1
|
Wang Y, Zhang X, Zhang Z, Xu R, Yang P, Yuan P, Zhang L, Cui Y, Xie Z, Li J. Reverse transcription recombinase-aided amplification assay combined with a lateral flow dipstick for detection of duck Tembusu virus. J Virol Methods 2023; 322:114810. [PMID: 37689372 DOI: 10.1016/j.jviromet.2023.114810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
Duck Tembusu virus disease, caused by duck Tembusu virus (DTMUV), brings great harm to duck industry. Early diagnosis is of great significance for the prevention and control of this disease. In order to develop a specific and sensitive method for rapid diagnosis of DTMUV, reverse-transcriptase recombinase aided amplification combined with lateral flow dipstick (RT-RAA-LFD) method for detection of DTMUV was established. Firstly, downstream primer was labeled with biotin and probe was labeled with FAM, and primer concentration, reaction time, and reaction temperature were optimized. Then, the specificity and sensitivity of this method was investigated. The results of specificity test showed that it had no cross reaction with other common pathogens such as low pathogenic avian influenza virus (AIV), Newcastle disease virus (NDV), duck hepatitis A virus (DHV), and duck Reovirus. The results of sensitivity test showed that the minimum detection limit of this method was 10 copies/μL, which was 1000 times than conventional RT-PCR (104 copies/μL), and equivalent to that of fluorescent quantitative PCR. Furthermore, this RT-RAA-LFD method demonstrated excellent intragroup and intergroup consistency. Finally, the RT-RAA-LFD assay and real-time PCR were both utilized to examine 58 clinical samples concurrently. The results showed that the RT-RAA-LFD method (5/58) was more sensitive than the fluorescence quantitative PCR method (4/58). In summary, RT-RAA-LFD method established in this study had a strong specificity and high sensitivity, which provided technical support for clinical detection of DTMUV.
Collapse
Affiliation(s)
- Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xue Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zhenyan Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ruixue Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Pingping Yang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Peng Yuan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lianzhi Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanshun Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zhijing Xie
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jianliang Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
2
|
He D, Liu G, Yang J, Jiang X, Wang H, Fan Y, Gong S, Wei F, Diao Y, Tang Y. Specific High-Sensitivity Enzymatic Molecular Detection System Termed RPA-Based CRISPR-Cas13a for Duck Tembusu Virus Diagnostics. Bioconjug Chem 2022; 33:1232-1240. [PMID: 35586918 DOI: 10.1021/acs.bioconjchem.2c00200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In China, drastic losses in the economy have been caused by the Tembusu virus (TMUV), the causative agent of the egg-drop syndrome, to the duck-raising industry. To succeed in preventing and controlling infections, extant techniques must be upgraded to achieve fast detection of viruses. This work is the first attempt to present the development of a recombinase polymerase amplification (RPA)-based clustered regularly interspaced short palindromic repeats (CRISPRs)-Cas13a approach for the TMUV infection diagnosis, where the CRISPR-Cas13a system is exploited, i.e., the programmability of CRISPR RNA (crRNA) and the promiscuous RNase collateral cleavage of Cas13a upon recognition of target RNAs. A prokaryotic expression system was utilized for the expression of LwCas13a soluble protein, while its purification was accomplished by nickel-nitrilotriacetic acid (Ni-NTA) agarose. In the design of a particular crRNA, the target used was the TMUV NS3 RNA transcribed in vitro. The signals used for the Cas13a activity validation were an RNA-bound fluorescent group (single-stranded) and a quenching fluorophore. In the present work, a specific high-sensitivity enzymatic molecular detection system termed RPA-based CRISPR-Cas13a was established by combining Cas13a with T7 transcription and RPA for sensitive detection of TMUV at room temperature. This system can detect 102 copies of the target TMUV DNA standard/μL within 50 min. A comparison revealed that the specificity was superior to that for other avian viruses. Furthermore, the RPA-based CRISPR-Cas13a detection system was successfully applied for clinical samples, and its performance is comparable to the reverse-transcriptase real-time quantitative polymerase chain reaction (RT-qPCR). Being satisfyingly reliable, simple, specific, and sensitive, our RPA-based CRISPR-Cas13a detection system could be expanded and universalized for identifying other viruses, enabling quick detection in the field with a portable lateral flow dipstick.
Collapse
Affiliation(s)
- Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an 271018, China
| | - Gang Liu
- Shandong Provincial Animal Husbandry General Station, Jinan 250102, China
| | - Jing Yang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an 271018, China
| | - Xiaoning Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an 271018, China
| | - Hongzhi Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an 271018, China
| | - Yaru Fan
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Shangyu Gong
- Jinzhou Agricultural and Rural Comprehensive Service Center, Jinzhou 121000, China
| | - Feng Wei
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an 271018, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an 271018, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an 271018, China
| |
Collapse
|
3
|
Yin D, Yin L, Wang J, Shen X, Pan X, Hou H, Zhao R, Hu X, Wang G, Qi K, Dai Y. Visual Detection of Duck Tembusu Virus With CRISPR/Cas13: A Sensitive and Specific Point-of-Care Detection. Front Cell Infect Microbiol 2022; 12:848365. [PMID: 35252043 PMCID: PMC8891527 DOI: 10.3389/fcimb.2022.848365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
Duck tembusu virus (DTMUV), which causes huge economic losses for the poultry industries in Southeast Asia and China, was first identified in 2010. DTMUV disease has become an important disease that endangers the duck industry. A sensitive, accurate, and convenient DTMUV detection method is an important means to reduce the occurrence of the disease. In this study, a CRISPR/Cas13a system was combined with recombinase polymerase amplification to develop a convenient diagnostic method to detect DTMUV. The novel method was based on isothermal detection at 37°C, and the detection was used for visual readout or real-time analysis. The assay was highly sensitive and specific, with a detection limit of 1 copy/μL of the target gene and showed no cross-reactivity with other pathogens. The enhanced Cas13a detection worked well with clinical samples. Overall, a visual, sensitive, and specific nucleic acid detection method based on CRISPR/Cas13a proved to be a powerful tool for detecting DTMUV.
Collapse
Affiliation(s)
- Dongdong Yin
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Lei Yin
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Jieru Wang
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Xuehuai Shen
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Xiaocheng Pan
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Hongyan Hou
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Ruihong Zhao
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Xiaomiao Hu
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Guijun Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yin Dai
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
- *Correspondence: Yin Dai,
| |
Collapse
|
4
|
Ninvilai P, Tunterak W, Prakairungnamthip D, Oraveerakul K, Thontiravong A. Development and Validation of a Universal One-Step RT-PCR Assay for Broad Detection of Duck Tembusu Virus. Avian Dis 2021; 64:294-299. [PMID: 33205167 DOI: 10.1637/aviandiseases-d-19-00199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/19/2020] [Indexed: 11/05/2022]
Abstract
Duck Tembusu virus (DTMUV), a mosquito-borne flavivirus, has been identified as a causative agent of an emerging disease in ducks. Since its first report in 2010, several clusters of DTMUV have increasingly been identified and caused outbreaks in many Asian countries. This highlights the need for improved and novel broad detection assays in order to detect all circulating clusters of DTMUV. In this study, a universal one-step reverse-transcription PCR (RT-PCR) assay targeting a highly conserved region of the NS5 gene was developed and validated for broad detection of all DTMUV clusters. The newly developed universal RT-PCR assay could specifically detect all clusters of DTMUV without cross-reactions with common duck viruses and other related flaviviruses. The assay was able to detect DTMUV as low as a 0.001 50% embryo lethal dose/milliliter. The performance of the assay was evaluated by using experimental and field clinical samples. The assay could successfully detect DTMUV in all experimentally DTMUV-infected samples and gave a higher DTMUV detection rate (36%) than the previously reported envelope-specific RT-PCR assay (30%) in field clinical samples. All the positive samples were confirmed DTMUV-positive by DNA sequencing. In conclusion, the newly developed universal RT-PCR assay exhibited high accuracy, specificity, and sensitivity in broad DTMUV detection, thus providing an improved screening assay for routine detection and epidemiologic surveillance of DTMUV.
Collapse
Affiliation(s)
- Patchareeporn Ninvilai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330
| | - Wikanda Tunterak
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330.,Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330
| | - Duangduean Prakairungnamthip
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330.,Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330
| | - Kanisak Oraveerakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330
| | - Aunyaratana Thontiravong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330.,Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330.,Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330
| |
Collapse
|
5
|
Han K, Zhao D, Liu Q, Liu Y, Huang X, Yang J, Zhang L, Li Y. Transcriptome analysis reveals new insight of duck Tembusu virus (DTMUV)-infected DF-1 cells. Res Vet Sci 2021; 137:150-158. [PMID: 33975194 DOI: 10.1016/j.rvsc.2021.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022]
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused huge economic losses to the duck industry in China since 2010. Moreover, the infection has spread rapidly, resulted in a potential public health concern. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of DTMUV infection, we used RNA-Seq to detect the gene changes in DF-1 cells infected and mock-infected with DTMUV. A total of 663 differentially-expressed genes (DEGs) were identified in DTMUV-infected compared with mock-infected DF-1 cells at 24 h post-infection (hpi), among which 590 were up regulated and 73 were down regulated. Gene Ontology analysis indicated that the DEGs were mainly involved in cellular process, immune system processes, metabolic processes, and signal-organism process. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs were mainly involved in several signaling pathways such as Toll-like receptor signaling, Jak-STAT signaling, RIG-I-like receptor signaling and AGE-RAGE signaling pathway. Moreover, some selected DEGs were further confirmed by real-time PCR and the results were consistent with the sequencing data. To our knowledge, this study is the first to analyze the transcriptomic change in DF-1 cells following DTMUV infection. We believe that our research provides useful information in better understanding the host response to DTMUV infection and the inherent mechanism of DTMUV replication and pathogenicity.
Collapse
Affiliation(s)
- Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; Institute of life sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| |
Collapse
|
6
|
Abstract
The disease caused by duck Tembusu virus (DTMUV) is characterized by severe egg-drop in laying ducks. Currently, the disease has spread to most duck-raising areas in China, leading to great economic losses in the duck industry. In the recent years, DTMUV has raised some concerns, because of its expanding host range and increasing pathogenicity, as well as the potential threat to public health. Innate immunity is crucial for defending against invading pathogens in the early stages of infection. Recently, studies on the interaction between DTMUV and host innate immune response have made great progress. In the review, we provide an overview of DTMUV and summarize current advances in our understanding of the interaction between DTMUV and innate immunity, including the host innate immune responses to DTMUV infection through pattern recognition receptors (PRRs), signaling transducer molecules, interferon-stimulated genes (ISGs), and the immune evasion strategies employed by DTMUV. The aim of the review is to gain an in-depth understanding of DTMUV pathogenesis to facilitate future studies.
Collapse
|
7
|
Wang X, Yang Z, Wang X, Duan H, Liu L, Cheng H, Yang C, Hou L, Pan J, Zhao J, Liu Y, Lin J. Development of a Hemagglutination Inhibition Assay for Duck Tembusu Virus. Avian Dis 2020; 63:298-301. [PMID: 31251530 DOI: 10.1637/11954-082018-reg.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/07/2019] [Indexed: 11/05/2022]
Abstract
The HB strain of duck Tembusu virus (DTMUV) propagated in the brains of newborn mice was used to prepare antigens for use in the hemagglutination inhibition (HI) test. Results showed that such prepared antigens are highly specific to the serum samples derived from DTMUV-infected animals. No spurious hemagglutination reactions against serum samples specific to avian influenza virus H5, H7, H9 subtypes, Newcastle disease virus, egg drop syndrome virus, duck plague virus, and duck hepatitis A virus were observed. The HI test can detect specific antibodies in the serum samples as early as day 4 after experimental infection of ducks with DTMUV. When compared to a virus neutralization test, the sensitivity is 100%. Overall, the HI test developed is highly specific to DTMUV and can be used in clinical diagnosis of diseases and in vaccine studies to monitor the kinetics of antibody response.
Collapse
Affiliation(s)
- Xiaolei Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhiyuan Yang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiuqing Wang
- South Dakota State University, Brookings, SD 57007
| | - Huijuan Duan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lixin Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Huimin Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chenghuai Yang
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Lidan Hou
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Jie Pan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jicheng Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuehuan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian Lin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China,
| |
Collapse
|
8
|
Liu N, Wang L, Cai G, Zhang D, Lin J. Establishment of a simultaneous detection method for ten duck viruses using MALDI-TOF mass spectrometry. J Virol Methods 2019; 273:113723. [PMID: 31430495 PMCID: PMC7113782 DOI: 10.1016/j.jviromet.2019.113723] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 11/17/2022]
Abstract
Rapid screening of infectious viral diseases is the key to ensure healthy development of duck livestock industry. Currently routine viral detection methods are primarily used to detect up to 3 viruses. In this study, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) was used for simultaneous detection and genotyping of ten viruses in duck, including Duck hepatitis A virus 1 (DHAV-1), DHAV-3, Duck astrovirus 1 (DAstV-1), DAstV-2, Duck reovirus 1 (DRV-1), DRV-2, Tembusu virus (TMUV), Avian influenza virus (AIV), Goose parvovirus (GPV) and Duck enteritis virus (DEV). The low detection limits of this proposed method for ten duck viruses ranged from 1.3 copies/μl to 7.8 copies/μl. The novel detection method with high sensitivity, good specificity and high throughput has the potential to be applied for disease diagnosis and surveillance.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Lei Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Gaozhe Cai
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China; Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
9
|
Ahn SJ, Baek YH, Lloren KKS, Choi WS, Jeong JH, Antigua KJC, Kwon HI, Park SJ, Kim EH, Kim YI, Si YJ, Hong SB, Shin KS, Chun S, Choi YK, Song MS. Rapid and simple colorimetric detection of multiple influenza viruses infecting humans using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. BMC Infect Dis 2019; 19:676. [PMID: 31370782 PMCID: PMC6669974 DOI: 10.1186/s12879-019-4277-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 07/11/2019] [Indexed: 01/15/2023] Open
Abstract
Background In addition to seasonal influenza viruses recently circulating in humans, avian influenza viruses (AIVs) of H5N1, H5N6 and H7N9 subtypes have also emerged and demonstrated human infection abilities with high mortality rates. Although influenza viral infections are usually diagnosed using viral isolation and serological/molecular analyses, the cost, accessibility, and availability of these methods may limit their utility in various settings. The objective of this study was to develop and optimized a multiplex detection system for most influenza viruses currently infecting humans. Methods We developed and optimized a multiplex detection system for most influenza viruses currently infecting humans including two type B (both Victoria lineages and Yamagata lineages), H1N1, H3N2, H5N1, H5N6, and H7N9 using Reverse Transcriptional Loop-mediated Isothermal Amplification (RT-LAMP) technology coupled with a one-pot colorimetric visualization system to facilitate direct determination of results without additional steps. We also evaluated this multiplex RT-LAMP for clinical use using a total of 135 clinical and spiked samples (91 influenza viruses and 44 other human infectious viruses). Results We achieved rapid detection of seasonal influenza viruses (H1N1, H3N2, and Type B) and avian influenza viruses (H5N1, H5N6, H5N8 and H7N9) within an hour. The assay could detect influenza viruses with high sensitivity (i.e., from 100 to 0.1 viral genome copies), comparable to conventional RT-PCR-based approaches which would typically take several hours and require expensive equipment. This assay was capable of specifically detecting each influenza virus (Type B, H1N1, H3N2, H5N1, H5N6, H5N8 and H7N9) without cross-reactivity with other subtypes of AIVs or other human infectious viruses. Furthermore, 91 clinical and spiked samples confirmed by qRT-PCR were also detected by this multiplex RT-LAMP with 98.9% agreement. It was more sensitive than one-step RT-PCR approach (92.3%). Conclusions Results of this study suggest that our multiplex RT-LAMP assay may provide a rapid, sensitive, cost-effective, and reliable diagnostic method for identifying recent influenza viruses infecting humans, especially in locations without access to large platforms or sophisticated equipment. Electronic supplementary material The online version of this article (10.1186/s12879-019-4277-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Su Jeong Ahn
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Yun Hee Baek
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Khristine Kaith S Lloren
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Won-Suk Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Ju Hwan Jeong
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Khristine Joy C Antigua
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Hyeok-Il Kwon
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Su-Jin Park
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Eun-Ha Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Young-Il Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Young-Jae Si
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Seung Bok Hong
- Department of Clinical Laboratory Science, Chungbuk Health and Science University, Cheongju, Republic of Korea
| | - Kyeong Seob Shin
- Departments of Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Sungkun Chun
- Department of Physiology, Chonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea.
| | - Min-Suk Song
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
10
|
Yu G, Yu X, Yang G, Tang Y, Diao Y. A Novel Diagnostic Method to Detect Duck Tembusu Virus: A Colloidal Gold-Based Immunochromatographic Assay. Front Microbiol 2018; 9:1001. [PMID: 29867893 PMCID: PMC5963251 DOI: 10.3389/fmicb.2018.01001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 04/27/2018] [Indexed: 12/14/2022] Open
Abstract
Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that has resulted in large economic losses to the duck-rearing industry in China since 2010. Therefore, an effective diagnostic approach to monitor the spread of DTMUV is necessary. Here, a novel diagnostic immunochromatographic strip (ICS) assay was developed to detect DTMUV. The assay was carried out using colloidal gold coated with purified monoclonal antibody A12D3 against envelope E protein. Purified polyclonal C12D1 antibodies from BALB/c mice against the envelope E protein were used as the capture antibody. Goat anti-mouse IgG was used to detect DTMUV, which was also assembled on the ICS. Results showed that the ICS could specifically detect DTMUV within 10 min. It also could be stored 25 and 4°C for 4 and 6 months, respectively. The sensitivity of the ICS indicated that the dilution multiples of positive allantoic fluid of DTMUV (LD50: 104.33/0.2 ml) was up to 200. Its specificity and sensibility showed no significant change under the above storage situations. Fifty clinical samples were simultaneously detected by ICS and reverse-transcription polymerase chain reaction with a 93.9% coincidence rate between them. It proved that the ICS in the present study was highly specific, sensitive, repeatable, and more convenient to rapidly detect DTMUV in clinical samples.
Collapse
Affiliation(s)
- Guanliu Yu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Xianglong Yu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Guoping Yang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
11
|
Zhang M, Wang X, Han L, Niu S, Shi C, Ma C. Rapid detection of foodborne pathogen Listeria monocytogenes by strand exchange amplification. Anal Biochem 2018; 545:38-42. [DOI: 10.1016/j.ab.2018.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/17/2023]
|
12
|
Tang Y, Yeh YT, Chen H, Yu C, Gao X, Diao Y. Comparison of four molecular assays for the detection of Tembusu virus. Avian Pathol 2016; 44:379-85. [PMID: 26443062 DOI: 10.1080/03079457.2015.1061650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Tembusu virus (TMUV) belongs to the genus Flavivirus that may cause severe egg drop in ducks. In order to evaluate the most efficient TMUV detection method, the performances of a conventional RT-PCR (C-RT-PCR), a semi-nested PCR (SN-RT-PCR), a reverse-transcriptase real-time quantitative PCR (Q-RT-PCR), and a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) targeting the TMUV virus-specific NS5 gene were examined. In order to compare the sensitivity of these four techniques, two templates were used: (1) plasmid DNA that contained a partial region of the NS5 gene and (2) genomic RNA from TMUV-positive cell culture supernatants. The sensitivities using plasmid DNA detection by C-RT-PCR, SN-RT-PCR, Q-RT-PCR, and RT-LAMP were 2 × 10(4) copies/μL, 20 copies/μL, 2 copies/μL, and 20 copies/μL, respectively. The sensitivities using genomic RNA for the C-RT-PCR, SN-RT-PCR, Q-RT-PCR, and RT-LAMP were 100 pg/tube, 100, 10, and 100 fg/tube, respectively. All evaluated assays were specific for TMUV detection. The TMUV-specific RNA was detected in cloacal swabs from experimentally infected ducks using these four methods with different rates (52-92%), but not in the control (non-inoculated) samples. The sensitivities of RT-PCR, SN-RT-PCR, Q-RT-PCR, and RT-LAMP performed with cloacal swabs collected from suspected TMUV infected ducks within 2 weeks of severe egg-drop were 38/69 (55.1%), 52/69 (75.4%), 57/69 (82.6%), and 55/69 (79.7%), respectively. In conclusion, both RT-LAMP and Q-RT-PCR can provide a rapid diagnosis of TMUV infection, but RT-LAMP is more useful in TMUV field situations or poorly equipped laboratories.
Collapse
Affiliation(s)
- Yi Tang
- a College of Veterinary Medicine , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China.,b Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , PA 16802 , USA
| | - Yin-Ting Yeh
- c Department of Biomedical Engineering , The Pennsylvania State University , University Park , PA 16802 , USA
| | - Hao Chen
- a College of Veterinary Medicine , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
| | - Chunmei Yu
- a College of Veterinary Medicine , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
| | - Xuhui Gao
- a College of Veterinary Medicine , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
| | - Youxiang Diao
- a College of Veterinary Medicine , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
| |
Collapse
|
13
|
Tang Y, Chen H, Diao Y. Advanced uracil DNA glycosylase-supplemented real-time reverse transcription loop-mediated isothermal amplification (UDG-rRT-LAMP) method for universal and specific detection of Tembusu virus. Sci Rep 2016; 6:27605. [PMID: 27270462 PMCID: PMC4895144 DOI: 10.1038/srep27605] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/17/2016] [Indexed: 11/23/2022] Open
Abstract
Tembusu virus (TMUV) is a mosquito-borne flavivirus which threatens both poultry production and public health. In this study we developed a complete open reading frame alignment-based rRT-LAMP method for the universal detection of TUMV. To prevent false-positive results, the reaction was supplemented with uracil DNA glycosylase (UDG) to eliminate carryover contamination. The detection limit of the newly developed UDG-rRT-LAMP for TMUV was as low as 100 copies/reaction of viral RNA and 1 × 100.89 − 1 × 101.55 tissue culture infectious dose/100 μL of viruses. There were no cross-reactions with other viruses, and the reproducibility of the assay was confirmed by intra- and inter-assay tests with variability ranging from 0.22–3.33%. The new UDG-rRT-LAMP method for TMUV produced the same results as viral isolation combined with RT-PCR as the “gold standard” in 96.88% of cases for 81 clinical samples from subjects with suspected TMUV infection. The addition of UDG can eliminate as much as 1 × 10−16 g/reaction of contaminants, which can significantly reduce the likelihood of false-positive results during the rRT-LAMP reaction. Our result indicated that our UDG-rRT-LAMP is a rapid, sensitive, specific, and reliable method that can effectively prevent carryover contamination in the detection of TMUV.
Collapse
Affiliation(s)
- Yi Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, #61 Dai Zong Avenue Tai'an, Shandong 271018, China
| | - Hao Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, #61 Dai Zong Avenue Tai'an, Shandong 271018, China
| | - Youxiang Diao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, #61 Dai Zong Avenue Tai'an, Shandong 271018, China
| |
Collapse
|
14
|
Adaptation and attenuation of duck Tembusu virus strain Du/CH/LSD/110128 following serial passage in chicken embryos. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1046-53. [PMID: 24872514 DOI: 10.1128/cvi.00154-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused massive economic losses to the duck industry in China. In the current study, a virulent strain of DTMUV, designated Du/CH/LSD/110128, was isolated from the livers of diseased ducks and attenuated by serial passage in embryonated chicken eggs. The virus was partially attenuated after 50 and 70 passages and was fully attenuated after 90 passages, based on mortality and morbidity rates and viral loads in inoculated ducklings. Fourteen amino acid substitutions were observed in the capsid, prM, envelope, NS1, NS3, NS4A, NS4B, and NS5 proteins of the fully attenuated strain of Du/CH/LSD/110128, which might be responsible for the observed changes in replication and pathogenicity. A 72-nucleotide deletion was also observed in the 3' untranslated region of the virus after 30 passages. The fully attenuated virus retained the immunogenicity of the parental strain, providing effective protection to challenge with virulent Du/CH/LSD/110128, and may represent a suitable candidate as a vaccine strain against DTMUV infection in ducks. Our results also lay the foundation for future studies on the replication and pathogenic mechanisms of DTMUV.
Collapse
|
15
|
Development and evaluation of a DAS-ELISA for rapid detection of Tembusu virus using monoclonal antibodies against the envelope protein. PLoS One 2014; 9:e96366. [PMID: 24797141 PMCID: PMC4010474 DOI: 10.1371/journal.pone.0096366] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/06/2014] [Indexed: 11/28/2022] Open
Abstract
Since April 2010, Tembusu virus (TMUV) which is a contagious pathogen of waterfowls, causing symptoms of high fever, loss of appetite and fall in egg production, has been reported in east of China. A double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) which detects for TMUV was developed, using two monoclonal antibodies (mAbs) against the TMUV envelope (E) protein. BALB/c mice were immunized with purified recombinant E protein expressed in E. coli. Three hybridoma cell lines designated as 12B1, 10C6 and 2D2, were screened by cell fusion and indirect ELISA for their ability to recognize different linear epitopes on the E protein, and were characterized subsequently. High-affinity mAbs 12B1 and 2D2 were used as capture and detection antibodies, respectively. The reaction conditions for the DAS-ELISA were optimized for TMUV detection. The cross-reactivity of the DAS-ELISA was determined using TMUV, duck plague virus, avian influenza virus subtype H9, Newcastle disease virus, duck hepatitis A virus type 1 and duck reovirus samples. A total of 191 homogenized tissues of field samples were simultaneously detected by DAS-ELISA and by RT-PCR. The former was found to have a high specificity of 99.1% and a sensitivity of 93.1%. These results reveal a positive coincidence between DAS-ELISA and RT-PCR at a coincidence rate of 95.8%. The method developed in this study can be used for the diagnosis of TMUV infection of duck origin.
Collapse
|
16
|
Liu Z, Fu Y, Ji Y, Wei J, Cai X, Zhu Q. Development and Validation of One-Step SYBR Green Real-Time RT-PCR for the Rapid Detection of Newly Emerged Duck Tembusu Virus. Avian Dis 2013; 57:595-601. [DOI: 10.1637/10484-010713-reg.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Yu K, Sheng ZZ, Huang B, Ma X, Li Y, Yuan X, Qin Z, Wang D, Chakravarty S, Li F, Song M, Sun H. Structural, antigenic, and evolutionary characterizations of the envelope protein of newly emerging Duck Tembusu Virus. PLoS One 2013; 8:e71319. [PMID: 23990944 PMCID: PMC3750017 DOI: 10.1371/journal.pone.0071319] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/04/2013] [Indexed: 11/19/2022] Open
Abstract
Since the first reported cases of ducks infected with a previously unknown flavivirus in eastern China in April 2010, the virus, provisionally designated Duck Tembusu Virus (DTMUV), has spread widely in domestic ducks in China and caused significant economic losses to poultry industry. In this study, we examined in detail structural, antigenic, and evolutionary properties of envelope (E) proteins of six DTMUV isolates spanning 2010–2012, each being isolated from individual farms with different geographical locations where disease outbreaks were documented. Structural analysis showed that E proteins of DTMUV and its closely related flavivirus (Japanese Encephalitis Virus) shared a conserved array of predicted functional domains and motifs. Among the six DTMUV strains, mutations were observed only at thirteen amino acid positions across three separate domains of the E protein. Interestingly, these genetic polymorphisms resulted in no detectable change in viral neutralization properties as demonstrated in a serum neutralization assay. Furthermore, phylogenetic analysis of the nucleotide sequences of the E proteins showed that viruses evolved into two distinct genotypes, termed as DTMUV.I and DTMUV.II, with II emerging as the dominant genotype. New findings described here shall give insights into the antigenicity and evolution of this new pathogen and provide guidance for further functional studies of the E protein for which no effective vaccine has yet been developed.
Collapse
Affiliation(s)
- Kexiang Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhi-Zhang Sheng
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, United States of America
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiuli Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yufeng Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaoyuan Yuan
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhuoming Qin
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dan Wang
- Department of Health and Nutrition Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| | - Suvobrata Chakravarty
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, United States of America
| | - Feng Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, United States of America
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, United States of America
- * E-mail: (FL); (MS); (HS)
| | - Minxun Song
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, China
- * E-mail: (FL); (MS); (HS)
| | - Huaichang Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- * E-mail: (FL); (MS); (HS)
| |
Collapse
|
18
|
Duck egg drop syndrome virus: an emerging Tembusu-related flavivirus in China. SCIENCE CHINA-LIFE SCIENCES 2013; 56:701-10. [PMID: 23917842 DOI: 10.1007/s11427-013-4515-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/15/2013] [Indexed: 12/16/2022]
Abstract
Duck egg drop syndrome virus (DEDSV) is a newly emerging pathogenic flavivirus isolated from ducks in China. DEDSV infection mainly results in severe egg drop syndrome in domestic poultry, which leads to huge economic losses. Thus, the discovery of ways and means to combat DEDSV is urgent. Since 2010, a remarkable amount of progress concerning DEDSV research has been achieved. Here, we review current knowledge on the epidemiology, symptomatology, and pathology of DEDSV. A detailed dissection of the viral genome and polyprotein sequences, comparative analysis of viral antigenicity and the corresponding potential immunity against the virus are also summarized. Current findings indicate that DEDSV should be a distinct species from Tembusu virus. Moreover, the adaption of DEDSV in wildlife and its high homology to pathogenic flaviviruses (e.g., West Nile virus, Japanese encephalitis virus, and dengue virus), illustrate its reemergence and potential to become a zoonotic pathogen that should not be overlooked. Detailed insight into the antigenicity and corresponding immunity against the virus is of clear significance for the development of vaccines and antiviral drugs specific for DEDSV.
Collapse
|
19
|
Hayasaka D, Aoki K, Morita K. Development of simple and rapid assay to detect viral RNA of tick-borne encephalitis virus by reverse transcription-loop-mediated isothermal amplification. Virol J 2013; 10:68. [PMID: 23452322 PMCID: PMC3599137 DOI: 10.1186/1743-422x-10-68] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/01/2013] [Indexed: 12/30/2022] Open
Abstract
Background Tick-borne encephalitis virus (TBEV) is a causative agent of acute central nervous system disease in humans. It has three subtypes, far eastern (FE), Siberian (Sib) and European (Eu) subtypes, which are distributed over a wide area of Europe and Asia. The objective of this study was to develop a simple and rapid assay for the detection of TBEV RNA by using reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) method that can differentiate the three subtypes of TBEV and can be used for clinical diagnosis and epidemiological study. Methods Primers for TBEV-specific and subtype-specific RT-LAMP assay were designed to target the consensus sequence in NS1 of all subtypes and the consensus sequence in the E gene of each subtype, respectiveluy. In vitro transcribed RNA of Oshima strain that belongs to FE subtype was serially diluted and used to examine the sensitivity of the assay. Cross-reactivity of subtype-specific RT-LAMP assay was tested by using the RNA of Oshima and Sofjin (FE), IR-99 (Sib) and Hochosterwitz (Eu) strains. RNA extracted from the mixtures of TBEV and ticks, and of TBEV and human blood, and the mouse tissues infected with TBEV, were evaluated in the assay. Positive amplification was observed by real-time monitoring of turbidity and by visual detection of color change. Results The sensitivity of TBEV-specific RT-LAMP assay was 102 copies of target RNA per reaction volume. FE-specific RT-LAMP assay amplified viral genes of Oshima and Sofjin strains but not of IR-99 and Hochosterwitz strains, and of Japanese encephalitis virus. RT-LAMP assay for Sib and for Eu specifically amplified viral genes of IR-99 and Hochosterwitz strains, respectively. We also showed that tick or human blood extract did not inhibit the amplification of viral gene during the assay. Furthermore, we confirmed that the TBEV RT-LAMP could detect virus RNA from peripheral and central nervous system tissues of laboratory mice infected with TBEV. Conclusion TBEV RT-LAMP assay offers a sensitive, specific, rapid and easy-to-handle method for the detection of TBEV RNA in tick samples and this may be applied in the clinical samples collected from TBE-suspected patients.
Collapse
Affiliation(s)
- Daisuke Hayasaka
- Department of Virology, Institute of Tropical Medicine, Global COE Program, Leading Graduate School Program, Nagasaki University, Nagasaki, Japan.
| | | | | |
Collapse
|
20
|
Li X, Li G, Teng Q, Yu L, Wu X, Li Z. Development of a blocking ELISA for detection of serum neutralizing antibodies against newly emerged duck Tembusu virus. PLoS One 2012; 7:e53026. [PMID: 23300851 PMCID: PMC3534074 DOI: 10.1371/journal.pone.0053026] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022] Open
Abstract
Background Since April 2010, domesticated ducks in China have been suffering from an emerging infectious disease characterized by retarded growth, high fever, loss of appetite, decline in egg production, and death. The causative agent was identified as a duck Tembusu virus (DTMUV), a member of the Ntaya virus (NTAV) group within the genus Flavivirus, family Flaviviridae. DTMUV is highly contagious and spreads rapidly in many species of ducks. More than 10 million shelducks have been infected and approximately 1 million died in 2010. The disease remains a constant threat to the duck industry; however, it is not known whether DTMUV can infect humans or other mammalians, despite the fact that the virus has spread widely in southeast China, one of the most densely populated areas in the world. The lack of reliable methods to detect the serum antibodies against DTMUV has limited our ability to conduct epidemiological investigations in various natural hosts and to evaluate the efficiency of vaccines to DTMUV. Methodology/Principal Findings A neutralizing monoclonal antibody (mAb) 1F5 binding specifically to the E protein was developed. Based on the mAb, a blocking enzyme-linked immunosorbent assay (ELISA) was developed for the detection of neutralizing antibodies against DTMUV. The average value of percent inhibition (PI) of 350 duck serum samples obtained from DTMUV-free farms was 1.0% ±5.8% (mean ± SD). The selected cut-off PI values for negative and positive sera were 12.6% (mean +2SD) and 18.4% (mean +3SD), respectively. When compared with a serum neutralizing antibody test (SNT) using chicken embryonated eggs, the rate of coincidence was 70.6% between the blocking ELISA and SNT, based on the titration of 20 duck DTMUV-positive serum samples. Conclusions/Significance The blocking ELISA based on a neutralizing mAb allowed rapid, sensitive, and specific detection of neutralization-related antibodies against DTMUV.
Collapse
Affiliation(s)
- Xuesong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Qiaoyang Teng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Lei Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Xiaogang Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
21
|
Development of RT-LAMP and real-time RT-PCR assays for the rapid detection of the new duck Tembusu-like BYD virus. Arch Virol 2012; 157:2273-80. [PMID: 22865206 DOI: 10.1007/s00705-012-1431-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/19/2012] [Indexed: 01/08/2023]
Abstract
A new duck Tembusu virus (TMUV), also known as BYD virus, has been identified as the causative agent for the emerging duck egg-drop syndrome in mainland China. The rapid spread and wide distribution of the new TMUV in mainland China result in heavy loss to the poultry industry and pose great threats to public health. Rapid and sensitive detection methods are critical for prevention and control of TMUV infections. In this study, a reverse-transcription loop-mediated isothermal amplification assay (RT-LAMP) and an SYBR Green-I-based real-time RT-PCR assay specific for the duck TMUV were developed and validated with laboratory and field samples, respectively. The detection limits were 1 × 10(-4) and 1 × 10(-3) PFU per reaction for the RT-LAMP assay and real-time RT-PCR assay, respectively. The specificities were analyzed with other related members of the genus Flavivirus, and no cross-reaction was observed. Furthermore, both assays were evaluated with field samples, and they exhibited high sensitivity and specificity. In addition, the real-time RT-PCR assay worked well in viral load analysis, which revealed that the spleen may be the primary target for the replication of new duck TMUV in ducks. The TMUV-specific RT-LAMP and real-time RT-PCR assays will provide useful tools for the diagnosis and epidemiological surveillance of TMUV infection.
Collapse
|