012) and 50 in summer (August, 2012), and used for the study. Acanthamoebae were isolated from the smear samples, and endosymbiotic chlamydial traits were assessed by infectivity, cytokine induction, and draft genomic analysis. From these, 23 amoebae were enriched on agar plates spread with heat-killed Escherichia coli. Amoeba prevalence was greater in the summer-collected samples (15/30, 50%) than those of the winter season (8/30, 26.7%), possibly indicating a seasonal variation (p = 0.096). Morphological assessment of cysts revealed 21 amoebae (21/23, 91%) to be Acanthamoeba, and cultures in PYG medium were established for 11 of these amoebae. Three amoebae contained environmental chlamydiae; however, only one amoeba (Acanthamoeba T4) with an environmental chlamydia (Protochlamydia W-9) was shown the infectious ability to Acanthamoeba C3 (reference amoebae). While Protochlamydia W-9 could infect C3 amoeba, it failed to replicate in immortal human epithelial, although exposure of HEp-2 cells to living bacteria induced the proinflammatory cytokine, IL-8. Comparative genome analysis with KEGG revealed similar genomic features compared with other Protochlamydia genomes (UWE25 and R18), except for a lack of genes encoding the type IV secretion system. Interestingly, resistance genes associated with several antibiotics and toxic compounds were identified. CONCLUSION These findings are the first demonstration of the distribution in a hospital of a living Acanthamoeba carrying an endosymbiotic chlamydial pathogen.
Collapse
Affiliation(s)
- Tatsuya Fukumoto
- Hokkaido University Hospital, Nishi-5 Kita-14 Jo, Kita-ku, Sapporo, Hokkaido 060-8648 Japan
| | - Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University Graduate School of Health Sciences, Nishi-5 Kita-12 Jo, Kita-ku, Sapporo, Hokkaido 060-0812 Japan
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University Graduate School of Health Sciences, Nishi-5 Kita-12 Jo, Kita-ku, Sapporo, Hokkaido 060-0812 Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 Japan
| | - Kentaro Miyamoto
- Miyarisan Pharmaceutical Co., Ltd., 2-3-13-209, Minami, Wako-shi, Saitama 351-0104 Japan
| | - Kentaro Oka
- Miyarisan Pharmaceutical Co., Ltd., 2-3-13-209, Minami, Wako-shi, Saitama 351-0104 Japan
| | - Motomichi Takahashi
- Miyarisan Pharmaceutical Co., Ltd., 2-3-13-209, Minami, Wako-shi, Saitama 351-0104 Japan
| | - Kouji Akizawa
- Hokkaido University Hospital, Nishi-5 Kita-14 Jo, Kita-ku, Sapporo, Hokkaido 060-8648 Japan
| | - Hitoshi Shibuya
- Hokkaido University Hospital, Nishi-5 Kita-14 Jo, Kita-ku, Sapporo, Hokkaido 060-8648 Japan
| | - Chikara Shimizu
- Hokkaido University Hospital, Nishi-5 Kita-14 Jo, Kita-ku, Sapporo, Hokkaido 060-8648 Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University Graduate School of Health Sciences, Nishi-5 Kita-12 Jo, Kita-ku, Sapporo, Hokkaido 060-0812 Japan
| |
Collapse
|
17
|
Müller A, Walochnik J, Wagner M, Schmitz-Esser S. A clinical Acanthamoeba isolate harboring two distinct bacterial endosymbionts. Eur J Protistol 2016; 56:21-25. [DOI: 10.1016/j.ejop.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/09/2023]
|
18
|
Qi W, Vaughan L, Katharios P, Schlapbach R, Seth-Smith HMB. Host-Associated Genomic Features of the Novel Uncultured Intracellular Pathogen Ca. Ichthyocystis Revealed by Direct Sequencing of Epitheliocysts. Genome Biol Evol 2016; 8:1672-89. [PMID: 27190004 PMCID: PMC4943182 DOI: 10.1093/gbe/evw111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2016] [Indexed: 12/24/2022] Open
Abstract
Advances in single-cell and mini-metagenome sequencing have enabled important investigations into uncultured bacteria. In this study, we applied the mini-metagenome sequencing method to assemble genome drafts of the uncultured causative agents of epitheliocystis, an emerging infectious disease in the Mediterranean aquaculture species gilthead seabream. We sequenced multiple cyst samples and constructed 11 genome drafts from a novel beta-proteobacterial lineage, Candidatus Ichthyocystis. The draft genomes demonstrate features typical of pathogenic bacteria with an obligate intracellular lifestyle: a reduced genome of up to 2.6 Mb, reduced G + C content, and reduced metabolic capacity. Reconstruction of metabolic pathways reveals that Ca Ichthyocystis genomes lack all amino acid synthesis pathways, compelling them to scavenge from the fish host. All genomes encode type II, III, and IV secretion systems, a large repertoire of predicted effectors, and a type IV pilus. These are all considered to be virulence factors, required for adherence, invasion, and host manipulation. However, no evidence of lipopolysaccharide synthesis could be found. Beyond the core functions shared within the genus, alignments showed distinction into different species, characterized by alternative large gene families. These comprise up to a third of each genome, appear to have arisen through duplication and diversification, encode many effector proteins, and are seemingly critical for virulence. Thus, Ca Ichthyocystis represents a novel obligatory intracellular pathogenic beta-proteobacterial lineage. The methods used: mini-metagenome analysis and manual annotation, have generated important insights into the lifestyle and evolution of the novel, uncultured pathogens, elucidating many putative virulence factors including an unprecedented array of novel gene families.
Collapse
Affiliation(s)
- Weihong Qi
- Functional Genomics Center Zurich, University of Zurich, Switzerland
| | - Lloyd Vaughan
- Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich, Switzerland
| | - Pantelis Katharios
- Hellenic Center for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, University of Zurich, Switzerland
| | - Helena M B Seth-Smith
- Functional Genomics Center Zurich, University of Zurich, Switzerland Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich, Switzerland
| |
Collapse
|
19
|
Marine amoebae with cytoplasmic and perinuclear symbionts deeply branching in the Gammaproteobacteria. Sci Rep 2015; 5:13381. [PMID: 26303516 PMCID: PMC4642509 DOI: 10.1038/srep13381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/24/2015] [Indexed: 12/31/2022] Open
Abstract
Amoebae play an important ecological role as predators in microbial communities. They also serve as niche for bacterial replication, harbor endosymbiotic bacteria and have contributed to the evolution of major human pathogens. Despite their high diversity, marine amoebae and their association with bacteria are poorly understood. Here we describe the isolation and characterization of two novel marine amoebae together with their bacterial endosymbionts, tentatively named ‘Candidatus Occultobacter vannellae’ and ‘Candidatus Nucleophilum amoebae’. While one amoeba strain is related to Vannella, a genus common in marine habitats, the other represents a novel lineage in the Amoebozoa. The endosymbionts showed only low similarity to known bacteria (85–88% 16S rRNA sequence similarity) but together with other uncultured marine bacteria form a sister clade to the Coxiellaceae. Using fluorescence in situ hybridization and transmission electron microscopy, identity and intracellular location of both symbionts were confirmed; one was replicating in host-derived vacuoles, whereas the other was located in the perinuclear space of its amoeba host. This study sheds for the first time light on a so far neglected group of protists and their bacterial symbionts. The newly isolated strains represent easily maintainable model systems and pave the way for further studies on marine associations between amoebae and bacterial symbionts.
Collapse
|
20
|
Lagkouvardos I, Shen J, Horn M. Improved axenization method reveals complexity of symbiotic associations between bacteria and acanthamoebae. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:383-388. [PMID: 24992537 DOI: 10.1111/1758-2229.12162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
Bacteria associated with free-living amoebae have attracted considerable attention because of their role in human disease and as models for studying endosymbiosis. However, the identification and analysis of such novel associations are hindered by the limitations of methods for isolation and axenization of amoebae. Here, we replaced the heat-inactivated Escherichia coli, which is typically used as food source during axenization, with a live E. coli tolC knockout mutant strain hypersensitive to antibiotics. Together with the addition of otherwise sublethal amounts of ampicillin, this approach tripled the success rate and reduced the time required for axenization by at least 3 days. Using this method for two environmental samples, 10 Acanthamoeba strains were isolated, seven of which contained bacterial symbionts. In three cases, amoebae harbouring two phylogenetically distinct symbionts were recovered, supporting a more widespread occurrence of multi-partner symbiotic associations among free-living amoebae.
Collapse
Affiliation(s)
- Ilias Lagkouvardos
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
21
|
Ishida K, Sekizuka T, Hayashida K, Matsuo J, Takeuchi F, Kuroda M, Nakamura S, Yamazaki T, Yoshida M, Takahashi K, Nagai H, Sugimoto C, Yamaguchi H. Amoebal endosymbiont Neochlamydia genome sequence illuminates the bacterial role in the defense of the host amoebae against Legionella pneumophila. PLoS One 2014; 9:e95166. [PMID: 24747986 PMCID: PMC3991601 DOI: 10.1371/journal.pone.0095166] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/24/2014] [Indexed: 11/19/2022] Open
Abstract
Previous work has shown that the obligate intracellular amoebal endosymbiont Neochlamydia S13, an environmental chlamydia strain, has an amoebal infection rate of 100%, but does not cause amoebal lysis and lacks transferability to other host amoebae. The underlying mechanism for these observations remains unknown. In this study, we found that the host amoeba could completely evade Legionella infection. The draft genome sequence of Neochlamydia S13 revealed several defects in essential metabolic pathways, as well as unique molecules with leucine-rich repeats (LRRs) and ankyrin domains, responsible for protein-protein interaction. Neochlamydia S13 lacked an intact tricarboxylic acid cycle and had an incomplete respiratory chain. ADP/ATP translocases, ATP-binding cassette transporters, and secretion systems (types II and III) were well conserved, but no type IV secretion system was found. The number of outer membrane proteins (OmcB, PomS, 76-kDa protein, and OmpW) was limited. Interestingly, genes predicting unique proteins with LRRs (30 genes) or ankyrin domains (one gene) were identified. Furthermore, 33 transposases were found, possibly explaining the drastic genome modification. Taken together, the genomic features of Neochlamydia S13 explain the intimate interaction with the host amoeba to compensate for bacterial metabolic defects, and illuminate the role of the endosymbiont in the defense of the host amoebae against Legionella infection.
Collapse
Affiliation(s)
- Kasumi Ishida
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kyoko Hayashida
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Fumihiko Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomohiro Yamazaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mitsutaka Yoshida
- Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaori Takahashi
- Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Nagai
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chihiro Sugimoto
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
22
|
Schulz F, Lagkouvardos I, Wascher F, Aistleitner K, Kostanjšek R, Horn M. Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae. ISME JOURNAL 2014; 8:1634-44. [PMID: 24500618 PMCID: PMC4817620 DOI: 10.1038/ismej.2014.5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/13/2014] [Accepted: 01/01/2014] [Indexed: 11/09/2022]
Abstract
Amoebae serve as hosts for various intracellular bacteria, including human pathogens. These microbes are able to overcome amoebal defense mechanisms and successfully establish a niche for replication, which is usually the cytoplasm. Here, we report on the discovery of a bacterial symbiont that is located inside the nucleus of its Hartmannella sp. host. This symbiont, tentatively named 'Candidatus Nucleicultrix amoebiphila', is only moderately related to known bacteria (∼90% 16S and 23S rRNA sequence similarity) and member of a novel clade of protist symbionts affiliated with the Rickettsiales and Rhodospirillales. Screening of 16S rRNA amplicon data sets revealed a broad distribution of these bacteria in freshwater and soil habitats. 'Candidatus Nucleicultrix amoebiphila' traffics within 6 h post infection to the host nucleus. Maximum infection levels are reached after 96-120 h, at which time point the nucleus is pronouncedly enlarged and filled with bacteria. Transmission of the symbionts occurs vertically upon host cell division but may also occur horizontally through host cell lysis. Although we observed no impact on the fitness of the original Hartmannella sp. host, the bacteria are rather lytic for Acanthamoeba castellanii. Intranuclear symbiosis is an exceptional phenomenon, and amoebae represent an ideal model system to further investigate evolution and underlying molecular mechanisms of these unique microbial associations.
Collapse
Affiliation(s)
- Frederik Schulz
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Ilias Lagkouvardos
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Florian Wascher
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Karin Aistleitner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Rok Kostanjšek
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Matthias Horn
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Sampo A, Matsuo J, Yamane C, Yagita K, Nakamura S, Shouji N, Hayashi Y, Yamazaki T, Yoshida M, Kobayashi M, Ishida K, Yamaguchi H. High-temperature adapted primitive Protochlamydia found in Acanthamoeba isolated from a hot spring can grow in immortalized human epithelial HEp-2 cells. Environ Microbiol 2013; 16:486-97. [PMID: 24460765 DOI: 10.1111/1462-2920.12266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/03/2013] [Accepted: 08/26/2013] [Indexed: 11/27/2022]
Abstract
To elucidate how ancient pathogenic chlamydiae could overcome temperature barriers to adapt to human cells, we characterized a primitive chlamydia found in HS-T3 amoebae (Acanthamoeba) isolated from a hot spring. Phylogenetic analysis revealed the primitive species to be Protochlamydia. In situ hybridization staining showed broad distribution into the amoebal cytoplasm, which was supported by transmission electron microscopic analysis showing typical chlamydial features, with inclusion bodies including both elementary and reticular bodies. Interestingly, although most amoebae isolated from natural environments show reduced growth at 37°C, the HS-T3 amoebae harbouring the Protochlamydia grew well at body temperature. Although infection with Protochlamydia did not confer temperature tolerance to the C3 amoebae, the number of infectious progenies rapidly increased at 37°C with amoebal lysis. In immortalized human epithelial HEp-2 cells, fluorescence microscopic study revealed atypical inclusion of the Protochlamydia, and quantitative real-time polymerase chain reaction analyses also showed an increase in 16S ribosomal RNA DNA amounts. Together, these results showed that the Protochlamydia found in HS-T3 amoebae isolated from a hot spring successfully adapted to immortalized human HEp-2 cells at 37°C, providing further information on the evolution of ancient Protochlamydia to the present pathogenic chlamydiae.
Collapse
Affiliation(s)
- Aya Sampo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Matsuo J, Nakamura S, Ito A, Yamazaki T, Ishida K, Hayashi Y, Yoshida M, Takahashi K, Sekizuka T, Takeuchi F, Kuroda M, Nagai H, Hayashida K, Sugimoto C, Yamaguchi H. Protochlamydia induces apoptosis of human HEp-2 cells through mitochondrial dysfunction mediated by chlamydial protease-like activity factor. PLoS One 2013; 8:e56005. [PMID: 23409113 PMCID: PMC3569409 DOI: 10.1371/journal.pone.0056005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/04/2013] [Indexed: 11/22/2022] Open
Abstract
Obligate amoebal endosymbiotic bacterium Protochlamydia with ancestral pathogenic chlamydial features evolved to survive within protist hosts, such as Acanthamoba, 0.7–1.4 billion years ago, but not within vertebrates including humans. This observation raises the possibility that interactions between Protochlamydia and human cells may result in a novel cytopathic effect, leading to new insights into host-parasite relationships. Previously, we reported that Protochlamydia induces apoptosis of the immortalized human cell line, HEp-2. In this study, we attempted to elucidate the molecular mechanism underlying this apoptosis. We first confirmed that, upon stimulation with the bacteria, poly (ADP-ribose) polymerase (PARP) was cleaved at an early stage in HEp-2 cells, which was dependent on the amount of bacteria. A pan-caspase inhibitor and both caspase-3 and -9 inhibitors similarly inhibited the apoptosis of HEp-2 cells. A decrease of the mitochondrial membrane potential was also confirmed. Furthermore, lactacystin, an inhibitor of chlamydial protease-like activity factor (CPAF), blocked the apoptosis. Cytochalasin D also inhibited the apoptosis, which was dependent on the drug concentration, indicating that bacterial entry into cells was required to induce apoptosis. Interestingly, Yersinia type III inhibitors (ME0052, ME0053, and ME0054) did not have any effect on the apoptosis. We also confirmed that the Protochlamydia used in this study possessed a homologue of the cpaf gene and that two critical residues, histidine-101 and serine-499 of C. trachomatis CPAF in the active center, were conserved. Thus, our results indicate that after entry, Protochlamydia-secreted CPAF induces mitochondrial dysfunction with a decrease of the membrane potential, followed by caspase-9, caspase-3 and PARP cleavages for apoptosis. More interestingly, because C. trachomatis infection can block the apoptosis, our finding implies unique features of CPAF between pathogenic and primitive chlamydiae.
Collapse
Affiliation(s)
- Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Ito
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomohiro Yamazaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kasumi Ishida
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiro Hayashi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mitsutaka Yoshida
- Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaori Takahashi
- Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Fumihiko Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Nagai
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kyoko Hayashida
- Research Center for Zoonosis Control, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Chihiro Sugimoto
- Research Center for Zoonosis Control, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
25
|
Corsaro D, Müller KD, Wingender J, Michel R. "Candidatus Mesochlamydia elodeae" (Chlamydiae: Parachlamydiaceae), a novel chlamydia parasite of free-living amoebae. Parasitol Res 2012; 112:829-38. [PMID: 23224611 DOI: 10.1007/s00436-012-3213-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
Abstract
Vannella sp. isolated from waterweed Elodea sp. was found infected by a chlamydia-like organism. This organism behaves like a parasite, causing the death through burst of its host. Once the vannellae degenerated, the parasite was successfully kept in laboratory within a Saccamoeba sp. isolated from the same waterweed sample, which revealed in fine through electron microscopy to harbor two bacterial endosymbionts: the chlamydial parasite we introduce and another endosymbiont initially and naturally present in the host. Herein, we provide molecular-based identification of both the amoeba host and its two endosymbionts, with special focus on the chlamydia parasite. High sequence similarity values of the 18S rDNA permitted to assign the amoeba to the species Saccamoeba lacustris (Amoebozoa, Tubulinea). The bacterial endosymbiont naturally harbored by the host belonged to Sphingomonas koreensis (Alpha-Proteobacteria). The chlamydial parasite showed a strict specificity for Saccamoeba spp., being unable to infect a variety of other amoebae, including Acanthamoeba, and it was itself infected by a bacteriophage. Sequence similarity values of the 16S rDNA and phylogenetic analysis indicated that this strain is a new member of the family Parachlamydiaceae, for which we propose the name "Candidatus Mesochlamydia elodeae."
Collapse
Affiliation(s)
- Daniele Corsaro
- Chlamydia Research Association, 12 rue du Maconnais, 54500 Vandoeuvre-lès-Nancy, France.
| | | | | | | |
Collapse
|
26
|
Okude M, Matsuo J, Nakamura S, Kawaguchi K, Hayashi Y, Sakai H, Yoshida M, Takahashi K, Yamaguchi H. Environmental chlamydiae alter the growth speed and motility of host acanthamoebae. Microbes Environ 2012; 27:423-9. [PMID: 23100025 PMCID: PMC4103550 DOI: 10.1264/jsme2.me11353] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Symbiosis between living beings is an important driver of evolutionary novelty and ecological diversity; however, understanding the mechanisms underlying obligate mutualism remains a significant challenge. Regarding this, we have previously isolated two different Acanthamoeba strains harboring endosymbiotic bacteria, Protochlamydia (R18 symbiotic amoebae: R18WT) or Neochlamydia (S13 symbiotic amoebae; S13WT). In this study, we treated the symbiotic amoebae R18WT and S13WT with doxycycline (DOX) and rifampicin (RFP), respectively, to establish the aposymbiotic amoebae R18DOX and S13RFP, respectively. Subsequently, we compared the growth speed, motility, phagocytosis, pinocytosis, and morphology of the symbiotic and aposymbiotic amoebae. The growth speed of R18DOX was decreased, although that of S13RFP was increased. A marked change in motility was observed only for R18DOX amoebae. There was no difference in phagocytic and pinocytic activities between the symbiotic and aposymbiotic amoebae. Meanwhile, we observed a significant change in the phalloidin staining pattern and morphological changes in R18DOX (but not S13RFP) aposymbiotic amoebae, indicating a change in actin accumulation upon removal of the Protochlamydia. Infection of C3 (a reference strain) or S13RFP amoebae with Protochlamydia had a harmful effect on the host amoebae, but R18DOX amoebae re-infected with Protochlamydia showed recovery in both growth speed and motility. Taken together, we conclude that endosymbiont environmental chlamydiae alter the growth speed and/or motility of their host Acanthamoeba, possibly implying an close mutual relationship between amoebae and environmental chlamydiae.
Collapse
Affiliation(s)
- Miho Okude
- Department of Medical Laboratory Science, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060–0812, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ito A, Matsuo J, Nakamura S, Yoshida A, Okude M, Hayashi Y, Sakai H, Yoshida M, Takahashi K, Yamaguchi H. Amoebal endosymbiont Protochlamydia induces apoptosis to human immortal HEp-2 cells. PLoS One 2012; 7:e30270. [PMID: 22276171 PMCID: PMC3261889 DOI: 10.1371/journal.pone.0030270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 12/16/2011] [Indexed: 01/19/2023] Open
Abstract
Protochlamydia, an environmental chlamydia and obligate amoebal endosymbiotic bacterium, evolved to survive within protist hosts, such as Acanthamobae, 700 million years ago. However, these bacteria do not live in vertebrates, including humans. This raises the possibility that interactions between Protochlamydia and human cells could induce a novel cytopathic effect, leading to new insights into host-parasite relationships. Therefore, we studied the effect of Protochlamydia on the survival of human immortal cell line, HEp-2 cells and primary peripheral blood mononuclear cells (PBMC). Using mainly 4',6-diamidino-2-phenylindole staining, fluorescent in situ hybridization, transmission electron microscopy, and also TUNEL and Transwell assays, we demonstrated that the Protochlamydia induced apoptosis in HEp-2 cells. The attachment of viable bacterial cells, but not an increase of bacterial infectious progenies within the cells, was required for the apoptosis. Other chlamydiae [Parachlamydia acanthamoebae and Chlamydia trachomatis (serovars D and L2)] did not induce the same phenomena, indicating that the observed apoptosis may be specific to the Protochlamydia. Furthermore, the bacteria had no effect on the survival of primary PBMCs collected from five volunteers, regardless of activation. We concluded that Protochlamydia induces apoptosis in human-immortal HEp-2 cells and that this endosymbiont could potentially be used as a biological tool for the elucidation of novel host-parasite relationships.
Collapse
Affiliation(s)
- Atsushi Ito
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Asahi Yoshida
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Miho Okude
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiro Hayashi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Haruna Sakai
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsutaka Yoshida
- Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaori Takahashi
- Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
28
|
Nakamura S, Matsuo J, Hayashi Y, Kawaguchi K, Yoshida M, Takahashi K, Mizutani Y, Yao T, Yamaguchi H. Endosymbiotic bacterium Protochlamydia can survive in acanthamoebae following encystation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:611-618. [PMID: 23766232 DOI: 10.1111/j.1758-2229.2010.00182.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Obligate intracellular bacteria are commonly seen as endosymbionts of acanthamoebae. However, whether endosymbionts can survive amoebal encystations remains a significant challenge in cellular biology. The survival of the endosymbiotic bacteria Protochlamydia belonging to environmental chlamydiae found in an amoebal isolate that we have previously reported (Environmental Microbiology Reports, DOI: 10.1111/j.1758-2229.2009.00094.x, 2009) following encystation was therefore assessed. The bacteria were observed in cysts and trophozoites reverted from cysts by analysis with transmission electron microscope, and the bacterial 16S rRNA transcripts were detected in amoeba cultures following encystations by reverse transcription polymerase chain reaction method. Furthermore, the bacterial growth was also confirmed, by fluorescent in situ hybridization analysis and the AIU assay that we have previously established (Applied Environmental Microbiology, 74: 6397-6404, 2008), in trophozoites reverted from cysts stored at 4°C for up to a month after encystation. Thus, these results demonstrated that Protochlamydia could survive in acanthamoebae following encystation. Our findings suggest that amoeba cysts might be further studied in order to understand their role in the environmental survival of endosymbionts.
Collapse
Affiliation(s)
- Shinji Nakamura
- Division of Biomedical Imaging Research, Division of Ultrastructural Research, and Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan. Department of Medical Laboratory Sciences, Hokkaido University Graduate School of Health Sciences, Sapporo, Hokkaido 060-0812, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|