1
|
Gentile R, Modric M, Thiele B, Jaeger KE, Kovacic F, Schott-Verdugo S, Gohlke H. Molecular Mechanisms Underlying Medium-Chain Free Fatty Acid-Regulated Activity of the Phospholipase PlaF from Pseudomonas aeruginosa. JACS AU 2024; 4:958-973. [PMID: 38559719 PMCID: PMC10976570 DOI: 10.1021/jacsau.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 04/04/2024]
Abstract
PlaF is a membrane-bound phospholipase A1 from Pseudomonas aeruginosa that is involved in remodeling membrane glycerophospholipids (GPLs) and modulating virulence-associated signaling and metabolic pathways. Previously, we identified the role of medium-chain free fatty acids (FFAs) in inhibiting PlaF activity and promoting homodimerization, yet the underlying molecular mechanism remained elusive. Here, we used unbiased and biased molecular dynamics simulations and free energy computations to assess how PlaF interacts with FFAs localized in the water milieu surrounding the bilayer or within the bilayer and how these interactions regulate PlaF activity. Medium-chain FFAs localized in the upper bilayer leaflet can stabilize inactive dimeric PlaF, likely through interactions with charged surface residues, as has been experimentally validated. Potential of mean force (PMF) computations indicate that membrane-bound FFAs may facilitate the activation of monomeric PlaF by lowering the activation barrier for changing into a tilted, active configuration. We estimated that the coupled equilibria of PlaF monomerization-dimerization and tilting at the physiological concentration of PlaF lead to the majority of PlaF forming inactive dimers when in a cell membrane loaded with decanoic acid (C10). This is in agreement with a suggested in vivo product feedback loop and gas chromatography-mass spectrometry profiling results, indicating that PlaF catalyzes the release of C10 from P. aeruginosa membranes. Additionally, we found that C10 in the water milieu can access the catalytic site of active monomeric PlaF, contributing to the competitive component of C10-mediated PlaF inhibition. Our study provides mechanistic insights into how medium-chain FFAs may regulate the activity of PlaF, a potential bacterial drug target.
Collapse
Affiliation(s)
- Rocco Gentile
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Matea Modric
- Institute
of Molecular Enzyme Technology, Heinrich
Heine University Düsseldorf, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Björn Thiele
- Institute
of Bio- and Geosciences (IBG-2: Plant Sciences and IBG-3: Agrosphere), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute
of Molecular Enzyme Technology, Heinrich
Heine University Düsseldorf, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- Institute
of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Filip Kovacic
- Institute
of Molecular Enzyme Technology, Heinrich
Heine University Düsseldorf, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Stephan Schott-Verdugo
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Holger Gohlke
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
2
|
Molina-Henares MA, Ramos-González MI, Rinaldo S, Espinosa-Urgel M. Gene expression reprogramming of Pseudomonas alloputida in response to arginine through the transcriptional regulator ArgR. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001449. [PMID: 38511653 PMCID: PMC10963909 DOI: 10.1099/mic.0.001449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Different bacteria change their life styles in response to specific amino acids. In Pseudomonas putida (now alloputida) KT2440, arginine acts both as an environmental and a metabolic indicator that modulates the turnover of the intracellular second messenger c-di-GMP, and expression of biofilm-related genes. The transcriptional regulator ArgR, belonging to the AraC/XylS family, is key for the physiological reprogramming in response to arginine, as it controls transport and metabolism of the amino acid. To further expand our knowledge on the roles of ArgR, a global transcriptomic analysis of KT2440 and a null argR mutant growing in the presence of arginine was carried out. Results indicate that this transcriptional regulator influences a variety of cellular functions beyond arginine metabolism and transport, thus widening its regulatory role. ArgR acts as positive or negative modulator of the expression of several metabolic routes and transport systems, respiratory chain and stress response elements, as well as biofilm-related functions. The partial overlap between the ArgR regulon and those corresponding to the global regulators RoxR and ANR is also discussed.
Collapse
Affiliation(s)
- María Antonia Molina-Henares
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC. Profesor Albareda, 1. Granada 18008, Spain
| | - María Isabel Ramos-González
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC. Profesor Albareda, 1. Granada 18008, Spain
| | - Serena Rinaldo
- Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti - Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC. Profesor Albareda, 1. Granada 18008, Spain
| |
Collapse
|
3
|
Ambreetha S, Singh V. Genetic and environmental determinants of surface adaptations in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37276014 DOI: 10.1099/mic.0.001335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pseudomonas aeruginosa
is a well-studied Gram-negative opportunistic bacterium that thrives in markedly varied environments. It is a nutritionally versatile microbe that can colonize a host as well as exist in the environment. Unicellular, planktonic cells of
P. aeruginosa
can come together to perform a coordinated swarming movement or turn into a sessile, surface-adhered population called biofilm. These collective behaviours produce strikingly different outcomes. While swarming motility rapidly disseminates the bacterial population, biofilm collectively protects the population from environmental stresses such as heat, drought, toxic chemicals, grazing by predators, and attack by host immune cells and antibiotics. The ubiquitous nature of
P. aeruginosa
is likely to be supported by the timely transition between planktonic, swarming and biofilm lifestyles. The social behaviours of this bacteria viz biofilm and swarm modes are controlled by signals from quorum-sensing networks, LasI-LasR, RhlI-RhlR and PQS-MvfR, and several other sensory kinases and response regulators. A combination of environmental and genetic cues regulates the transition of the
P. aeruginosa
population to specific states. The current review is aimed at discussing key factors that promote physiologically distinct transitioning of the
P. aeruginosa
population.
Collapse
Affiliation(s)
- Sakthivel Ambreetha
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka - 560012, India
| | - Varsha Singh
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka - 560012, India
| |
Collapse
|
4
|
Ruiz A, Herráez M, Costa-Gutierrez SB, Molina-Henares MA, Martínez MJ, Espinosa-Urgel M, Barriuso J. The architecture of a mixed fungal-bacterial biofilm is modulated by quorum-sensing signals. Environ Microbiol 2021; 23:2433-2447. [PMID: 33615654 DOI: 10.1111/1462-2920.15444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 11/26/2022]
Abstract
Interkingdom communication is of particular relevance in polymicrobial biofilms. In this work, the ability of the fungus Ophiostoma piceae to form biofilms individually and in consortium with the bacterium Pseudomonas putida, as well as the effect of fungal and bacterial signal molecules on the architecture of the biofilms was evaluated. Pseudomonas putida KT2440 is able to form biofilms through the secretion of exopolysaccharides and two large extracellular adhesion proteins, LapA and LapF. It has two intercellular signalling systems, one mediated by dodecanoic acid and an orphan LuxR receptor that could participate in the response to AHL-type quorum sensing molecules (QSMs). Furthermore, the dimorphic fungus O. piceae uses farnesol as QSM to control its yeast to hyphae morphological transition. Results show for the first time the ability of this fungus to form biofilms alone and in mixed cultures with the bacterium. Biofilms were induced by bacterial and fungal QSMs. The essential role of LapA-LapF proteins in the architecture of biofilms was corroborated, LapA was induced by farnesol and dodecanol, while LapF by 3-oxo-C6-HSL and 3-oxo-C12-HSL. Our results indicate that fungal signals can induce a transient rise in the levels of the secondary messenger c-di-GMP, which control biofilm formation and architecture.
Collapse
Affiliation(s)
- Alberto Ruiz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Marta Herráez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Stefanie B Costa-Gutierrez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/Profesor Albareda 1, Granada, 18008, Spain
| | - María Antonia Molina-Henares
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/Profesor Albareda 1, Granada, 18008, Spain
| | - María Jesús Martínez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/Profesor Albareda 1, Granada, 18008, Spain
| | - Jorge Barriuso
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), C/Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
5
|
Inoculation of maize seeds with Pseudomonas putida leads to enhanced seedling growth in combination with modified regulation of miRNAs and antioxidant enzymes. Symbiosis 2020. [DOI: 10.1007/s13199-020-00703-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Costa-Gutierrez SB, Lami MJ, Santo MCCD, Zenoff AM, Vincent PA, Molina-Henares MA, Espinosa-Urgel M, de Cristóbal RE. Plant growth promotion by Pseudomonas putida KT2440 under saline stress: role of eptA. Appl Microbiol Biotechnol 2020; 104:4577-4592. [PMID: 32221691 DOI: 10.1007/s00253-020-10516-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/11/2020] [Accepted: 03/01/2020] [Indexed: 01/22/2023]
Abstract
New strategies to improve crop yield include the incorporation of plant growth-promoting bacteria in agricultural practices. The non-pathogenic bacterium Pseudomonas putida KT2440 is an excellent root colonizer of crops of agronomical importance and has been shown to activate the induced systemic resistance of plants in response to certain foliar pathogens. In this work, we have analyzed additional plant growth promotion features of this strain. We show it can tolerate high NaCl concentrations and determine how salinity influences traits such as the production of indole compounds, siderophore synthesis, and phosphate solubilization. Inoculation with P. putida KT2440 significantly improved seed germination and root and stem length of soybean and corn plants under saline conditions compared to uninoculated plants, whereas the effects were minor under non-saline conditions. Also, random transposon mutagenesis was used for preliminary identification of KT2440 genes involved in bacterial tolerance to saline stress. One of the obtained mutants was analyzed in detail. The disrupted gene encodes a predicted phosphoethanolamine-lipid A transferase (EptA), an enzyme described to be involved in the modification of lipid A during lipopolysaccharide (LPS) biosynthesis. This mutant showed changes in exopolysaccharide (EPS) production, low salinity tolerance, and reduced competitive fitness in the rhizosphere.
Collapse
Affiliation(s)
- Stefanie B Costa-Gutierrez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - María Jesús Lami
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - María Carolina Caram-Di Santo
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - Ana M Zenoff
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - Paula A Vincent
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | | | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Ricardo E de Cristóbal
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
7
|
Meyers A, Furtmann C, Gesing K, Tozakidis IEP, Jose J. Cell density-dependent auto-inducible promoters for expression of recombinant proteins in Pseudomonas putida. Microb Biotechnol 2019; 12:1003-1013. [PMID: 31237428 PMCID: PMC6680623 DOI: 10.1111/1751-7915.13455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Inducible promoters such as Plac are of limited usability for industrial protein production with Pseudomonas putida. We therefore utilized cell density-dependent auto-inducible promoters for recombinant gene expression in P. putida KT2440 based on the RoxS/RoxR Quorum Sensing (QS) system of the bacterium. To this end, genetic regions upstream of the RoxS/RoxR-regulated genes ddcA (PR ox132 ) and PP_3332 (PR ox306 ) were inserted into plasmids that mediated the expression of superfolder green fluorescent protein (sfGFP) and surface displayed mCherry, confirming their promoter functionalities. Mutation of the Pribnow box of PR ox306 to the σ70 consensus sequence (PR ox3061 ) resulted in a more than threefold increase of sfGFP production. All three promoters caused cell density-dependent expression, starting transcription at optical densities (OD578 ) of approximately 1.0 (PR ox132 , PR ox306 ) or 0.7 (PR ox3061 ) as determined by RT-qPCR. The QS dependency of PR ox306 was further shown by cultivating P. putida in media that had already been used for cultivation and thus contained bacterial signal molecules. The longer P. putida had grown in these media before, the earlier protein expression in freshly inoculated P. putida appeared with PR ox306 . This confirmed previous findings that a bacterial compound accumulates within the culture and induces protein expression.
Collapse
Affiliation(s)
- Annika Meyers
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms‐Universität MünsterPharmaCampus, Corrensstr. 4848149MünsterGermany
| | - Christoph Furtmann
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms‐Universität MünsterPharmaCampus, Corrensstr. 4848149MünsterGermany
| | - Katrin Gesing
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms‐Universität MünsterPharmaCampus, Corrensstr. 4848149MünsterGermany
| | - Iasson E. P. Tozakidis
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms‐Universität MünsterPharmaCampus, Corrensstr. 4848149MünsterGermany
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms‐Universität MünsterPharmaCampus, Corrensstr. 4848149MünsterGermany
| |
Collapse
|
8
|
Francis VI, Stevenson EC, Porter SL. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett 2018; 364:3828290. [PMID: 28510688 PMCID: PMC5812489 DOI: 10.1093/femsle/fnx104] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen capable of infecting a broad range of hosts, in addition to thriving in a broad range of environmental conditions outside of hosts. With this versatility comes the need to tightly regulate its genome to optimise its gene expression and behaviour to the prevailing conditions. Two-component systems (TCSs) comprising sensor kinases and response regulators play a major role in this regulation. This minireview discusses the growing number of TCSs that have been implicated in the virulence of P. aeruginosa, with a special focus on the emerging theme of multikinase networks, which are networks comprising multiple sensor kinases working together, sensing and integrating multiple signals to decide upon the best response. The networks covered in depth regulate processes such as the switch between acute and chronic virulence (GacS network), the Cup fimbriae (Roc network and Rcs/Pvr network), the aminoarabinose modification of lipopolysaccharide (a network involving the PhoQP and PmrBA TCSs), twitching motility and virulence (a network formed from the Chp chemosensory pathway and the FimS/AlgR TCS), and biofilm formation (Wsp chemosensory pathway). In addition, we highlight the important interfaces between these systems and secondary messenger signals such as cAMP and c-di-GMP.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Emma C Stevenson
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Steven L Porter
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| |
Collapse
|
9
|
Rahimzadeh S, Pirzad A. Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): a field study. MYCORRHIZA 2017; 27:537-552. [PMID: 28488060 DOI: 10.1007/s00572-017-0775-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/20/2017] [Indexed: 05/21/2023]
Abstract
Drought stress, which is one of the most serious world environmental threats to crop production, might be compensated by some free living and symbiotic soil microorganisms. The physiological response of flax plants to inoculation with two species of arbuscular mycorrhizal (AM) fungi (Funneliformis mosseae or Rhizophagus intraradices) and a phosphate solubilizing bacterium (Pseudomonas putida P13; PSB) was evaluated under different irrigation regimes (irrigation after 60, 120, and 180 mm of evaporation from Class A pan as well-watered, mild, and severe stress, respectively). A factorial (three factors) experiment was conducted for 2 years (2014-2015) based on a randomized complete block design with three replications at Urmia University, Urmia, located at North-West of Iran (37° 39' 24.82″ N44° 58' 12.42″ E). Water deficit decreased biomass, showing that flax was sensitive to drought, and AM root colonization improved the performance of the plant within irrigation levels. In all inoculated and non-inoculated control plants, leaf chlorophyll decreased with increasing irrigation intervals. Water deficit-induced oxidative damage (hydrogen peroxide, malondialdehyde, and electrolyte leakage) were significantly reduced in dual colonized plants. All enzymatic (catalase, superoxide dismutase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (glutathione, ascorbic acid, total carotenoids) antioxidants were reduced by water-limiting irrigation. Dual inoculated plants with AM plus Pseudomonas accumulated more enzymatic and non-enzymatic antioxidants than plants with bacterial or fungal inoculation singly. Dual colonized plants significantly decreased the water deficit-induced glycine betaine and proline in flax leaves. These bacterial-fungal interactions in enzymatic and non-enzymatic defense of flax plants demonstrated equal synergism with both AM fungi species. In conclusion, increased activity of enzymatic antioxidants and higher production of non-enzymatic antioxidant compounds in symbiotic association with bacteria and mycorrhiza can alleviate reactive oxygen species damage resulting in improve water stress tolerance.
Collapse
Affiliation(s)
- Saeedeh Rahimzadeh
- Department of Agronomy, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Alireza Pirzad
- Department of Agronomy, Faculty of Agriculture, Urmia University, Urmia, Iran.
| |
Collapse
|
10
|
Espinosa-Urgel M. Learning when (and how) to shut up: intercellular signal turnover in Xanthomonas. Environ Microbiol 2016; 18:314-5. [PMID: 26842299 DOI: 10.1111/1462-2920.13228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| |
Collapse
|
11
|
Diomandé SE, Nguyen-the C, Abee T, Tempelaars MH, Broussolle V, Brillard J. Involvement of the CasK/R two-component system in optimal unsaturation of the Bacillus cereus fatty acids during low-temperature growth. Int J Food Microbiol 2015; 213:110-7. [PMID: 25987542 DOI: 10.1016/j.ijfoodmicro.2015.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 11/26/2022]
Abstract
Bacillus cereus sensu lato is composed of a set of ubiquitous strains including human pathogens that can survive a range of food processing conditions, grow in refrigerated food, and sometimes cause food poisoning. We previously identified the two-component system CasK/R that plays a key role in cold adaptation. To better understand the CasK/R-controlled mechanisms that support low-temperature adaptation, we performed a transcriptomic analysis on the ATCC 14579 strain and its isogenic ∆casK/R mutant grown at 12°C. Several genes involved in fatty acid (FA) metabolism were downregulated in the mutant, including desA and desB encoding FA acyl-lipid desaturases that catalyze the formation of a double-bond on the FA chain in positions ∆5 and ∆10, respectively. A lower proportion of FAs presumably unsaturated by DesA was observed in the ΔcasK/R strain compared to the parental strain while no difference was found for FAs presumably unsaturated by DesB. Addition of phospholipids from egg yolk lecithin rich in unsaturated FAs, to growth medium, abolished the cold-growth impairment of ΔcasK/R suggesting that exogenous unsaturated FAs can support membrane-level modifications and thus compensate for the decreased production of these FAs in the B. cereus ∆casK/R mutant during growth at low temperature. Our findings indicate that CasK/R is involved in the regulation of FA metabolism, and is necessary for cold adaptation of B. cereus unless an exogenous source of unsaturated FAs is available.
Collapse
Affiliation(s)
- Sara Esther Diomandé
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Christophe Nguyen-the
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Tjakko Abee
- Top Institute Food and Nutrition, NieuweKanaal 9A, 6709 PA, Wageningen, The Netherlands; Food Microbiology Laboratory, Wageningen University, BornseWeilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Marcel H Tempelaars
- Food Microbiology Laboratory, Wageningen University, BornseWeilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Véronique Broussolle
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Julien Brillard
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; INRA, Université Montpellier, UMR1333 Diversité Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France.
| |
Collapse
|
12
|
Planchamp C, Glauser G, Mauch-Mani B. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. FRONTIERS IN PLANT SCIENCE 2015; 5:719. [PMID: 25628626 PMCID: PMC4292437 DOI: 10.3389/fpls.2014.00719] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/28/2014] [Indexed: 05/24/2023]
Abstract
Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots 3 days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR) against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal growth in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as resistance inducers.
Collapse
Affiliation(s)
- Chantal Planchamp
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Gaetan Glauser
- Chemical Analytical Service of the Swiss Plant Science Web, University of NeuchâtelNeuchâtel, Switzerland
| | - Brigitte Mauch-Mani
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| |
Collapse
|
13
|
El-Mowafy SA, Shaaban MI, Abd El Galil KH. Sodium ascorbate as a quorum sensing inhibitor of Pseudomonas aeruginosa. J Appl Microbiol 2014; 117:1388-99. [PMID: 25175797 DOI: 10.1111/jam.12631] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/02/2014] [Accepted: 08/22/2014] [Indexed: 11/28/2022]
Abstract
AIMS Quorum sensing circuits regulate virulence factors in Pseudomonas aeruginosa and coordinate bacterial pathogenicity. We are interested in exploring available medications for their antiquorum sensing activity. METHODS AND RESULTS First, we determined the MIC of ascorbate against Ps. aeruginosa strain PAO1, and all further experiments used concentrations below the MIC so that results could not be caused by reduced viability. Tests of subinhibitory concentrations of sodium ascorbate on cell signals were performed using a reporter strain assay. Sub-MICs of sodium ascorbate resulted in significant reduction of the signalling molecules C4-HSL and 3-oxo-C12-HSL (P < 0·01). The influence of sub-MIC of sodium ascorbate on virulence factors was also determined and ascorbate treatment led to significant depression of elastase, protease and haemolysin activities. In addition, inhibition of pyocyanin production, attenuation of biofilm formation and alteration of Pseudomonas motility was observed. Analysis by RT-PCR tested the effect of ascorbate on the expression of QS regulatory genes. Expression of QS regulatory genes, lasI, lasR, rhlI, rhlR, pqsR and pqsA, was repressed compared to untreated Ps. aeruginosa PAO1, confirming that ascorbate QS inhibition works on gene expression at the molecular level. CONCLUSION Sodium ascorbate, even at low concentrations, inhibited QS and related virulence factors of Ps. aeruginosa PAO1. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrated that sodium ascorbate could function as signal modulator and virulence inhibitor in Ps. aeruginosa.
Collapse
Affiliation(s)
- S A El-Mowafy
- Microbiology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | | |
Collapse
|
14
|
Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ Microbiol 2014; 16:1961-81. [PMID: 24592823 DOI: 10.1111/1462-2920.12448] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/12/2014] [Accepted: 02/28/2014] [Indexed: 01/28/2023]
Abstract
In the present review, we describe and compare the molecular mechanisms that are involved in the regulation of biofilm formation by Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas aeruginosa and Burkholderia cenocepacia. Our current knowledge suggests that biofilm formation is regulated by cyclic diguanosine-5'-monophosphate (c-di-GMP), small RNAs (sRNA) and quorum sensing (QS) in all these bacterial species. The systems that employ c-di-GMP as a second messenger regulate the production of exopolysaccharides and surface proteins which function as extracellular matrix components in the biofilms formed by the bacteria. The systems that make use of sRNAs appear to regulate the production of exopolysaccharide biofilm matrix material in all these species. In the pseudomonads, QS regulates the production of extracellular DNA, lectins and biosurfactants which all play a role in biofilm formation. In B.cenocepacia QS regulates the expression of a large surface protein, lectins and extracellular DNA that all function as biofilm matrix components. Although the three regulatory systems all regulate the production of factors used for biofilm formation, the molecular mechanisms involved in transducing the signals into expression of the biofilm matrix components differ between the species. Under the conditions tested, exopolysaccharides appears to be the most important biofilm matrix components for P.aeruginosa, whereas large surface proteins appear to be the most important biofilm matrix components for P.putida, P.fluorescens, and B.cenocepacia.
Collapse
Affiliation(s)
- Mustafa Fazli
- Department of International Health, Immunology, and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
| | | | - Juan L. Ramos
- CSIC- Estacion Experimental del Zaidin; Granada; Spain
| |
Collapse
|