1
|
Jalloh AA, Khamis FM, Yusuf AA, Subramanian S, Mutyambai DM. Long-term push-pull cropping system shifts soil and maize-root microbiome diversity paving way to resilient farming system. BMC Microbiol 2024; 24:92. [PMID: 38500045 PMCID: PMC10946131 DOI: 10.1186/s12866-024-03238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The soil biota consists of a complex assembly of microbial communities and other organisms that vary significantly across farming systems, impacting soil health and plant productivity. Despite its importance, there has been limited exploration of how different cropping systems influence soil and plant root microbiomes. In this study, we investigated soil physicochemical properties, along with soil and maize-root microbiomes, in an agroecological cereal-legume companion cropping system known as push-pull technology (PPT). This system has been used in agriculture for over two decades for insect-pest management, soil health improvement, and weed control in sub-Saharan Africa. We compared the results with those obtained from maize-monoculture (Mono) cropping system. RESULTS The PPT cropping system changed the composition and diversity of soil and maize-root microbial communities, and led to notable improvements in soil physicochemical characteristics compared to that of the Mono cropping system. Distinct bacterial and fungal genera played a crucial role in influencing the variation in microbial diversity within these cropping systems. The relative abundance of fungal genera Trichoderma, Mortierella, and Bionectria and bacterial genera Streptomyces, RB41, and Nitrospira were more enriched in PPT. These microbial communities are associated with essential ecosystem services such as plant protection, decomposition, carbon utilization, bioinsecticides production, nitrogen fixation, nematode suppression, phytohormone production, and bioremediation. Conversely, pathogenic associated bacterial genus including Bryobacter were more enriched in Mono-root. Additionally, the Mono system exhibited a high relative abundance of fungal genera such as Gibberella, Neocosmospora, and Aspergillus, which are linked to plant diseases and food contamination. Significant differences were observed in the relative abundance of the inferred metabiome functional protein pathways including syringate degradation, L-methionine biosynthesis I, and inosine 5'-phosphate degradation. CONCLUSION Push-pull cropping system positively influences soil and maize-root microbiomes and enhances soil physicochemical properties. This highlights its potential for agricultural and environmental sustainability. These findings contribute to our understanding of the diverse ecosystem services offered by this cropping system where it is practiced regarding the system's resilience and functional redundancy. Future research should focus on whether PPT affects the soil and maize-root microbial communities through the release of plant metabolites from the intercrop root exudates or through the alteration of the soil's nutritional status, which affects microbial enzymatic activities.
Collapse
Affiliation(s)
- Abdul A Jalloh
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag x20 Hatfield, Pretoria, South Africa
| | - Fathiya Mbarak Khamis
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Abdullahi Ahmed Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag x20 Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag x20 Hatfield, Pretoria, South Africa
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Daniel Munyao Mutyambai
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Life Sciences, South Eastern Kenya University, P.O. Box 170-90200, Kitui, Kenya.
| |
Collapse
|
2
|
Albert D, Zboralski A, Ciotola M, Cadieux M, Biessy A, Blom J, Beaulieu C, Filion M. Identification and genomic characterization of Pseudomonas spp. displaying biocontrol activity against Sclerotinia sclerotiorum in lettuce. Front Microbiol 2024; 15:1304682. [PMID: 38516010 PMCID: PMC10955138 DOI: 10.3389/fmicb.2024.1304682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Lettuce is an economically major leafy vegetable that is affected by numerous diseases. One of the most devastating diseases of lettuce is white mold caused by Sclerotinia sclerotiorum. Control methods for this fungus are limited due to the development of genetic resistance to commonly used fungicides, the large number of hosts and the long-term survival of sclerotia in soil. To elaborate a new and more sustainable approach to contain this pathogen, 1,210 Pseudomonas strains previously isolated from agricultural soils in Canada were screened for their antagonistic activity against S. sclerotiorum. Nine Pseudomonas strains showed strong in vitro inhibition in dual-culture confrontational assays. Whole genome sequencing of these strains revealed their affiliation with four phylogenomic subgroups within the Pseudomonas fluorescens group, namely Pseudomonas corrugata, Pseudomonas asplenii, Pseudomonas mandelii, and Pseudomonas protegens. The antagonistic strains harbor several genes and gene clusters involved in the production of secondary metabolites, including mycin-type and peptin-type lipopeptides, and antibiotics such as brabantamide, which may be involved in the inhibitory activity observed against S. sclerotiorum. Three strains also demonstrated significant in planta biocontrol abilities against the pathogen when either inoculated on lettuce leaves or in the growing substrate of lettuce plants grown in pots. They however did not impact S. sclerotiorum populations in the rhizosphere, suggesting that they protect lettuce plants by altering the fitness and the virulence of the pathogen rather than by directly impeding its growth. These results mark a step forward in the development of biocontrol products against S. sclerotiorum.
Collapse
Affiliation(s)
- Daphné Albert
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Antoine Zboralski
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Marie Ciotola
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Mélanie Cadieux
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Adrien Biessy
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Carole Beaulieu
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Filion
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| |
Collapse
|
3
|
Zhou L, Höfte M, Hennessy RC. Does regulation hold the key to optimizing lipopeptide production in Pseudomonas for biotechnology? Front Bioeng Biotechnol 2024; 12:1363183. [PMID: 38476965 PMCID: PMC10928948 DOI: 10.3389/fbioe.2024.1363183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Lipopeptides (LPs) produced by Pseudomonas spp. are specialized metabolites with diverse structures and functions, including powerful biosurfactant and antimicrobial properties. Despite their enormous potential in environmental and industrial biotechnology, low yield and high production cost limit their practical use. While genome mining and functional genomics have identified a multitude of LP biosynthetic gene clusters, the regulatory mechanisms underlying their biosynthesis remain poorly understood. We propose that regulation holds the key to unlocking LP production in Pseudomonas for biotechnology. In this review, we summarize the structure and function of Pseudomonas-derived LPs and describe the molecular basis for their biosynthesis and regulation. We examine the global and specific regulator-driven mechanisms controlling LP synthesis including the influence of environmental signals. Understanding LP regulation is key to modulating production of these valuable compounds, both quantitatively and qualitatively, for industrial and environmental biotechnology.
Collapse
Affiliation(s)
- Lu Zhou
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Rosanna C. Hennessy
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Sani A, Qin WQ, Li JY, Liu YF, Zhou L, Yang SZ, Mu BZ. Structural diversity and applications of lipopeptide biosurfactants as biocontrol agents against phytopathogens: A review. Microbiol Res 2024; 278:127518. [PMID: 37897841 DOI: 10.1016/j.micres.2023.127518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023]
Abstract
Amphipathic compounds known as biosurfactants are able to reduce surface and interfacial tensions. These substances produced by microbial organisms perform the same functions as chemical surfactants with several enhancements, the most significant of which is biocontrol activity. Lipopeptide is one of the five biosurfactants from natural resources and is identified as the best alternative for chemical surfactants and the major topic of interest for both scientific and industrial communities due to their increasingly growing potential applications in biological and commercial fields. These are the biological compounds with very less toxicity level that increase their importance in the pesticide industry. In this article we summarize the structural diversity of the microbial lipopeptide biosurfactants and focus on their applications as biocontrol agents in plants, covering (1) an intensive study of the structural diversity of lipopeptide biosurfactants originated primarily by the Bacillus, Pseudomonas, Cyanobacteria, and Actinomycetes species is presented, (2) the comparative study of advantages and disadvantages of characterization techniques and physicochemical properties which have a major role in biocontrol activity of microbial lipopeptides, and (3) their wide range biocontrol applications as systemic resistance inducers against different plant diseases, resistance against phytopathogens by alteration of wettability of plant surfaces and antimicrobial activities of important bioactive lipopeptides produced from Bacillus strains.
Collapse
Affiliation(s)
- Asma Sani
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Wan-Qi Qin
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jia-Yi Li
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Gómez-Gutiérrez JA, Wong-Villarreal A, Aguilar-Marcelino L, Yañez-Ocampo G, Hernández-Nuñéz E, Caspeta-Mandujano JM, García-Flores A, Cruz-Arévalo J, Vargas-Uriostegui P, Gomez-Rodríguez O. In vitro nematicidal and acaricidal effect of biosurfactants produced by Bacillus against the root-knot nematode Nacobbus aberrans and the dust mite Tyrophagus putrescentiae. Braz J Microbiol 2023; 54:1127-1136. [PMID: 37119435 PMCID: PMC10234950 DOI: 10.1007/s42770-023-00981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/16/2023] [Indexed: 05/01/2023] Open
Abstract
In the present study, the nematicidal and acaricidal activity of three biosurfactants (BS) produced by strains of the Bacillus genus was evaluated. The BS produced by the Bacillus ROSS2 strain presented a mortality of 39.29% in juveniles (J2) of Nacobbus aberrans at a concentration of 30 mg/mL, this same strain is the one that presented the highest mortality in Tyrophagus putrescentiae, which was 57.97% at a concentration of 39 mg/mL. The BS were qualitatively identified by thin layer chromatography and are lipid in nature based on the retention factor (Rf). While the GC-MS analysis identified two main compounds that are 4,7-Methano-1H-indene-2,6-dicarboxylic acid, 3a,4,7,7a-tetrahydro-1, and Methyl 4-(pyrrol-1-yl)-1,2,5-oxadiazole-3-carboxylate1, which is the polar part indicated by the presence of dicarboxylic acid and carboxylate groups; while the non-polar portion can be interpreted as a hydrocarbon chain of variable length. Based on the present results, BS can be an alternative for the biocontrol of the root-knot nematode N. aberrans and the mite T. putrescentiae.
Collapse
Affiliation(s)
- Jaime Adriel Gómez-Gutiérrez
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos Cuernavaca, Cuernavaca, Morelos, C.P, 62209 México
| | | | - Liliana Aguilar-Marcelino
- National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, 62550 Jiutepec, MR Mexico
| | - Gustavo Yañez-Ocampo
- Laboratorio de edafología y ambiente. Facultad de ciencias, Universidad Autónoma del estado de Mexico, Campus El Cerrillo, Carretera Toluca-Ixtlahuaca Km 15.5, Piedras Blancas, C.P, 50200 Toluca de Lerdo, México
| | - Emanuel Hernández-Nuñéz
- Centro de Investigaciones y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Mérida, Yucatán México
| | - Juan Manuel Caspeta-Mandujano
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos Cuernavaca, Cuernavaca, Morelos, C.P, 62209 México
| | - Alejandro García-Flores
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos Cuernavaca, Cuernavaca, Morelos, C.P, 62209 México
| | - Julio Cruz-Arévalo
- División Agroalimentaria, Universidad Tecnológica de la Selva, C.P, 29950 Ocosingo, Mexico
| | - Patricia Vargas-Uriostegui
- National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, 62550 Jiutepec, MR Mexico
| | - Olga Gomez-Rodríguez
- Programa de Fitopatología, Colegio de Postgraduados-Campus Montecillo, km. 36.5 Carretera México-Texcoco, 56230 Texcoco, Estado de México México
| |
Collapse
|
6
|
Amirinejad N, Shahriary P, Hassanshahian M. Investigation of the synergistic effect of glycolipid biosurfactant produced by Shewanella algae with some antibiotics against planktonic and biofilm forms of MRSA and antibiotic resistant Acinetobacter baumannii. World J Microbiol Biotechnol 2023; 39:45. [DOI: 10.1007/s11274-022-03492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
|
7
|
Platel R, Lucau-Danila A, Baltenweck R, Maia-Grondard A, Trapet P, Magnin-Robert M, Randoux B, Duret M, Halama P, Hilbert JL, Coutte F, Jacques P, Hugueney P, Reignault P, Siah A. Deciphering immune responses primed by a bacterial lipopeptide in wheat towards Zymoseptoria tritici. FRONTIERS IN PLANT SCIENCE 2023; 13:1074447. [PMID: 36777540 PMCID: PMC9909289 DOI: 10.3389/fpls.2022.1074447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Plant immunity induction with natural biocontrol compounds is a valuable and promising ecofriendly tool that fits with sustainable agriculture and healthy food. Despite the agroeconomic significance of wheat, the mechanisms underlying its induced defense responses remain obscure. We reveal here, using combined transcriptomic, metabolomic and cytologic approach, that the lipopeptide mycosubtilin from the beneficial bacterium Bacillus subtilis, protects wheat against Zymoseptoria tritici through a dual mode of action (direct and indirect) and that the indirect one relies mainly on the priming rather than on the elicitation of plant defense-related mechanisms. Indeed, the molecule primes the expression of 80 genes associated with sixteen functional groups during the early stages of infection, as well as the accumulation of several flavonoids during the period preceding the fungal switch to the necrotrophic phase. Moreover, genes involved in abscisic acid (ABA) biosynthesis and ABA-associated signaling pathways are regulated, suggesting a role of this phytohormone in the indirect activity of mycosubtilin. The priming-based bioactivity of mycosubtilin against a biotic stress could result from an interaction of the molecule with leaf cell plasma membranes that may mimic an abiotic stress stimulus in wheat leaves. This study provides new insights into induced immunity in wheat and opens new perspectives for the use of mycosubtilin as a biocontrol compound against Z. tritici.
Collapse
Affiliation(s)
- Rémi Platel
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - Anca Lucau-Danila
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | | | | | - Pauline Trapet
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - Maryline Magnin-Robert
- Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d’Opale, Calais Cedex, France
| | - Béatrice Randoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d’Opale, Calais Cedex, France
| | - Morgane Duret
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - Patrice Halama
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - Jean-Louis Hilbert
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - François Coutte
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - Philippe Jacques
- Joint Research Unit 1158 BioEcoAgro, TERRA Teaching and Research Centre, MiPI, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | | | - Philippe Reignault
- Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d’Opale, Calais Cedex, France
| | - Ali Siah
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| |
Collapse
|
8
|
Bricout A, Morris CE, Chandeysson C, Duban M, Boistel C, Chataigné G, Lecouturier D, Jacques P, Leclère V, Rochex A. The Diversity of Lipopeptides in the Pseudomonas syringae Complex Parallels Phylogeny and Sheds Light on Structural Diversification during Evolutionary History. Microbiol Spectr 2022; 10:e0145622. [PMID: 36287007 PMCID: PMC9769872 DOI: 10.1128/spectrum.01456-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/12/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas spp. colonize diverse aquatic and terrestrial habitats and produce a wide variety of secondary metabolites, including lipopeptides. However, previous studies have often examined a limited number of lipopeptide-producing strains. In this study, we performed a systematic analysis of lipopeptide production across a wide data set of strains of the Pseudomonas syringae complex (724) by using a combined bioinformatics, mass spectrometry, and phylogenetics approach. The large P. syringae complex, which is composed of 13 phylogroups, is known to produce factins (including syringafactin-like lipopeptides), mycins (including syringomycin-like lipopeptides), and peptins (such as syringopeptins). We found that 80.8% of P. syringae strains produced lipopeptides and that factins were the most frequently produced (by 96% of the producing strains). P. syringae strains were either factin monoproducers or factin, mycin, and peptin coproducers or lipopeptide nonproducers in relation to their phylogenetic group. Our analyses led to the discovery of 42 new lipopeptides, bringing the number of lipopeptides identified in the P. syringae complex to 75. We also highlighted that factins have high structural resemblance and are widely distributed among the P. syringae complex, while mycins and peptins are highly structurally diverse and patchily distributed. IMPORTANCE This study provides an insight into the P. syringae metabolome that emphasizes the high diversity of lipopeptides produced within the P. syringae complex. The production profiles of strains are closely related to their phylogenetic classification, indicating that structural diversification of lipopeptides parallels the phylogeny of this bacterial complex, thereby further illustrating the inherent importance of lipopeptides in the ecology of this group of bacteria throughout its evolutionary history. Furthermore, this overview of P. syringae lipopeptides led us to propose a refined classification that could be extended to the lipopeptides produced by other bacterial groups.
Collapse
Affiliation(s)
- Alexandre Bricout
- Université de Lille, Université de Liège, UMRt BioEcoAgro 1158-INRAE, Métabolites Secondaires d’Origine Microbienne, Charles Viollette Institute, Lille, France
- Agence de la transition écologique (ADEME), Angers, France
| | | | | | - Matthieu Duban
- Université de Lille, Université de Liège, UMRt BioEcoAgro 1158-INRAE, Métabolites Secondaires d’Origine Microbienne, Charles Viollette Institute, Lille, France
| | - Corinne Boistel
- Université de Lille, Université de Liège, UMRt BioEcoAgro 1158-INRAE, Métabolites Secondaires d’Origine Microbienne, Charles Viollette Institute, Lille, France
| | - Gabrielle Chataigné
- Université de Lille, Université de Liège, UMRt BioEcoAgro 1158-INRAE, Métabolites Secondaires d’Origine Microbienne, Charles Viollette Institute, Lille, France
| | - Didier Lecouturier
- Université de Lille, Université de Liège, UMRt BioEcoAgro 1158-INRAE, Métabolites Secondaires d’Origine Microbienne, Charles Viollette Institute, Lille, France
| | - Philippe Jacques
- Université de Liège, Université de Lille, UMRt BioEcoAgro 1158-INRAE, Métabolites Secondaires d’Origine Microbienne, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Valérie Leclère
- Université de Lille, Université de Liège, UMRt BioEcoAgro 1158-INRAE, Métabolites Secondaires d’Origine Microbienne, Charles Viollette Institute, Lille, France
| | - Alice Rochex
- Université de Lille, Université de Liège, UMRt BioEcoAgro 1158-INRAE, Métabolites Secondaires d’Origine Microbienne, Charles Viollette Institute, Lille, France
| |
Collapse
|
9
|
Raouani NEH, Claverie E, Randoux B, Chaveriat L, Yaseen Y, Yada B, Martin P, Cabrera JC, Jacques P, Reignault P, Magnin-Robert M, Lounès-Hadj Sahraoui A. Bio-Inspired Rhamnolipids, Cyclic Lipopeptides and a Chito-Oligosaccharide Confer Protection against Wheat Powdery Mildew and Inhibit Conidia Germination. Molecules 2022; 27:molecules27196672. [PMID: 36235207 PMCID: PMC9571057 DOI: 10.3390/molecules27196672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Plant protection is mainly based on the application of synthetic pesticides to limit yield losses resulting from diseases. However, the use of more eco-friendly strategies for sustainable plant protection has become a necessity that could contribute to controlling pathogens through a direct antimicrobial effect and/or an induction of plant resistance. Three different families of natural or bioinspired compounds originated from bacterial or fungal strains have been evaluated to protect wheat against powdery mildew, caused by the biotrophic Blumeria graminis f.sp. tritici (Bgt). Thus, three bio-inspired mono-rhamnolipids (smRLs), three cyclic lipopeptides (CLPs, mycosubtilin (M), fengycin (F), surfactin (S)) applied individually and in mixtures (M + F and M + F + S), as well as a chitosan oligosaccharide (COS) BioA187 were tested against Bgt, in planta and in vitro. Only the three smRLs (Rh-Eth-C12, Rh-Est-C12 and Rh-Succ-C12), the two CLP mixtures and the BioA187 led to a partial protection of wheat against Bgt. The higher inhibitor effects on the germination of Bgt spores in vitro were observed from smRLs Rh-Eth-C12 and Rh-Succ-C12, mycosubtilin and the two CLP mixtures. Taking together, these results revealed that such molecules could constitute promising tools for a more eco-friendly agriculture.
Collapse
Affiliation(s)
- Nour El Houda Raouani
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
| | - Elodie Claverie
- Materia Nova ASBL, Avenue du Champ de Mars 6, 7000 Mons, Belgium
| | - Béatrice Randoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
| | - Ludovic Chaveriat
- ULR 7519—Unité Transformations & Agroressources, Université d’Artois, UnilaSalle, CEDEX CS 20819, 62408 Béthune, France
| | - Yazen Yaseen
- Lipofabrik, Parc d’Activités du Mélantois, 917 Rue des Saules, 59810 Lesquin, France
| | - Bopha Yada
- Materia Nova ASBL, Avenue du Champ de Mars 6, 7000 Mons, Belgium
| | - Patrick Martin
- ULR 7519—Unité Transformations & Agroressources, Université d’Artois, UnilaSalle, CEDEX CS 20819, 62408 Béthune, France
| | | | - Philippe Jacques
- JUNIA, Joint Research Unit UMRt 1158-INRAE, BioEcoAgro, Équipe Métabolites Spécialisés d’Origine Végétale, University Lille, INRAE, University Liège, UPJV, University Artois, ULCO, 48, Boulevard Vauban, CEDEX BP 41290, 59014 Lille, France
- Joint Research Unit 1158 BioEcoAgro, Équipe Métabolites Spécialisés d’Origine Végétale, Microbial Processes and Interactions, TERRA Research Centre, Gembloux Agro-Bio Tech, Université de Liège, 5030 Gembloux, Belgium
| | - Philippe Reignault
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
| | - Maryline Magnin-Robert
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
- Correspondence: (M.M.-R.); (A.L.-H.S.)
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université Littoral Côte d’Opale, CEDEX CS 80699, 62228 Calais, France
- Correspondence: (M.M.-R.); (A.L.-H.S.)
| |
Collapse
|
10
|
Han P, Liu T, Zheng Y, Song R, Nan T, Yang X, Huang L, Yuan Y. A Mycorrhizal Bacteria Strain Isolated From Polyporus umbellatus Exhibits Broad-Spectrum Antifungal Activity. FRONTIERS IN PLANT SCIENCE 2022; 13:954160. [PMID: 35923885 PMCID: PMC9340266 DOI: 10.3389/fpls.2022.954160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The microbes in the rhizosphere (or mycorrhizosphere) could promote plant growth, however, it is unclear whether mycorrhizosphere microbes could fight multiple fungal pathogens. In this study, twenty-one bacterial strains distributed in 6 genera, including 5 Pseudomonas strains, were isolated from mycorrhizal samples of Polyporus umbellatus that rely on other fungi during their life cycles. Further screening and pot experiments showed that the Pseudomonas strain ZL8 not only inhibited the growth of phytopathogenic fungi, but also promoted the growth of Salvia miltiorrhiza through inhibiting its wilting. In addition, strain ZL8 was found to have the ability to dissolve phosphate, produce IAA and siderophore. Nineteen compounds were identified from the fermentation broth of strain ZL8, of which 2,4-diacetylphloroglucinol (DAPG) had a significant inhibitory effect on phytopathogenic fungi with a minimum inhibitory concentration of 3.12-25 μg/mL. Molecular docking predicted that DAPG could bind to myosin I at two unique sites, which may be responsible to the inhibition of fungal growth. The evaluation results showed that strain ZL8 can be used to develop a dual-purpose biocontrol agents and biofertilizer. These results also provide new insights into the discovery and utilization of new resources for biocontrol agents and biolfertilizers.
Collapse
Affiliation(s)
- Pengjie Han
- School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianrui Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Zheng
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruiqi Song
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiegui Nan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Luqi Huang
- School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications. Int J Mol Sci 2022; 23:ijms23126639. [PMID: 35743077 PMCID: PMC9224206 DOI: 10.3390/ijms23126639] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
RNA interference (RNAi) is a powerful tool that is being increasingly utilized for crop protection against viruses, fungal pathogens, and insect pests. The non-transgenic approach of spray-induced gene silencing (SIGS), which relies on spray application of double-stranded RNA (dsRNA) to induce RNAi, has come to prominence due to its safety and environmental benefits in addition to its wide host range and high target specificity. However, along with promising results in recent studies, several factors limiting SIGS RNAi efficiency have been recognized in insects and plants. While sprayed dsRNA on the plant surface can produce a robust RNAi response in some chewing insects, plant uptake and systemic movement of dsRNA is required for delivery to many other target organisms. For example, pests such as sucking insects require the presence of dsRNA in vascular tissues, while many fungal pathogens are predominately located in internal plant tissues. Investigating the mechanisms by which sprayed dsRNA enters and moves through plant tissues and understanding the barriers that may hinder this process are essential for developing efficient ways to deliver dsRNA into plant systems. In this review, we assess current knowledge of the plant foliar and cellular uptake of dsRNA molecules. We will also identify major barriers to uptake, including leaf morphological features as well as environmental factors, and address methods to overcome these barriers.
Collapse
|
12
|
Jardim ACM, de Oliveira JE, Alves LDM, Gutuzzo GO, de Oliveira ALM, Rodrigues EP. Diversity and antimicrobial potential of the culturable rhizobacteria from medicinal plant Baccharis trimera Less D.C. Braz J Microbiol 2022; 53:1409-1424. [PMID: 35499750 PMCID: PMC9433639 DOI: 10.1007/s42770-022-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Plant microbiota is usually enriched with bacteria producers of secondary metabolites and represents a valuable source of novel species and compounds. Here, we analyzed the diversity of culturable root-associated bacteria of the medicinal native plant Baccharis trimera (Carqueja) and screened promising isolates for their antimicrobial properties. The rhizobacteria were isolated from the endosphere and rhizosphere of B. trimera from Ponta Grossa and Ortigueira localities and identified by sequencing and restriction analysis of the 16S rDNA. The most promising isolates were screened for antifungal activities and the production of siderophores and biosurfactants. B. trimera presented a diverse community of rhizobacteria, constituted of 26 families and 41 genera, with a predominance of Streptomyces and Bacillus genera, followed by Paenibacillus, Staphylococcus, Methylobacterium, Rhizobium, Tardiphaga, Paraburkholderia, Burkholderia, and Pseudomonas. The more abundant genera were represented by different species, showing a high diversity of the microbiota associated to B. trimera. Some of these isolates potentially represent novel species and deserve further examination. The communities were influenced by both the edaphic properties of the sampling locations and the plant niches. Approximately one-third of the rhizobacteria exhibited antifungal activity against Sclerotinia sclerotiorum and Colletotrichum gloeosporioides, and a high proportion of isolates produced siderophores (25%) and biosurfactants (42%). The most promising isolates were members of the Streptomyces genus. The survey of B. trimera returned a diverse community of culturable rhizobacteria and identified potential candidates for the development of plant growth-promoting and protection products, reinforcing the need for more comprehensive investigations of the microbiota of Brazilian native plants and habitats.
Collapse
Affiliation(s)
- Ana Camila Munis Jardim
- Laboratório de Genética de Microrganismos, Departamento de Biologia Geral, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil
| | - Jéssica Ellen de Oliveira
- Laboratório de Genética de Microrganismos, Departamento de Biologia Geral, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil
| | - Luana de Moura Alves
- Laboratório de Genética de Microrganismos, Departamento de Biologia Geral, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil
| | - Giovana Oliveira Gutuzzo
- Laboratório de Genética de Microrganismos, Departamento de Biologia Geral, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil
| | - André Luiz Martinez de Oliveira
- Laboratório de Bioquímica de Microrganismos, Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil
| | - Elisete Pains Rodrigues
- Laboratório de Genética de Microrganismos, Departamento de Biologia Geral, Universidade Estadual de Londrina, PR-445, Km 380, Campus Universitário, PO Box 6001, Londrina, Paraná, CP 86.051-970, Brazil.
| |
Collapse
|
13
|
Sarubbo LA, Silva MDGC, Durval IJB, Bezerra KGO, Ribeiro BG, Silva IA, Twigg MS, Banat IM. Biosurfactants: Production, Properties, Applications, Trends, and General Perspectives. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Piegza M, Szura K, Łaba W. Trichoderma citrinoviride: Anti-Fungal Biosurfactants Production Characteristics. Front Bioeng Biotechnol 2021; 9:778701. [PMID: 34888302 PMCID: PMC8650307 DOI: 10.3389/fbioe.2021.778701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanism of direct impact of Trichoderma fungi on other organisms is a multilayer process. The level of limiting the growth of other microorganisms is determined by the strain and often by the environment. Confirmation of the presence of extracellular biosurfactants in certain strains of Trichoderma considered as biocontrol agents was regarded as a crucial topic complementing the characterization of their interactive mechanisms. Selected strains of T. citrinoviride were cultured in media stimulating biosurfactant biosynthesis, optionally supplemented with lytic enzyme inducers. Results confirmed the anti-fungal properties of surface-active compounds in the tested culture fluids. Preparations that displayed high fungal growth inhibition presented marginal enzymatic activities of both chitinases and laminarinases, implying the inhibitory role of biosurfactants. Fractions from the foam of the culture fluid of the C1 strain, cultured on Saunders medium, and HL strain on MGP medium, without an additional carbon source, exhibited the most prominent ability to inhibit the growth of phytopathogens. Filamentous fungi capable of producing fungicidal compounds, including surfactants, may find applications in protecting the plants against agri-food pathogenic molds.
Collapse
Affiliation(s)
- Michał Piegza
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Scinces, Wrocław, Poland
| | - Kamil Szura
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Scinces, Wrocław, Poland
| | - Wojciech Łaba
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Scinces, Wrocław, Poland
| |
Collapse
|
15
|
Sullam KE, Musa T. Ecological Dynamics and Microbial Treatments against Oomycete Plant Pathogens. PLANTS 2021; 10:plants10122697. [PMID: 34961168 PMCID: PMC8707103 DOI: 10.3390/plants10122697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
In this review, we explore how ecological concepts may help assist with applying microbial biocontrol agents to oomycete pathogens. Oomycetes cause a variety of agricultural diseases, including potato late blight, apple replant diseases, and downy mildew of grapevine, which also can lead to significant economic damage in their respective crops. The use of microbial biocontrol agents is increasingly gaining interest due to pressure from governments and society to reduce chemical plant protection products. The success of a biocontrol agent is dependent on many ecological processes, including the establishment on the host, persistence in the environment, and expression of traits that may be dependent on the microbiome. This review examines recent literature and trends in research that incorporate ecological aspects, especially microbiome, host, and environmental interactions, into biological control development and applications. We explore ecological factors that may influence microbial biocontrol agents’ efficacy and discuss key research avenues forward.
Collapse
|
16
|
Hussain T, Khan AA, Mohamed HI. Potential Efficacy of Biofilm-Forming Biosurfactant Bacillus firmus HussainT-Lab.66 Against Rhizoctonia solani and Mass Spectrometry Analysis of its Metabolites. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10318-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Zhou L, de Jong A, Yi Y, Kuipers OP. Identification, Isolation, and Characterization of Medipeptins, Antimicrobial Peptides From Pseudomonas mediterranea EDOX. Front Microbiol 2021; 12:732771. [PMID: 34594316 PMCID: PMC8477016 DOI: 10.3389/fmicb.2021.732771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
The plant microbiome is a vastly underutilized resource for identifying new genes and bioactive compounds. Here, we used Pseudomonas sp. EDOX, isolated from the leaf endosphere of a tomato plant grown on a small farm in the Netherlands. To get more insight into its biosynthetic potential, the genome of Pseudomonas sp. EDOX was sequenced and subjected to bioinformatic analyses. The genome sequencing analysis identified strain EDOX as a member of the Pseudomonas mediterranea. In silico analysis for secondary metabolites identified a total of five non-ribosomally synthesized peptides synthetase (NRPS) gene clusters, related to the biosynthesis of syringomycin, syringopeptin, anikasin, crochelin A, and fragin. Subsequently, we purified and characterized several cyclic lipopeptides (CLPs) produced by NRPS, including some of the already known ones, which have biological activity against several plant and human pathogens. Most notably, mass spectrometric analysis led to the discovery of two yet unknown CLPs, designated medipeptins, consisting of a 22 amino acid peptide moiety with varying degrees of activity against Gram-positive and Gram-negative pathogens. Furthermore, we investigated the mode of action of medipeptin A. The results show that medipeptin A acts as a bactericidal antibiotic against Gram-positive pathogens, but as a bacteriostatic antibiotic against Gram-negative pathogens. Medipeptin A exerts its potent antimicrobial activity against Gram-positive bacteria via binding to both lipoteichoic acid (LTA) and lipid II as well as by forming pores in membranes. Collectively, our study provides important insights into the biosynthesis and mode of action of these novel medipeptins from P. mediterranea EDOX.
Collapse
Affiliation(s)
| | | | | | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Li E, de Jonge R, Liu C, Jiang H, Friman VP, Pieterse CMJ, Bakker PAHM, Jousset A. Rapid evolution of bacterial mutualism in the plant rhizosphere. Nat Commun 2021; 12:3829. [PMID: 34158504 PMCID: PMC8219802 DOI: 10.1038/s41467-021-24005-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
While beneficial plant-microbe interactions are common in nature, direct evidence for the evolution of bacterial mutualism is scarce. Here we use experimental evolution to causally show that initially plant-antagonistic Pseudomonas protegens bacteria evolve into mutualists in the rhizosphere of Arabidopsis thaliana within six plant growth cycles (6 months). This evolutionary transition is accompanied with increased mutualist fitness via two mechanisms: (i) improved competitiveness for root exudates and (ii) enhanced tolerance to the plant-secreted antimicrobial scopoletin whose production is regulated by transcription factor MYB72. Crucially, these mutualistic adaptations are coupled with reduced phytotoxicity, enhanced transcription of MYB72 in roots, and a positive effect on plant growth. Genetically, mutualism is associated with diverse mutations in the GacS/GacA two-component regulator system, which confers high fitness benefits only in the presence of plants. Together, our results show that rhizosphere bacteria can rapidly evolve along the parasitism-mutualism continuum at an agriculturally relevant evolutionary timescale.
Collapse
Affiliation(s)
- Erqin Li
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands ,grid.14095.390000 0000 9116 4836Freie Universität Berlin, Institut für Biologie, Berlin, Germany ,grid.452299.1Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Ronnie de Jonge
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands ,grid.11486.3a0000000104788040VIB Center for Plant Systems Biology, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
| | - Chen Liu
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Henan Jiang
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Ville-Petri Friman
- grid.5685.e0000 0004 1936 9668University of York, Department of Biology, York, UK
| | - Corné M. J. Pieterse
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Peter A. H. M. Bakker
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Alexandre Jousset
- grid.5477.10000000120346234Utrecht University, Department of Biology, Ecology and Biodiversity, Utrecht, The Netherlands
| |
Collapse
|
19
|
Li E, de Jonge R, Liu C, Jiang H, Friman VP, Pieterse CMJ, Bakker PAHM, Jousset A. Rapid evolution of bacterial mutualism in the plant rhizosphere. Nat Commun 2021. [PMID: 34158504 DOI: 10.1038/s41467-012-24005-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
While beneficial plant-microbe interactions are common in nature, direct evidence for the evolution of bacterial mutualism is scarce. Here we use experimental evolution to causally show that initially plant-antagonistic Pseudomonas protegens bacteria evolve into mutualists in the rhizosphere of Arabidopsis thaliana within six plant growth cycles (6 months). This evolutionary transition is accompanied with increased mutualist fitness via two mechanisms: (i) improved competitiveness for root exudates and (ii) enhanced tolerance to the plant-secreted antimicrobial scopoletin whose production is regulated by transcription factor MYB72. Crucially, these mutualistic adaptations are coupled with reduced phytotoxicity, enhanced transcription of MYB72 in roots, and a positive effect on plant growth. Genetically, mutualism is associated with diverse mutations in the GacS/GacA two-component regulator system, which confers high fitness benefits only in the presence of plants. Together, our results show that rhizosphere bacteria can rapidly evolve along the parasitism-mutualism continuum at an agriculturally relevant evolutionary timescale.
Collapse
Affiliation(s)
- Erqin Li
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Ronnie de Jonge
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium.
| | - Chen Liu
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Henan Jiang
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | | | - Corné M J Pieterse
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Peter A H M Bakker
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Alexandre Jousset
- Utrecht University, Department of Biology, Ecology and Biodiversity, Utrecht, The Netherlands.
| |
Collapse
|
20
|
Biosurfactants Produced by Phyllosphere-Colonizing Pseudomonads Impact Diesel Degradation but Not Colonization of Leaves of Gnotobiotic Arabidopsis thaliana. Appl Environ Microbiol 2021; 87:AEM.00091-21. [PMID: 33608298 DOI: 10.1128/aem.00091-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/12/2021] [Indexed: 11/20/2022] Open
Abstract
Biosurfactant production is a common trait in leaf surface-colonizing bacteria that has been associated with increased survival and movement on leaves. At the same time, the ability to degrade aliphatics is common in biosurfactant-producing leaf colonizers. Pseudomonads are common leaf colonizers and have been recognized for their ability to produce biosurfactants and degrade aliphatic compounds. In this study, we investigated the role of biosurfactants in four non-plant-pathogenic Pseudomonas strains by performing a series of experiments to characterize their surfactant properties and their role during leaf colonization and diesel degradation. The biosurfactants produced were identified using mass spectrometry. Two strains produced viscosin-like biosurfactants, and the other two produced massetolide A-like biosurfactants, which aligned with the phylogenetic relatedness between the strains. To further investigate the role of surfactant production, random Tn5 transposon mutagenesis was performed to generate knockout mutants. The knockout mutants were compared to their respective wild types with regard to their ability to colonize gnotobiotic Arabidopsis thaliana and to degrade diesel or dodecane. It was not possible to detect negative effects during plant colonization in direct competition or individual colonization experiments. When grown on diesel, knockout mutants grew significantly slower than their respective wild types. When grown on dodecane, knockout mutants were less impacted than during growth on diesel. By adding isolated wild-type biosurfactants, it was possible to complement the growth of the knockout mutants.IMPORTANCE Many leaf-colonizing bacteria produce surfactants and are able to degrade aliphatic compounds; however, whether surfactant production provides a competitive advantage during leaf colonization is unclear. Furthermore, it is unclear if leaf colonizers take advantage of the aliphatic compounds that constitute the leaf cuticle and cuticular waxes. Here, we tested the effect of surfactant production on leaf colonization, and we demonstrate that the lack of surfactant production decreases the ability to degrade aliphatic compounds. This indicates that leaf surface-dwelling, surfactant-producing bacteria contribute to degradation of environmental hydrocarbons and may be able to utilize leaf surface waxes. This has implications for plant-microbe interactions and future studies.
Collapse
|
21
|
Cauduro GP, Leal AL, Marmitt M, de Ávila LG, Kern G, Quadros PD, Mahenthiralingam E, Valiati VH. New benzo(a)pyrene-degrading strains of the Burkholderia cepacia complex prospected from activated sludge in a petrochemical wastewater treatment plant. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:163. [PMID: 33675444 DOI: 10.1007/s10661-021-08952-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The prospection of bacteria that are resistant to polyaromatic hydrocarbons (PAH) of activated sludge from a Petrochemical Wastewater Treatment Plant (WWTP) allows investigating potential biodegraders of PAH. For this purpose, sludge samples were cultured with benzo(a)pyrene and/or naphthalene as carbon sources. The recovered isolates were characterized by biochemical methods and identified based on the analysis of the sequence of three genes: 16S, recA and gyrB. The isolated strains were shown to be capable of producing surfactants, which are important for compound degradation. The ability to reduce benzo(a)pyrene in vitro was tested by gas chromatography. After 20 days of experiment, the consortium that was enriched with 1 mg/L of benzo(a)pyrene was able to reduce 30% of the compound when compared to a control without bacteria. The four isolated strains that significantly reduced benzo(a)pyrene belong to the Burkholderia cepacia complex and were identified within the consortium as the species B. cenocepacia IIIa, B. vietnamiensis, B. cepacia, and B. multivorans. This finding demonstrates the biotechnological potential of the B. cepacia complex strains for use in wastewater treatment and bioremediation. Previous studies on hydrocarbon-degrading strains focused mainly on contaminated soil or marine areas. In this work, the strains were prospected from activated sludge in a WWTP and showed the potential of indigenous samples to be used in both improving treatment systems and bioremediation of areas contaminated with petrochemical waste.
Collapse
Affiliation(s)
- Guilherme Pinto Cauduro
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Ana Lusia Leal
- Superintendence for the Treatment of Wastewater, Companhia Riograndense de Saneamento (SITEL/CORSAN) Polo Petroquímico do Sul, Triunfo, RS, Brazil
| | - Marcela Marmitt
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Letícia Gomes de Ávila
- Superintendence for the Treatment of Wastewater, Companhia Riograndense de Saneamento (SITEL/CORSAN) Polo Petroquímico do Sul, Triunfo, RS, Brazil
| | - Gabriela Kern
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Patrícia Dörr Quadros
- Laboratório de Biodeterioração de Combustíveis e Biocombustíveis, UFRGS, Brazil Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Victor Hugo Valiati
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil.
| |
Collapse
|
22
|
Biosurfactant based formulation of Pseudomonas guariconensis LE3 with multifarious plant growth promoting traits controls charcoal rot disease in Helianthus annus. World J Microbiol Biotechnol 2021; 37:55. [PMID: 33615389 DOI: 10.1007/s11274-021-03015-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Biosurfactants are environment compatible surface-active biomolecules with multifunctional properties which can be utilized in various industries. In this study a biosurfactant producing novel plant growth promoting isolate Pseudomonas guariconensis LE3 from the rhizosphere of Lycopersicon esculentum is presented as biostimulant and biocontrol agent. Biosurfactant extracted from culture was characterized to be mixture of various mono- and di-rhamnolipids with antagonistic activity against Macrophomina phaseolina, causal agent of charcoal rot in diverse crops. Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR) analysis confirmed the rhamnolipid nature of biosurfactant. PCR analysis established the presence of genes involved in synthesis of antibiotics diacetylphloroglucinol, phenazine 1-carboxylic acid and pyocyanin, and lytic enzymes chitinase and endoglucanase suggesting biocontrol potential of the isolate. Plant growth promoting activities shown by LE3 were phosphate solubilization and production of siderophores, indole acetic acid (IAA), ammonia and 1-aminocyclopropane-1-carboxylate deaminase (ACCD). To assemble all the characteristics of LE3 various bioformuations were developed. Amendment of biosurfactant in bioformulation of LE3 cells improved the shelf life. Biosurfactant amended formulation of LE3 cells was most effective in biocontrol of charcoal rot disease of sunflower and growth promotion in field conditions. The root adhered soil mass of plantlets inoculated with LE3 plus biosurfactant was significantly higher over control. Biosurfactant amended formulation of LE3 cells caused maximum yield enhancement (80.80%) and biocontrol activity (75.45%), indicating that addition of biosurfactant improves the plant-bacterial interaction and soil properties leading to better control of disease and overall improvement of plant health and yield.
Collapse
|
23
|
Roberts DP, Selmer K, Lupitskyy R, Rice C, Buyer JS, Maul JE, Lakshman DK, DeSouza J. Seed treatment with prodigiosin controls damping-off of cucumber caused by Pythium ultimum. AMB Express 2021; 11:10. [PMID: 33409670 PMCID: PMC7788126 DOI: 10.1186/s13568-020-01169-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022] Open
Abstract
Ethanol extract of cell mass of Serratia marcescens strain N4-5, when applied as a treatment to cucumber seed, has been shown to provide control of the oomycete soil-borne plant pathogen Pythium ultimum equivalent to that provided by a seed-treatment chemical pesticide in some soils. Two dominant compounds in this extract, prodigiosin and the serratamolide serrawetin W1, were identified based on mass and collision induced dissociation mass fragmentation spectra. An additional four compounds with M+H+ masses (487, 541, 543, and 571) consistent with serratamolides reported in the literature were also detected. Several other compounds with M+H+ masses of 488, 536, 684, 834, 906, and 908 m/z were detected in this ethanol extract inconsistently over multiple liquid chromatography coupled with tandem mass spectrometry (LC/MS-MS) runs. A purified preparation of prodigiosin provided control of damping-off of cucumber caused by P. ultimum when applied as a seed treatment while ethanol extract of cell mass of strain Tn246, a transposon-mutant-derivative of strain N4-5, did not. Strain Tn246 contained a mini-Tn5 Km insertion in a prodigiosin biosynthetic gene and was deficient in production of prodigiosin. All other compounds detected in N4-5 extract were detected in the Tn246 extract. This is the first report demonstrating that prodigiosin can control a plant disease. Other compounds in ethanol extract of strain N4-5 may contribute to disease control.
Collapse
Affiliation(s)
- Daniel P Roberts
- Sustainable Agricultural Systems Laboratory, USDA-Agricultural Research Service, Beltsville Agricultural Research Center, BLDG 001, Rm. 245B, Beltsville, MD, 20705, USA.
| | - Kaitlyn Selmer
- Sustainable Agricultural Systems Laboratory, USDA-Agricultural Research Service, Beltsville Agricultural Research Center, BLDG 001, Rm. 245B, Beltsville, MD, 20705, USA
- Agios Pharmaceuticals, 88 Sidney St, Cambridge, MA, USA
| | - Robert Lupitskyy
- Sustainable Agricultural Systems Laboratory, USDA-Agricultural Research Service, Beltsville Agricultural Research Center, BLDG 001, Rm. 245B, Beltsville, MD, 20705, USA
- TIC Gums, 10552 Philadelphia Rd., White Marsh, MD, 21162, USA
| | - Clifford Rice
- Sustainable Agricultural Systems Laboratory, USDA-Agricultural Research Service, Beltsville Agricultural Research Center, BLDG 001, Rm. 245B, Beltsville, MD, 20705, USA
| | - Jeffrey S Buyer
- Sustainable Agricultural Systems Laboratory, USDA-Agricultural Research Service, Beltsville Agricultural Research Center, BLDG 001, Rm. 245B, Beltsville, MD, 20705, USA
| | - Jude E Maul
- Sustainable Agricultural Systems Laboratory, USDA-Agricultural Research Service, Beltsville Agricultural Research Center, BLDG 001, Rm. 245B, Beltsville, MD, 20705, USA
| | - Dilip K Lakshman
- Sustainable Agricultural Systems Laboratory, USDA-Agricultural Research Service, Beltsville Agricultural Research Center, BLDG 001, Rm. 245B, Beltsville, MD, 20705, USA
| | - Jorge DeSouza
- Departamento de Fitopatologia, Universidade Federal de Lavras, Lavras, 37200, Brazil
| |
Collapse
|
24
|
Platel R, Chaveriat L, Le Guenic S, Pipeleers R, Magnin-Robert M, Randoux B, Trapet P, Lequart V, Joly N, Halama P, Martin P, Höfte M, Reignault P, Siah A. Importance of the C 12 Carbon Chain in the Biological Activity of Rhamnolipids Conferring Protection in Wheat against Zymoseptoria tritici. Molecules 2020; 26:molecules26010040. [PMID: 33374771 PMCID: PMC7796335 DOI: 10.3390/molecules26010040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 11/20/2022] Open
Abstract
The hemibiotrophic fungus Zymoseptoria tritici, responsible for Septoria tritici blotch, is currently the most devastating foliar disease on wheat crops worldwide. Here, we explored, for the first time, the ability of rhamnolipids (RLs) to control this pathogen, using a total of 19 RLs, including a natural RL mixture produced by Pseudomonas aeruginosa and 18 bioinspired RLs synthesized using green chemistry, as well as two related compounds (lauric acid and dodecanol). These compounds were assessed for in vitro antifungal effect, in planta defence elicitation (peroxidase and catalase enzyme activities), and protection efficacy on the wheat-Z. tritici pathosystem. Interestingly, a structure-activity relationship analysis revealed that synthetic RLs with a 12 carbon fatty acid tail were the most effective for all examined biological activities. This highlights the importance of the C12 chain in the bioactivity of RLs, likely by acting on the plasma membranes of both wheat and Z. tritici cells. The efficacy of the most active compound Rh-Est-C12 was 20-fold lower in planta than in vitro; an optimization of the formulation is thus required to increase its effectiveness. No Z. tritici strain-dependent activity was scored for Rh-Est-C12 that exhibited similar antifungal activity levels towards strains differing in their resistance patterns to demethylation inhibitor fungicides, including multi-drug resistance strains. This study reports new insights into the use of bio-inspired RLs to control Z. tritici.
Collapse
Affiliation(s)
- Rémi Platel
- Joint Research Unit N° 1158 BioEcoAgro, Junia, University Lille, INRAE, University Liège, UPJV, University Artois, ULCO, 48, Boulevard Vauban, BP 41290, F-59014 Lille CEDEX, France; (R.P.); (P.T.); (P.H.)
| | - Ludovic Chaveriat
- ULR 7519—Unité Transformations & Agroressources, University Artois, UniLasalle, F-62408 Béthune, France; (L.C.); (S.L.G.); (V.L.); (N.J.); (P.M.)
| | - Sarah Le Guenic
- ULR 7519—Unité Transformations & Agroressources, University Artois, UniLasalle, F-62408 Béthune, France; (L.C.); (S.L.G.); (V.L.); (N.J.); (P.M.)
| | - Rutger Pipeleers
- Lab. Phytopathology, Department Plants & Crops, Ghent University, B-9000 Ghent, Belgium; (R.P.); (M.H.)
| | - Maryline Magnin-Robert
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université du Littoral Côte d’Opale, CS 80699, F-62228 Calais CEDEX, France; (M.M.-R.); (B.R.); (P.R.)
| | - Béatrice Randoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université du Littoral Côte d’Opale, CS 80699, F-62228 Calais CEDEX, France; (M.M.-R.); (B.R.); (P.R.)
| | - Pauline Trapet
- Joint Research Unit N° 1158 BioEcoAgro, Junia, University Lille, INRAE, University Liège, UPJV, University Artois, ULCO, 48, Boulevard Vauban, BP 41290, F-59014 Lille CEDEX, France; (R.P.); (P.T.); (P.H.)
| | - Vincent Lequart
- ULR 7519—Unité Transformations & Agroressources, University Artois, UniLasalle, F-62408 Béthune, France; (L.C.); (S.L.G.); (V.L.); (N.J.); (P.M.)
| | - Nicolas Joly
- ULR 7519—Unité Transformations & Agroressources, University Artois, UniLasalle, F-62408 Béthune, France; (L.C.); (S.L.G.); (V.L.); (N.J.); (P.M.)
| | - Patrice Halama
- Joint Research Unit N° 1158 BioEcoAgro, Junia, University Lille, INRAE, University Liège, UPJV, University Artois, ULCO, 48, Boulevard Vauban, BP 41290, F-59014 Lille CEDEX, France; (R.P.); (P.T.); (P.H.)
| | - Patrick Martin
- ULR 7519—Unité Transformations & Agroressources, University Artois, UniLasalle, F-62408 Béthune, France; (L.C.); (S.L.G.); (V.L.); (N.J.); (P.M.)
| | - Monica Höfte
- Lab. Phytopathology, Department Plants & Crops, Ghent University, B-9000 Ghent, Belgium; (R.P.); (M.H.)
| | - Philippe Reignault
- Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), Université du Littoral Côte d’Opale, CS 80699, F-62228 Calais CEDEX, France; (M.M.-R.); (B.R.); (P.R.)
| | - Ali Siah
- Joint Research Unit N° 1158 BioEcoAgro, Junia, University Lille, INRAE, University Liège, UPJV, University Artois, ULCO, 48, Boulevard Vauban, BP 41290, F-59014 Lille CEDEX, France; (R.P.); (P.T.); (P.H.)
- Correspondence: ; Tel.: +33-(0)3-28-38-48-48
| |
Collapse
|
25
|
Meretoudi A, Banti CN, Siafarika P, Kalampounias AG, Hadjikakou SK. Tetracycline Water Soluble Formulations with Enhanced Antimicrobial Activity. Antibiotics (Basel) 2020; 9:E845. [PMID: 33256054 PMCID: PMC7760183 DOI: 10.3390/antibiotics9120845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
The negligible water solubility of tetracycline (TC), a well-known antibiotic of clinical use, is the major disadvantage for its oral administration. With the aim to improve the water solubility of TC, the micelles of formulae SLS@TC and CTAB@TC (SLS = sodium lauryl sulphate and CTAB = cetrimonium bromide) were synthesized. The micelles SLS@TC and CTAB@TC were characterized by melting point (m.p.), thermogravimetric differential thermal analysis (TG-DTA), differential scanning calorimetry (DTG/DSC), attenuated total reflection spectroscopy (FT-IR-ATR), ultra-violet visible (UV/vis) spectroscopy, proton nucleus magnetic resonance (1H-NMR) spectroscopy, and the ultrasonically-induced biregringence technique. The antimicrobial activity of SLS@TC and CTAB@TC was evaluated, by means of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and inhibition zone (IZ), against the Gram negative bacterial strains Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) and the Gram positive ones of the genus of Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus). Generally, both micelles show better activity than that of TC against the microbial strains tested. Thus, the MIC value of CTAB@TC is 550-fold higher than that of free TC against S. epidermidis. Despite the stronger activity of CTAB@TC than SLS@TC against both Gram negative and Gram positive microbes, SLS@TC is classified as a bactericidal agent (in that it eliminates 99.9% of the microbes), in contrast to CTAB@TC, which is bacteriostatic one (inhibits, but does not kill the organisms). The toxicity of SLS@TC and CTAB@TC was evaluated against human corneal eukaryotic cells (HCECs). Moreover, SLS@TC and CTAB@TC exhibit low in vivo toxicity against Artemia salina, even at concentrations up to threefold higher than those of their MICmax. Therefore, SLS@TC and CTAB@TC can be candidates for the development of new antibiotics.
Collapse
Affiliation(s)
- A. Meretoudi
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - C. N. Banti
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - P. Siafarika
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - A. G. Kalampounias
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| | - S. K. Hadjikakou
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
26
|
Mishra I, Fatima T, Egamberdieva D, Arora NK. Novel Bioformulations Developed from Pseudomonas putida BSP9 and its Biosurfactant for Growth Promotion of Brassica juncea (L.). PLANTS 2020; 9:plants9101349. [PMID: 33053904 PMCID: PMC7601481 DOI: 10.3390/plants9101349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
In this study, Pseudomonas putida BSP9 isolated from rhizosphere of Brassica juncea was investigated for its plant growth promoting and biosurfactant producing activities. The isolate showed the ability to produce indole acetic acid, siderophore, phosphate solubilization activity and was an efficient producer of biosurfactant. Purification (of the biosurfactant) by thin layer chromatography (TLC) and further characterization by Fourier transform infrared spectroscopy (FTIR) revealed that biosurfactant produced by the isolate belonged to the glycolipid category, which is largely produced by Pseudomonas sp. In addition, liquid chromatography-mass spectroscopy (LC-MS) analysis showed the presence of a mixture of six mono-rhamnolipidic and a di-rhamnolipidic congeners, confirming it as a rhamnolipid biosurfactant. Bioformulations were developed using BSP9 and its biosurfactant to check their impact on promoting plant growth in B. juncea. It was noted from the study that bioformulations amended with biosurfactant (singly or in combination with BSP9) resulted in enhancement in the growth parameters of B. juncea as compared to untreated control. Maximum increment was achieved by plants inoculated with bioformulation that had BSP9 plus biosurfactant. The study also suggested that growth promotion was significant up to a threshold level of biosurfactant and that further increasing the concentration did not further enhance the growth parameter values of the plant. The study proves that novel bioformulations can be developed by integrating plant growth promoting rhizobacteria (PGPR) and their biosurfactant, and they can be effectively used for increasing agricultural productivity while minimizing our dependence on agrochemicals.
Collapse
Affiliation(s)
- Isha Mishra
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raebareli Road, Lucknow 226025, India; (I.M.); (T.F.)
| | - Tahmish Fatima
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raebareli Road, Lucknow 226025, India; (I.M.); (T.F.)
| | - Dilfuza Egamberdieva
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Correspondence: (D.E.); (N.K.A.)
| | - Naveen Kumar Arora
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raebareli Road, Lucknow 226025, India
- Correspondence: (D.E.); (N.K.A.)
| |
Collapse
|
27
|
Sivakumar R, Gunasekaran P, Rajendhran J. Functional characterization of asnC family transcriptional regulator in Pseudomonas aeruginosa PGPR2 during root colonization. Mol Biol Rep 2020; 47:7941-7957. [PMID: 33011891 DOI: 10.1007/s11033-020-05872-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Transcriptional regulators in bacteria are the crucial players in mediating communication between environmental cues and DNA transcription through a complex network process. Pseudomonas aeruginosa PGPR2 is an efficient root colonizer and a biocontrol strain. Previously, we identified that the transcriptional regulator, asnC, negatively regulates the corn root colonization of P. aeruginosa PGPR2. In a transposon insertion sequencing (INSeq) screen, the asnC insertion mutant was positively selected during root colonization, meaning the disruption of asnC improves the fitness of the P. aeruginosa PGPR2 strain for the root colonization. In this study, we constructed isogenic mutant of asnC family transcriptional regulator encoded by PGPR2_17510 by allele exchange mutagenesis. The ΔasnC mutant was able to efficiently colonize corn roots with a twofold increase in population when compared to the wild-type strain. Similarly, the mutant strain outcompeted the wild-type strain in a competition assay, where the mutant strain represented 90% of the total population recovered from the root. We compared the whole transcriptome of the wild-type and the ΔasnC mutant of P. aeruginosa PGPR2 when exposed to the corn root exudates. The RNA-Seq revealed that a total of 360 genes were differentially expressed in the ΔasnC strain of P. aeruginosa PGPR2. Inactivation of asnC transcriptional regulator resulted in the up-regulation of several genetic factors implicated in metabolism, uptake of nutrients, motility, stress response, and signal transduction, which could play crucial roles in root colonization. This notion was further validated by phenotypic characterization and quantification of transcription pattern of selected genes associated with metabolism, motility, and carbon catabolite repression between wild type and mutant strain, which was in agreement with transcriptome data. Similarly, ΔasnC strain formed increased biofilm on abiotic surface validating our RNA-seq analysis, where transcript levels of several genes associated with biofilm formation were up-regulated in the mutant strain. We report that the inactivation of an asnC family transcriptional regulator encoded by PGPR2_17510 enhances the root colonization and biofilm-forming ability of P. aeruginosa PGPR2. Together, our results provide evidence for the molecular adaptations that enable ΔasnC mutant strain to colonize on the corn roots and to form a biofilm.
Collapse
Affiliation(s)
- Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
28
|
Crouzet J, Arguelles-Arias A, Dhondt-Cordelier S, Cordelier S, Pršić J, Hoff G, Mazeyrat-Gourbeyre F, Baillieul F, Clément C, Ongena M, Dorey S. Biosurfactants in Plant Protection Against Diseases: Rhamnolipids and Lipopeptides Case Study. Front Bioeng Biotechnol 2020; 8:1014. [PMID: 33015005 PMCID: PMC7505919 DOI: 10.3389/fbioe.2020.01014] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
Biosurfactants are amphiphilic surface-active molecules that are produced by a variety of microorganisms including fungi and bacteria. Pseudomonas, Burkholderia, and Bacillus species are known to secrete rhamnolipids and lipopeptides that are used in a wide range of industrial applications. Recently, these compounds have been studied in a context of plant-microbe interactions. This mini-review describes the direct antimicrobial activities of these compounds against plant pathogens. We also provide the current knowledge on how rhamnolipids and lipopeptides stimulate the plant immune system leading to plant resistance to phytopathogens. Given their low toxicity, high biodegradability and ecological acceptance, we discuss the possible role of these biosurfactants as alternative strategies to reduce or even replace pesticide use in agriculture.
Collapse
Affiliation(s)
- Jérôme Crouzet
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Anthony Arguelles-Arias
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Sylvain Cordelier
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Jelena Pršić
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Gregory Hoff
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | | | - Fabienne Baillieul
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Christophe Clément
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Marc Ongena
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Stéphan Dorey
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
29
|
Singh R, Glick BR, Rathore D. Role of textile effluent fertilization with biosurfactant to sustain soil quality and nutrient availability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110664. [PMID: 32383645 DOI: 10.1016/j.jenvman.2020.110664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/08/2020] [Accepted: 04/26/2020] [Indexed: 05/22/2023]
Abstract
The textile industry is one of the world's most pollution generating industries, and management of its toxic effluent has become a global issue. However, the use of textile effluent as source of nutrients can be a viable option due to the presence of some essential minerals, although the presence of several toxic elements can deteriorate soil health. Therefore, experiments were conducted to identify the potential of textile effluent fertilization together with biosurfactant amendment to increase the soil health and nutrient status for agricultural sustainability. In this study, soil fertilized with different concentrations of textile effluent treatments (i.e. T1A, T2A and T3A) was treated with two different concentrations of biosurfactants to accurately appraise the suitability of a set of soil quality parameters including, physical, chemical, biochemical, and biological activities. A thorough analysis of all soil health parameters was undertaken before sowing the seeds and after cultivation of either Triticum aestivum (cv. LOK-1 and GW-496) or Capsicum annum (cv. GVC-101 and GVC-121). The results indicated that lower concentrations of textile effluent are a good source of nutrients while biosurfactants served as good solubilizers of metals and made it more available at the higher effluent concentration (T2C). Under these conditions, not only did fertilizers significantly increased, but also the microbial population as well as the enzymatic activity of soil was enhanced. Lower concentrations of micronutrients in the soil after crop cultivation is attributed to the higher level of their availability to the plants during their growth and development. This study provides new insight into the biosurfactants application to enhance soil micronutrients availability and increase crop productivity using textile effluents as a source of nutrients.
Collapse
Affiliation(s)
- Ratan Singh
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, 382030, India
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Dheeraj Rathore
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, 382030, India.
| |
Collapse
|
30
|
De Vleeschouwer M, Van Kersavond T, Verleysen Y, Sinnaeve D, Coenye T, Martins JC, Madder A. Identification of the Molecular Determinants Involved in Antimicrobial Activity of Pseudodesmin A, a Cyclic Lipopeptide From the Viscosin Group. Front Microbiol 2020; 11:646. [PMID: 32373092 PMCID: PMC7187754 DOI: 10.3389/fmicb.2020.00646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Cyclic lipo(depsi)peptides (CLiPs) from Pseudomonas constitute a class of natural products involved in a broad range of biological functions for their producers. They also display interesting antimicrobial potential including activity against Gram-positive bacteria. Literature has indicated that these compounds can induce membrane permeabilization, possibly through pore-formation, leading to the general view that the cellular membrane constitutes the primary target in their mode of action. In support of this view, we previously demonstrated that the enantiomer of pseudodesmin A, a member of the viscosin group of CLiPs, shows identical activity against a test panel of six Gram-positive bacterial strains. Here, a previously developed total organic synthesis route is used and partly adapted to generate 20 novel pseudodesmin A analogs in an effort to derive links between molecular constitution, structure and activity. From these, the importance of a macrocycle closed by an ester bond as well as a critical length of β-OH fatty acid chain capping the N-terminus is conclusively demonstrated, providing further evidence for the importance of peptide-membrane interactions in the mode of action. Moreover, an alanine scan is used to unearth the contribution of specific amino acid residues to biological activity. Subsequent interpretation in terms of a structural model describing the location and orientation of pseudodesmin A in a membrane environment, allows first insight in the peptide-membrane interactions involved. The biological screening also identified residue positions that appear less sensitive to conservative modifications, allowing the introduction of a non-perturbing tryptophan residue which will pave the way toward biophysical studies using fluorescence spectroscopy.
Collapse
Affiliation(s)
- Matthias De Vleeschouwer
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium.,NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Tim Van Kersavond
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium.,NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Yentl Verleysen
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium.,NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Davy Sinnaeve
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Department of Pharmaceutical Analysis, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
Rani M, Weadge JT, Jabaji S. Isolation and Characterization of Biosurfactant-Producing Bacteria From Oil Well Batteries With Antimicrobial Activities Against Food-Borne and Plant Pathogens. Front Microbiol 2020; 11:64. [PMID: 32256455 PMCID: PMC7093026 DOI: 10.3389/fmicb.2020.00064] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/13/2020] [Indexed: 11/29/2022] Open
Abstract
Microbial biosurfactants, produced by fungi, yeast, and bacteria, are surface-active compounds with emulsifying properties that have a number of known activities, including the solubilization of microbial biofilms. In an on-going survey to uncover new or enhanced antimicrobial metabolite-producing microbes from harsh environments, such as oil-rich niches, 123 bacterial strains were isolated from three oil batteries in the region of Chauvin, Alberta, and characterized by 16S rRNA gene sequencing. Based on their nucleotide sequences, the strains are associated with 3 phyla (Actinobacteria, Proteobacteria and Firmicutes), as well as 17 other discrete genera that shared high homology with known sequences, with the majority of these strains identified to the species level. The most prevalent strains associated with the three oil wells belonged to the Bacillus genus. Thirty-four of the 123 strains were identified as biosurfactant-producers, among which Bacillus methylotrophicus strain OB9 exhibited the highest biosurfactant activity based on multiple screening methods and a comparative analysis with the commercially available biosurfactant, Tween 20. B. methylotrophicus OB9 was selected for further antimicrobial analysis and addition of live cultures of B. methylotrophicus OB9 (or partially purified biosurfactant fractions thereof) were highly effective on biofilm disruption in agar diffusion assays against several Gram-negative food-borne bacteria and plant pathogens. Upon co-culturing with B. methylotrophicus OB9, the number of either Salmonella enterica subsp. enterica Newport SL1 or Xanthomonas campestris B07.007 cells significantly decreased after 6 h and were not retrieved from co-cultures following 12 h exposure. These results also translated to studies on plants, where bacterized tomato seedlings with OB9 significantly protected the tomato leaves from Salmonella enterica Newport SL1 contamination, as evidenced by a 40% reduction of log10 CFU of Salmonella/mg leaf tissue compared to non-bacterized tomato leaves. When B. methylotrophicus 0B9 was used for bacterized lettuce, the growth of X. campestris B07.007, the causal agent of bacterial leaf spot of lettuce, was completely inhibited. While limited, these studies are noteworthy as they demonstrate the inhibition spectrum of B. methylotrophicus 0B9 against both human and plant pathogens; thereby making this bacterium attractive for agricultural and food safety applications in a climate where microbial-biofilm persistence is an increasing problem.
Collapse
Affiliation(s)
- Mamta Rani
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Joel T. Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Suha Jabaji
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Götze S, Stallforth P. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat Prod Rep 2020; 37:29-54. [DOI: 10.1039/c9np00022d] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteria of the genusPseudomonasdisplay a fascinating metabolic diversity. In this review, we focus our attention on the natural product class of nonribosomal lipopeptides, which help pseudomonads to colonize a wide range of ecological niches.
Collapse
Affiliation(s)
- Sebastian Götze
- Faculty 7: Natural and Environmental Sciences
- Institute for Environmental Sciences
- University Koblenz Landau
- 76829 Landau
- Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
33
|
Ren X, Zhang Q, Zhang W, Mao J, Li P. Control of Aflatoxigenic Molds by Antagonistic Microorganisms: Inhibitory Behaviors, Bioactive Compounds, Related Mechanisms, and Influencing Factors. Toxins (Basel) 2020; 12:E24. [PMID: 31906282 PMCID: PMC7020460 DOI: 10.3390/toxins12010024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin contamination has been causing great concern worldwide due to the major economic impact on crop production and their toxicological effects to human and animals. Contamination can occur in the field, during transportation, and also in storage. Post-harvest contamination usually derives from the pre-harvest infection of aflatoxigenic molds, especially aflatoxin-producing Aspergilli such as Aspergillusflavus and A. parasiticus. Many strategies preventing aflatoxigenic molds from entering food and feed chains have been reported, among which biological control is becoming one of the most praised strategies. The objective of this article is to review the biocontrol strategy for inhibiting the growth of and aflatoxin production by aflatoxigenic fungi. This review focuses on comparing inhibitory behaviors of different antagonistic microorganisms including various bacteria, fungi and yeasts. We also reviewed the bioactive compounds produced by microorganisms and the mechanisms leading to inhibition. The key factors influencing antifungal activities of antagonists are also discussed in this review.
Collapse
Affiliation(s)
- Xianfeng Ren
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Wen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jin Mao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
34
|
Janakiev T, Dimkić I, Unković N, Ljaljević Grbić M, Opsenica D, Gašić U, Stanković S, Berić T. Phyllosphere Fungal Communities of Plum and Antifungal Activity of Indigenous Phenazine-Producing Pseudomonas synxantha Against Monilinia laxa. Front Microbiol 2019; 10:2287. [PMID: 31632384 PMCID: PMC6779809 DOI: 10.3389/fmicb.2019.02287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022] Open
Abstract
European plum (Prunus domestica L.) is a significant commercial crop in Serbia in terms of total fruit production, and is traditionally processed into slivovitz brandy. The brown rot disease caused by Monilinia laxa drastically reduces plum yield almost every year. Fungal communities associated with leaves and fruits of four local Serbian plum cultivars (Požegača, Ranka, Čačanska Lepotica and Čačanska Rodna) were investigated in two phenological stages during early (May) and late (July) fruit maturation. Alpha diversity indices showed that fungal communities were heterogeneous and Beta diversity indicated that autochthonous fungal communities depended upon seasonal changes and the cultivars themselves. The phylum Ascomycota was the most abundant in all samples, with relative abundance (RA) between 46% in the Požegača cultivar (May) and 89% in the Lepotica cultivar (July). The most abundant genus for all plum cultivars in May was Aureobasidium, with RA from 19.27 to 33.69%, followed by Cryptococcus, with 4.8 to 48.80%. In July, besides Cryptococcus, different genera (Metschnikowia, Fusarium, and Hanseniaspora) were dominant on particular cultivars. Among all cultivable fungi, molecular identification of eleven M. laxa isolates from four plum cultivars was performed simultaneously. Bacterial isolates from the plum phyllosphere were tested for their potential antifungal activity against indigenous M. laxa isolates. The most potent antagonist P4/16_1, which significantly reduced mycelial growth of M. laxa, was identified as Pseudomonas synxantha. Further characterization of P4/16_1 revealed the production of volatile organic compounds and phenazine-1-carboxylic acid (PCA). Crude benzene extract of PCA exhibited 57-63% mycelial growth inhibition of M. laxa. LC/MS analysis of the crude extract confirmed the presence of phenazine derivatives amongst other compounds. Scanning electron microscopy revealed morpho-physiological changes in the hyphae of M. laxa isolates caused by the cell culture and the P. synxantha P4/16_1 crude benzene extract. This is the first report of antagonistic activity of P. synxantha against M. laxa induced by diffusible and volatile antifungal compounds, and it appears to be a promising candidate for further investigation for potential use as a biocontrol agent against brown rot-causing fungi.
Collapse
Affiliation(s)
- Tamara Janakiev
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivica Dimkić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nikola Unković
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | - Dejan Opsenica
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | | - Tanja Berić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
35
|
Omoboye OO, Oni FE, Batool H, Yimer HZ, De Mot R, Höfte M. Pseudomonas Cyclic Lipopeptides Suppress the Rice Blast Fungus Magnaporthe oryzae by Induced Resistance and Direct Antagonism. FRONTIERS IN PLANT SCIENCE 2019; 10:901. [PMID: 31354771 PMCID: PMC6636606 DOI: 10.3389/fpls.2019.00901] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/26/2019] [Indexed: 05/25/2023]
Abstract
Beneficial Pseudomonas spp. produce an array of antimicrobial secondary metabolites such as cyclic lipopeptides (CLPs). We investigated the capacity of CLP-producing Pseudomonas strains and their crude CLP extracts to control rice blast caused by Magnaporthe oryzae, both in a direct manner and via induced systemic resistance (ISR). In planta biocontrol assays showed that lokisin-, white line inducing principle (WLIP)-, entolysin- and N3-producing strains successfully induced resistance to M. oryzae VT5M1. Furthermore, crude extracts of lokisin, WLIP and entolysin gave similar ISR results when tested in planta. In contrast, a xantholysin-producing strain and crude extracts of N3, xantholysin and orfamide did not induce resistance against the rice blast disease. The role of WLIP in triggering ISR was further confirmed by using WLIP-deficient mutants. The severity of rice blast disease was significantly reduced when M. oryzae spores were pre-treated with crude extracts of N3, lokisin, WLIP, entolysin or orfamide prior to inoculation. In vitro microscopic assays further revealed the capacity of crude N3, lokisin, WLIP, entolysin, xantholysin and orfamide to significantly inhibit appressoria formation by M. oryzae. In addition, the lokisin and WLIP biosynthetic gene clusters in the producing strains are described. In short, our study demonstrates the biological activity of structurally diverse CLPs in the control of the rice blast disease caused by M. oryzae. Furthermore, we provide insight into the non-ribosomal peptide synthetase genes encoding the WLIP and lokisin biosynthetic machineries.
Collapse
Affiliation(s)
- Olumide Owolabi Omoboye
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Feyisara Eyiwumi Oni
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Humaira Batool
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Henok Zimene Yimer
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Heverlee, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
36
|
Geudens N, Kovács B, Sinnaeve D, Oni FE, Höfte M, Martins JC. Conformation and Dynamics of the Cyclic Lipopeptide Viscosinamide at the Water-Lipid Interface. Molecules 2019; 24:E2257. [PMID: 31213011 PMCID: PMC6630293 DOI: 10.3390/molecules24122257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022] Open
Abstract
Cyclic lipodepsipeptides or CLiPs from Pseudomonas are secondary metabolites that mediate a wide range of biological functions for their producers, and display antimicrobial and anticancer activities. Direct interaction of CLiPs with the cellular membranes is presumed to be essential in causing these. To understand the processes involved at the molecular level, knowledge of the conformation and dynamics of CLiPs at the water-lipid interface is required to guide the interpretation of biophysical investigations in model membrane systems. We used NMR and molecular dynamics to study the conformation, location and orientation of the Pseudomonas CLiP viscosinamide in a water/dodecylphosphocholine solution. In the process, we demonstrate the strong added value of combining uniform, isotope-enriched viscosinamide and protein NMR methods. In particular, the use of techniques to determine backbone dihedral angles and detect and identify long-lived hydrogen bonds, establishes that the solution conformation previously determined in acetonitrile is maintained in water/dodecylphosphocholine solution. Paramagnetic relaxation enhancements pinpoint viscosinamide near the water-lipid interface, with its orientation dictated by the amphipathic distribution of hydrophobic and hydrophilic residues. Finally, the experimental observations are supported by molecular dynamics simulations. Thus a firm structural basis is now available for interpreting biophysical and bioactivity data relating to this class of compounds.
Collapse
Affiliation(s)
- Niels Geudens
- NMR and Structural Analysis Unit, Department of Organic and Macromolecular Chemistry, GhentUniversity, Campus Sterre, S4, Krijgslaan 281, B-9000 Gent, Belgium.
| | - Benjámin Kovács
- NMR and Structural Analysis Unit, Department of Organic and Macromolecular Chemistry, GhentUniversity, Campus Sterre, S4, Krijgslaan 281, B-9000 Gent, Belgium.
| | - Davy Sinnaeve
- NMR and Structural Analysis Unit, Department of Organic and Macromolecular Chemistry, GhentUniversity, Campus Sterre, S4, Krijgslaan 281, B-9000 Gent, Belgium.
| | - Feyisara Eyiwumi Oni
- Laboratory of Phytopathology, Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Gent, Belgium.
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Gent, Belgium.
| | - José C Martins
- NMR and Structural Analysis Unit, Department of Organic and Macromolecular Chemistry, GhentUniversity, Campus Sterre, S4, Krijgslaan 281, B-9000 Gent, Belgium.
| |
Collapse
|
37
|
Peterson EK, Larson ER, Parke JL. Film-Forming Polymers and Surfactants Reduce Infection and Sporulation of Phytophthora ramorum on Rhododendron. PLANT DISEASE 2019; 103:1148-1155. [PMID: 30964419 DOI: 10.1094/pdis-05-18-0802-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phytophthora ramorum, cause of sudden oak death and ramorum leaf blight, can persist undetected in infested nurseries. Many conventional fungicides are effective in reducing or delaying symptom expression but some may confound visual detection of infected plants. We tested film-forming polymers (FFPs) and surfactants for their ability to reduce infection and sporulation of P. ramorum on rhododendron. FFPs (Anti-Stress, Moisturin, Nature Shield, Nu-Film, and Vapor Gard) and surfactants (Tergitol, Zonix, and an unregistered AGAE product) were screened in detached-leaf assays. Anti-Stress, Nu-Film, Zonix, and a Nu-Film-Zonix mixture were additionally tested for durability, protection against exposure to infested water, and a reduction in sporulation. FFP effectiveness was retained for at least 3 weeks of exposure to overhead irrigation and rain. Relative to controls, foliar treatments protected rhododendron branches exposed to infested water. No treatments prevented symptom development when applied postinfection but leaves treated with Anti-Stress, Zonix, and the Nu-Film-Zonix mixture produced significantly fewer sporangia relative to controls. Application of FFPs and surfactants to quarantined, potentially infected plants offers a management tool for reducing infection and sporulation but not symptom expression, thereby limiting disease spread without interfering with disease detection.
Collapse
Affiliation(s)
- Ebba K Peterson
- 1 Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; and
| | - Eric R Larson
- 2 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Jennifer L Parke
- 1 Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; and
- 2 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
38
|
Oni FE, Geudens N, Omoboye OO, Bertier L, Hua HGK, Adiobo A, Sinnaeve D, Martins JC, Höfte M. Fluorescent Pseudomonas and cyclic lipopeptide diversity in the rhizosphere of cocoyam (Xanthosoma sagittifolium). Environ Microbiol 2019; 21:1019-1034. [PMID: 30623562 DOI: 10.1111/1462-2920.14520] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/21/2022]
Abstract
Cocoyam (Xanthosoma sagittifolium (L.)), an important tuber crop in the tropics, is severely affected by the cocoyam root rot disease (CRRD) caused by Pythium myriotylum. The white cocoyam genotype is very susceptible while the red cocoyam has some field tolerance to CRRD. Fluorescent Pseudomonas isolates obtained from the rhizosphere of healthy red and white cocoyams from three different fields in Cameroon were taxonomically characterized. The cocoyam rhizosphere was enriched with P. fluorescens complex and P. putida isolates independent of the plant genotype. LC-MS and NMR analyses revealed that 50% of the Pseudomonas isolates produced cyclic lipopeptides (CLPs) including entolysin, lokisin, WLIP, putisolvin and xantholysin together with eight novel CLPs. In general, CLP types were linked to specific taxonomic groups within the fluorescent pseudomonads. Representative CLP-producing bacteria showed effective control against CRRD while purified CLPs caused hyphal branching or hyphal leakage in P. myriotylum. The structure of cocoyamide A, a CLP which is predominantly produced by P. koreensis group isolates within the P. fluorescens complex is described. Compared with the white cocoyam, the red cocoyam rhizosphere appeared to support a more diverse CLP spectrum. It remains to be investigated whether this contributes to the field tolerance displayed by the red cocoyam.
Collapse
Affiliation(s)
- Feyisara Eyiwumi Oni
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Niels Geudens
- NMR and Structural Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium
| | - Olumide Owolabi Omoboye
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lien Bertier
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Hoang Gia Khuong Hua
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Amayana Adiobo
- Jay PJ Biotechnology Laboratory, Institute for Agricultural Research for Development (IRAD), Ekona, P.M.B 25, Buea, Cameroon
| | - Davy Sinnaeve
- NMR and Structural Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium
| | - José C Martins
- NMR and Structural Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| |
Collapse
|
39
|
Biessy A, Novinscak A, Blom J, Léger G, Thomashow LS, Cazorla FM, Josic D, Filion M. Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp. Environ Microbiol 2018; 21:437-455. [PMID: 30421490 DOI: 10.1111/1462-2920.14476] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
Plant-beneficial Pseudomonas spp. competitively colonize the rhizosphere and display plant-growth promotion and/or disease-suppression activities. Some strains within the P. fluorescens species complex produce phenazine derivatives, such as phenazine-1-carboxylic acid. These antimicrobial compounds are broadly inhibitory to numerous soil-dwelling plant pathogens and play a role in the ecological competence of phenazine-producing Pseudomonas spp. We assembled a collection encompassing 63 strains representative of the worldwide diversity of plant-beneficial phenazine-producing Pseudomonas spp. In this study, we report the sequencing of 58 complete genomes using PacBio RS II sequencing technology. Distributed among four subgroups within the P. fluorescens species complex, the diversity of our collection is reflected by the large pangenome which accounts for 25 413 protein-coding genes. We identified genes and clusters encoding for numerous phytobeneficial traits, including antibiotics, siderophores and cyclic lipopeptides biosynthesis, some of which were previously unknown in these microorganisms. Finally, we gained insight into the evolutionary history of the phenazine biosynthetic operon. Given its diverse genomic context, it is likely that this operon was relocated several times during Pseudomonas evolution. Our findings acknowledge the tremendous diversity of plant-beneficial phenazine-producing Pseudomonas spp., paving the way for comparative analyses to identify new genetic determinants involved in biocontrol, plant-growth promotion and rhizosphere competence.
Collapse
Affiliation(s)
- Adrien Biessy
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Amy Novinscak
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Geneviève Léger
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Linda S Thomashow
- United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA
| | - Francisco M Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Dragana Josic
- Department of Microbiology, Institute of Soil Science, Belgrade, Serbia
| | - Martin Filion
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| |
Collapse
|
40
|
Bio-emulsifying and biodegradation activities of syringafactin producing Pseudomonas spp. strains isolated from oil contaminated soils. Biodegradation 2018; 30:259-272. [DOI: 10.1007/s10532-018-9861-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
|
41
|
Biessy A, Filion M. Phenazines in plant-beneficialPseudomonasspp.: biosynthesis, regulation, function and genomics. Environ Microbiol 2018; 20:3905-3917. [DOI: 10.1111/1462-2920.14395] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/20/2018] [Accepted: 08/24/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Adrien Biessy
- Department of Biology; Université de Moncton; Moncton New Brunswick Canada
| | - Martin Filion
- Department of Biology; Université de Moncton; Moncton New Brunswick Canada
| |
Collapse
|
42
|
Analysis of the genome sequence of plant beneficial strain Pseudomonas sp. RU47. J Biotechnol 2018; 281:183-192. [DOI: 10.1016/j.jbiotec.2018.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 11/22/2022]
|
43
|
Geudens N, Martins JC. Cyclic Lipodepsipeptides From Pseudomonas spp. - Biological Swiss-Army Knives. Front Microbiol 2018; 9:1867. [PMID: 30158910 PMCID: PMC6104475 DOI: 10.3389/fmicb.2018.01867] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Cyclic lipodepsipeptides produced by Pseudomonas spp. (Ps-CLPs) are biosurfactants that constitute a diverse class of versatile bioactive natural compounds with promising application potential. While chemically diverse, they obey a common structural blue-print, allowing the definition of 14 distinct groups with multiple structurally homologous members. In addition to antibacterial and antifungal properties the reported activity profile of Ps-CLPs includes their effect on bacterial motility, biofilm formation, induced defense responses in plants, their insecticidal activity and anti-proliferation effects on human cancer cell-lines. To further validate their status of potential bioactive substances, we assessed the results of 775 biological tests on 51 Ps-CLPs available from literature. From this, a fragmented view emerges. Taken as a group, Ps-CLPs present a broad activity profile. However, reports on individual Ps-CLPs are often much more limited in the scope of organisms that are challenged or activities that are explored. As a result, our analysis shows that the available data is currently too sparse to allow biological function to be correlated to a particular group of Ps-CLPs. Consequently, certain generalizations that appear in literature with respect to the biological activities of Ps-CLPs should be nuanced. This notwithstanding, the data for the two most extensively studied Ps-CLPs does indicate they can display activities against various biological targets. As the discovery of novel Ps-CLPs accelerates, current challenges to complete and maintain a useful overview of biological activity are discussed.
Collapse
Affiliation(s)
- Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
44
|
Hage-Hülsmann J, Grünberger A, Thies S, Santiago-Schübel B, Klein AS, Pietruszka J, Binder D, Hilgers F, Domröse A, Drepper T, Kohlheyer D, Jaeger KE, Loeschcke A. Natural biocide cocktails: Combinatorial antibiotic effects of prodigiosin and biosurfactants. PLoS One 2018; 13:e0200940. [PMID: 30024935 PMCID: PMC6053208 DOI: 10.1371/journal.pone.0200940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/05/2018] [Indexed: 11/18/2022] Open
Abstract
Bacterial secondary metabolites are naturally produced to prevail amongst competitors in a shared habitat and thus represent a valuable source for antibiotic discovery. The transformation of newly discovered antibiotic compounds into effective drugs often requires additional surfactant components for drug formulation. Nature may also provide blueprints in this respect: A cocktail of two compounds consisting of the antibacterial red pigment prodigiosin and the biosurfactant serrawettin W1 is naturally produced by the bacterium Serratia marcescens, which occurs in highly competitive habitats including soil. We show here a combinatorial antibacterial effect of these compounds, but also of prodigiosin mixed with other (bio)surfactants, against the soil-dwelling bacterium Corynebacterium glutamicum taken as a model target bacterium. Prodigiosin exerted a combinatorial inhibitory effect with all tested surfactants in a disk diffusion assay which was especially pronounced in combination with N-myristoyltyrosine. Minimal inhibitory and bactericidal concentrations (MIC and MBC) of the individual compounds were 2.56 μg/mL prodigiosin and 32 μg/mL N-myristoyltyrosine, and the MIC of prodigiosin was decreased by 3 orders of magnitude to 0.005 μg/mL in the presence of 16 μg/mL N-myristoyltyrosine, indicative of synergistic interaction. Investigation of bacterial survival revealed similar combinatorial effects; moreover, antagonistic effects were observed at higher compound concentrations. Finally, the investigation of microcolony formation under combined application of concentrations just below the MBC revealed heterogeneity of responses with cell death or delayed growth. In summary, this study describes the combinatorial antibacterial effects of microbial biomolecules, which may have ecological relevance by inhibiting cohabiting species, but shall furthermore inspire drug development in the combat of infectious disease.
Collapse
Affiliation(s)
- Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Alexander Grünberger
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Multiscale Bioengineering, Bielefeld University, Bielefeld, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Beatrix Santiago-Schübel
- Central Division of Analytical Chemistry ZEA-3: Analytik/Biospec, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Sebastian Klein
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Jörg Pietruszka
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Dennis Binder
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Domröse
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Dietrich Kohlheyer
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Aachener Verfahrenstechnik (AVT.MSB), RWTH Aachen University, Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
- * E-mail:
| |
Collapse
|
45
|
Thongkongkaew T, Ding W, Bratovanov E, Oueis E, Garcı́a-Altares M, Zaburannyi N, Harmrolfs K, Zhang Y, Scherlach K, Müller R, Hertweck C. Two Types of Threonine-Tagged Lipopeptides Synergize in Host Colonization by Pathogenic Burkholderia Species. ACS Chem Biol 2018; 13:1370-1379. [PMID: 29669203 DOI: 10.1021/acschembio.8b00221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial infections of agriculturally important mushrooms and plants pose a major threat to human food sources worldwide. However, structures of chemical mediators required by the pathogen for host colonization and infection remain elusive in most cases. Here, we report two types of threonine-tagged lipopeptides conserved among mushroom and rice pathogenic Burkholderia species that facilitate bacterial infection of hosts. Genome mining, metabolic profiling of infected mushrooms, and heterologous expression of orphan gene clusters allowed the discovery of these unprecedented metabolites in the mushroom pathogen Burkholderia gladioli (haereogladin, burriogladin) and the plant pathogen Burkholderia glumae (haereoglumin and burrioglumin). Through targeted gene deletions, the molecular basis of lipopeptide biosynthesis by nonribosomal peptide synthetases was revealed. Surprisingly, both types of lipopeptides feature unusual threonine tags, which yield longer peptide backbones than one would expect based on the canonical colinearity of the NRPS assembly lines. Both peptides play an indirect role in host infection as biosurfactants that enable host colonization by mediating swarming and biofilm formation abilities. Moreover, MALDI imaging mass spectrometry was applied to investigate the biological role of the lipopeptides. Our results shed light on conserved mechanisms that mushroom and plant pathogenic bacteria utilize for host infection and expand current knowledge on bacterial virulence factors that may represent a new starting point for the targeted development of crop protection measures in the future.
Collapse
Affiliation(s)
- Tawatchai Thongkongkaew
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Wei Ding
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Evgeni Bratovanov
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Emilia Oueis
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Marı́a Garcı́a-Altares
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Nestor Zaburannyi
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Kirsten Harmrolfs
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Youming Zhang
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
- Chair for Natural Product Chemistry, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
46
|
Wu L, Xiao W, Chen G, Song D, Khaskheli MA, Li P, Zhang S, Feng G. Identification of Pseudomonas mosselii BS011 gene clusters required for suppression of Rice Blast Fungus Magnaporthe oryzae. J Biotechnol 2018; 282:1-9. [PMID: 29704539 DOI: 10.1016/j.jbiotec.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 11/24/2022]
Abstract
Pseudomonas is a Gram-negative, rod-shaped bacteria. Many members of this genus displayed remarkable physiological and metabolic activity against different plant pathogens. However, Pseudomonas mosselii has not yet been characterized in biocontrol against plant disease. Here we isolated a strain of P. mosselii BS011 from the rhizosphere soil of rice plants, and the isolate showed strong inhibitory activity against the rice blast fungus Magnaporthe oryzae. Further we sequenced the complete genome of BS011, which consist of 5.75 Mb with a circular chromosome, 5,170 protein-coding genes, 23 rRNA and 78 tRNA operons. Bioinformatic analysis revealed that seven gene clusters may be involved in the biosynthesis of metabolites. Gene deletion experiments demonstrated that the gene cluster c-xtl is required for inhibitory activity against M. oryzae. Bioassay showed that the crude extract from BS011 fermentation sample significantly inhibited the development of M. oryzae at a concentration of 10 μg/ml. Besides, we illustrated that the crude extract of BS011 impaired the appressorial formation in a dose dependent manner. Collectively our results revealed that P. mosselii BS011 is a promising biocontrol agent and the gene cluster c-xtl is essential for inhibiting the development of M. oryzae.
Collapse
Affiliation(s)
- Lijuan Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Wei Xiao
- Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Guoqing Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Dawei Song
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Maqsood Ahmed Khaskheli
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Pei Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Shiying Zhang
- Yunnan Engineering Laboratory of Soil Fertility and Pollution Remediation, Yunnan Agricultural University, Kunming, China
| | - Guozhong Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
47
|
Sobrero PM, Muzlera A, Frescura J, Jofré E, Valverde C. A matter of hierarchy: activation of orfamide production by the post-transcriptional Gac-Rsm cascade of Pseudomonas protegens CHA0 through expression upregulation of the two dedicated transcriptional regulators. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:599-611. [PMID: 28703431 DOI: 10.1111/1758-2229.12566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
In this work, we surveyed the genome of P. protegens CHA0 in order to identify novel mRNAs possibly under the control of the Gac-Rsm cascade that might, for their part, serve to elucidate as-yet-unknown functions involved in the biocontrol of plant pathogens and/or in cellular processes required for fitness in natural environments. In view of the experimental evidence from former studies on the Gac-Rsm cascade, we developed a computational screen supported by a combination of sequence, structural and evolutionary constraints that led to a dataset of 43 potential novel mRNA targets. We then confirmed several mRNA targets experimentally and next focused on two of the respective genes that are physically linked to the orfamide biosynthetic gene cluster and whose predicted open-reading frames resembled cognate LuxR-type transcriptional regulators of cyclic lipopeptide clusters in related pseudomonads. In this report, we demonstrate that in strain CHA0, orfamide production is stringently dependent on a functional Gac-Rsm cascade and that both mRNAs encoding transcriptional regulatory proteins are under direct translational control of the RsmA/E proteins. Our results have thus revealed a hierarchical control over the expression of orfamide biosynthetic genes with the final transcriptional control subordinated to the global Gac-Rsm post-transcriptional regulatory system.
Collapse
Affiliation(s)
- Patricio Martín Sobrero
- CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo. Roque Sáenz Peña 352, Bernal B1876BXD, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Andrés Muzlera
- CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo. Roque Sáenz Peña 352, Bernal B1876BXD, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Julieta Frescura
- CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo. Roque Sáenz Peña 352, Bernal B1876BXD, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Edgardo Jofré
- CONICET, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departmento de Ciencias Naturales. Ruta Nacional 36 Km 601, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | - Claudio Valverde
- CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo. Roque Sáenz Peña 352, Bernal B1876BXD, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
48
|
Hennessy RC, Phippen CBW, Nielsen KF, Olsson S, Stougaard P. Biosynthesis of the antimicrobial cyclic lipopeptides nunamycin and nunapeptin by Pseudomonas fluorescens strain In5 is regulated by the LuxR-type transcriptional regulator NunF. Microbiologyopen 2017; 6. [PMID: 28782279 PMCID: PMC5727362 DOI: 10.1002/mbo3.516] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/30/2017] [Accepted: 06/13/2017] [Indexed: 12/02/2022] Open
Abstract
Nunamycin and nunapeptin are two antimicrobial cyclic lipopeptides (CLPs) produced by Pseudomonas fluorescens In5 and synthesized by nonribosomal synthetases (NRPS) located on two gene clusters designated the nun–nup regulon. Organization of the regulon is similar to clusters found in other CLP‐producing pseudomonads except for the border regions where putative LuxR‐type regulators are located. This study focuses on understanding the regulatory role of the LuxR‐type‐encoding gene nunF in CLP production of P. fluorescens In5. Functional analysis of nunF coupled with liquid chromatography–high‐resolution mass spectrometry (LC‐HRMS) showed that CLP biosynthesis is regulated by nunF. Quantitative real‐time PCR analysis indicated that transcription of the NRPS genes catalyzing CLP production is strongly reduced when nunF is mutated indicating that nunF is part of the nun–nup regulon. Swarming and biofilm formation was reduced in a nunF knockout mutant suggesting that these CLPs may also play a role in these phenomena as observed in other pseudomonads. Fusion of the nunF promoter region to mCherry showed that nunF is strongly upregulated in response to carbon sources indicating the presence of a fungus suggesting that environmental elicitors may also influence nunF expression which upon activation regulates nunamycin and nunapeptin production required for the growth inhibition of phytopathogens.
Collapse
Affiliation(s)
- Rosanna C Hennessy
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Kristian F Nielsen
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
| | - Peter Stougaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Geudens N, Nasir MN, Crowet JM, Raaijmakers JM, Fehér K, Coenye T, Martins JC, Lins L, Sinnaeve D, Deleu M. Membrane Interactions of Natural Cyclic Lipodepsipeptides of the Viscosin Group. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:331-339. [DOI: 10.1016/j.bbamem.2016.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 11/16/2022]
|
50
|
Iris Betsabee OS, José Luis SS, Juan Arturo RS, Montserrat CS. Evaluation of the toxicity and pathogenicity of biocontrol agents in murine models, chicken embryos and dermal irritation in rabbits. Toxicol Res (Camb) 2017; 6:188-198. [PMID: 30090489 PMCID: PMC6060713 DOI: 10.1039/c6tx00275g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/04/2016] [Indexed: 11/21/2022] Open
Abstract
Biological control has emerged as an alternative to the use of crop fungicides in fields and postharvest. It has already been demonstrated that strains of Candida famata, Bacillus subtilis Pla10, Meyerozyma guilliermondii, Meyerozyma caribbica and Debaryomyces hansenii are effective in controlling fungal diseases in tropical fruits. However, in order to develop applications on a field-scale, it is necessary to show that these biocontrol agents are innocuous to humans. In this study, three common toxicity studies were carried out to measure the safety of their use in food products: acute oral toxicity in adult Wistar rats, chicken embryo lethality and skin irritation studies in rabbits using concentrations of 1 and 10 mg of microbial extracts and the administration of 3 and 6 × 108 cells per mL of live cells for each one of the tested strains used for each model. The rats showed no toxic symptoms and none died during testing. The extracts and strain cells under study did not produce a life-cycle interruption in chicken embryos. For the skin irritation studies in rabbits, the substance being studied produced no skin alteration in the animals. With these results it was concluded that the lyophilized extracts in concentrations of 1 and 10 mg, as well as the cells of the studied strains in concentrations of 3 and 6 × 108 cells per mL, were safe in the studied models. Therefore, their use in controlling postharvest diseases in tropical fruits is possible. Their efficiency in controlling plagues in fields and their possible effects on humans, however, require further study.
Collapse
Affiliation(s)
- Ocampo-Suarez Iris Betsabee
- Laboratorio Integral de Investigación en Alimentos , Instituto Tecnológico de Tepic , Av. Tecnológico 2595 C. P. 63175 , Tepic , Nayarit , México .
| | - Sanchez-Salas José Luis
- Laboratorio de Microbiología y Biología Molecular del Departamento de Ciencias Químico-Biológicas , Universidad de las Américas Puebla , Ex-Hacienda Sta. Catarina Martir , C. P. 72810 , Cholula , Puebla
| | - Ragazzo-Sánchez Juan Arturo
- Laboratorio Integral de Investigación en Alimentos , Instituto Tecnológico de Tepic , Av. Tecnológico 2595 C. P. 63175 , Tepic , Nayarit , México .
| | - Calderón-Santoyo Montserrat
- Laboratorio Integral de Investigación en Alimentos , Instituto Tecnológico de Tepic , Av. Tecnológico 2595 C. P. 63175 , Tepic , Nayarit , México .
| |
Collapse
|