1
|
Wang D, Fu B, Wei H. Advances in Immunotherapy for Hepatitis B. Pathogens 2022; 11:1116. [PMID: 36297173 PMCID: PMC9612046 DOI: 10.3390/pathogens11101116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus with the potential to cause chronic infection, and it is one of the common causes of liver disease worldwide. Chronic HBV infection leads to liver cirrhosis and, ultimately, hepatocellular carcinoma (HCC). The persistence of covalently closed circular DNA (cccDNA) and the impaired immune response in patients with chronic hepatitis B (CHB) has been studied over the past few decades. Despite advances in the etiology of HBV and the development of potent virus-suppressing regimens, a cure for HBV has not been found. Both the innate and adaptive branches of immunity contribute to viral eradication. However, immune exhaustion and evasion have been demonstrated during CHB infection, although our understanding of the mechanism is still evolving. Recently, the successful use of an antiviral drug for hepatitis C has greatly encouraged the search for a cure for hepatitis B, which likely requires an approach focused on improving the antiviral immune response. In this review, we discuss our current knowledge of the immunopathogenic mechanisms and immunobiology of HBV infection. In addition, we touch upon why the existing therapeutic approaches may not achieve the goal of a functional cure. We also propose how combinations of new drugs, and especially novel immunotherapies, contribute to HBV clearance.
Collapse
Affiliation(s)
- Dongyao Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei 230001, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, China
| | - Binqing Fu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China
| | - Haiming Wei
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
2
|
Suresh M, Li B, Murreddu MG, Gudima SO, Menne S. Involvement of Innate Immune Receptors in the Resolution of Acute Hepatitis B in Woodchucks. Front Immunol 2021; 12:713420. [PMID: 34367179 PMCID: PMC8340647 DOI: 10.3389/fimmu.2021.713420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
The antiviral property of small agonist compounds activating pattern recognition receptors (PRRs), including toll-like and RIG-I receptors, have been preclinically evaluated and are currently tested in clinical trials against chronic hepatitis B (CHB). The involvement of other PRRs in modulating hepatitis B virus infection is less known. Thus, woodchucks with resolving acute hepatitis B (AHB) after infection with woodchuck hepatitis virus (WHV) were characterized as animals with normal or delayed resolution based on their kinetics of viremia and antigenemia, and the presence and expression of various PRRs were determined in both outcomes. While PRR expression was unchanged immediately after infection, most receptors were strongly upregulated during resolution in liver but not in blood. Besides well-known PRRs, including TLR7/8/9 and RIG-I, other less-characterized receptors, such as IFI16, ZBP1/DAI, AIM2, and NLRP3, displayed comparable or even higher expression. Compared to normal resolution, a 3-4-week lag in peak receptor expression and WHV-specific B- and T-cell responses were noted during delayed resolution. This suggested that PRR upregulation in woodchuck liver occurs when the mounting WHV replication reaches a certain level, and that multiple receptors are involved in the subsequent induction of antiviral immune responses. Liver enzyme elevations occurred early during normal resolution, indicating a faster induction of cytolytic mechanisms than in delayed resolution, and correlated with an increased expression of NK-cell and CD8 markers and cytolytic effector molecules. The peak liver enzyme level, however, was lower during delayed resolution, but hepatic inflammation was more pronounced and associated with a higher expression of cytolytic markers. Further comparison of PRR expression revealed that most receptors were significantly reduced in woodchucks with established and progressing CHB, and several RNA sensors more so than DNA sensors. This correlated with a lower expression of receptor adaptor and effector molecules, suggesting that persistent, high-level WHV replication interferes with PRR activation and is associated with a diminished antiviral immunity based on the reduced expression of immune cell markers, and absent WHV-specific B- and T-cell responses. Overall, the differential expression of PRRs during resolution and persistence of WHV infection emphasizes their importance in the ultimate viral control during AHB that is impaired during CHB.
Collapse
Affiliation(s)
- Manasa Suresh
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Bin Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Marta G. Murreddu
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Severin O. Gudima
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Stephan Menne
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
3
|
Abstract
The article presents some introductory remarks on viruses and in general how they lead to
diseases. With reference to same, it discusses the emergence of a fairly novel coronavirus, 2019-
CoV-2 and its possible medication.
Collapse
Affiliation(s)
- Satya P. Gupta
- Meerut Institute of Engineering and Technology, Meerut, India
| |
Collapse
|
4
|
Gill US, Battisti A, Kennedy PTF. Emerging tools in the changing landscape of chronic hepatitis B management. Expert Rev Anti Infect Ther 2019; 17:943-955. [PMID: 31738607 DOI: 10.1080/14787210.2019.1694906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: The availability of a preventative vaccine, interferon, and nucleos(t)ide analogs have provided progress in the control of chronic hepatitis B (CHB). Despite this, it remains a major contributor to global morbidity and mortality. Developments in our understanding of the pathogenesis of CHB and the emergence of new therapies are paving the way, as we move toward HBV cure.Areas covered: We performed bibliographical searches of online databases to review the literature regarding conventional disease phases of CHB. We provide the latest evidence challenging the perception of the natural history of CHB, noting that previously considered quiescent disease phases may not represent benign disease states devoid of progression. We explore the use of potential novel immunological and viral tools which should enhance disease stratification and management decisions in the coming years. Finally, we discuss the timing of treatment and how this could be initiated earlier to improve treatment outcomes, preventing sequelae of chronic infection.Expert opinion: The treatment paradigm in CHB is set to change with multiple novel agents in early phase clinical trials with the aim of a functional cure. An improved understanding of disease pathogenesis and the timing of treatment will be critical to the success of new therapies.
Collapse
Affiliation(s)
- Upkar S Gill
- Barts Liver Centre, Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Arianna Battisti
- Barts Liver Centre, Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Patrick T F Kennedy
- Barts Liver Centre, Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
5
|
Gu Y, Chen L, Lian Y, Gu L, Chen Y, Bi Y, Huang Z, Huang Y, Hu B, Huang Y. Serum HBV pregenomic RNA is correlated with Th1/Th2 immunity in treatment-naïve chronic hepatitis B patients. J Med Virol 2019; 92:317-328. [PMID: 31642539 PMCID: PMC7004183 DOI: 10.1002/jmv.25612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Hepatitis B virus (HBV) load and antigens are related to the innate and adaptive immunity of chronic hepatitis B (CHB) patients. As a new HBV biomarker, the role of pregenomic RNA (pgRNA) in host immunity is not known. This study aimed to identify the relationship between serum HBV pgRNA and host immunity in CHB patients. METHODS Two hundred twenty-five treatment-naïve CHB patients were enrolled. Serum cytokines were measured by cytokine antibody array (Luminex multiplex platform). Th1 (T-helper cell, Th) and Th2 cells were tested by flow cytometry. Serum HBV pgRNA was detected by a reverse transcription-polymerase chain reaction. RESULTS Serum HBV pgRNA was significantly different among patients in different disease phases and significantly associated with both HBV antigens and antibodies. Serum HBV pgRNA was positively correlated with the HBsAg level (P < .001) and the presence of HBeAg (P < .001). Patients with higher HBcAb levels showed lower serum HBV pgRNA levels (P = .003). Notably, HBsAb positivity was associated with higher levels of serum HBV pgRNA in HBeAg(-) patients (P = .049). Serum HBV pgRNA was positively associated with ALT level, Th2 cell frequency, and related cytokine sCD30 (P < .001, P < .001, and P = .003, respectively), but negatively associated with Th1-related cytokine interleukin (IL)-12P70 and cytotoxic lymphocytes (CTLs) (P = .017 and P < .001, respectively). CONCLUSION Our study confirmed the relationship between serum HBV pgRNA and host immunity. The results demonstrated that serum HBV pgRNA is positively correlated with Th2 immunity but negatively correlated with Th1 immunity, indicating that it might have a relationship with HBV antigen conversion and CTL immunodeficiency in CHB patients.
Collapse
Affiliation(s)
- Yurong Gu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lubiao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yifan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Gu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaqiong Chen
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanhua Bi
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zexuan Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanlin Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Hu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuehua Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Gu Y, Lian Y, Gu L, Chen L, Li X, Zhou L, Huang Y, Wang J, Huang Y. Correlations between cytokines produced by T cells and clinical-virological characteristics in untreated chronic hepatitis B patients. BMC Infect Dis 2019; 19:216. [PMID: 30832595 PMCID: PMC6398217 DOI: 10.1186/s12879-019-3853-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Background Hepatitis B virus (HBV) replicates non-cytopathically in the hepatocytes and HBV-related diseases are caused by immune-mediated inflammatory events. This study aimed to identify the relationship between clinical-virological characteristics and immunity in untreated chronic hepatitis B (CHB) patients. Methods A total of 209 CHB patients were categorized into immune tolerant (IT, n = 17), inactive carrier (IC, n = 20), immune active (IA, n = 120), and gray zone (GZ, n = 72) phases. The quantitative hepatitis B surface antigen (qHBsAg), hepatitis B e antigen (HBeAg), anti-HBeAg (HBeAb), HBV genotype, viral mutant and frequencies of interleukin (IL)-4, IL-17, IL-10 and interferon-gamma (IFN-γ) produced by CD4+ and CD8+ T cells were tested. We also correlated these cytokines with clinical-virological characteristics using a linear regression model. Results CD8+ T cells frequency were significantly decreased in IT patients. Levels of CD4+ T cells IL-4+ or IL-10+ were strongly negatively associated with qHBsAg titers. The frequency of IFN-γ produced by CD4+ and CD8+ T cells showed significant positive association with age and alanine aminotransferase (ALT) level, while that had negative association with qHBsAg titers. Additionally, the ratios of mutations in the HBV precore (PC) stop codon and basal core promoter (BCP) and the combined mutations were 32.5, 27.2, and 11.3%, respectively. The frequency of CD4+ T cells IL-17+ was higher in patients with a PC mutation than that in patients carrying a wild-type sequence. Finally, little associations among T cell derived IL-4, IL-10, IL-17, and IFN-γ was observed in the current untreated CHB cohort. Conclusions Several components of the immune system were correlated with HBV factors that influence an inflammatory process during CHB. Of particular relevance are the significant associations of between CD4+ T cells IL-4+ and qHBsAg level, and between CD4+ T cells IL-17+ and the presence of a mutation in PC.
Collapse
Affiliation(s)
- Yurong Gu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd., Guangzhou, 510630, China
| | - Yifan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Gu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lubiao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd., Guangzhou, 510630, China
| | - Xiaoyan Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd., Guangzhou, 510630, China
| | - Liang Zhou
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd., Guangzhou, 510630, China
| | - Yanlin Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd., Guangzhou, 510630, China
| | - Jialiang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuehua Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tian He Rd., Guangzhou, 510630, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
|
8
|
Tout I, Gomes M, Ainouze M, Marotel M, Pecoul T, Durantel D, Vaccarella S, Dubois B, Loustaud-Ratti V, Walzer T, Alain S, Chemin I, Hasan U. Hepatitis B Virus Blocks the CRE/CREB Complex and Prevents TLR9 Transcription and Function in Human B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2331-2344. [PMID: 30185518 DOI: 10.4049/jimmunol.1701726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/07/2018] [Indexed: 09/13/2023]
Abstract
Effective B cell responses such as cytokine secretion, proliferation, and Ab-specific responses are essential to clear hepatitis B virus (HBV) infection. However, HBV alters numerous immune pathways to persist in the host. B cell activity depends on activation of the innate sensor TLR9 by viral or bacterial DNA motifs. How HBV can deregulate B cell functions remains unknown. In this study, we show that HBV can enter and decrease TLR9 expression in human primary B cells. Using PBMCs from human blood donors, we show that TLR9 expression was reduced in all peripheral B cells subsets exposed to HBV. B cell function mediated by TLR9, but not TLR7, such as proliferation and proinflammatory cytokines secretion, were abrogated in the presence of HBV; however, global Ig secretion was not downregulated. Mechanistically, we show, using human myeloma B cell line RPMI 8226, that the surface Ag hepatitis B surface Ag was responsible for TLR9 dysfunction. hepatitis B surface Ag suppressed the phosphorylation and thus the activation of the transcription factor CREB, preventing TLR9 promoter activity. Finally, we corroborated our in vitro findings in a cohort of chronic HBV carriers and found that TLR9 expression and function were significantly suppressed. The effect of HBV on TLR9 activity in B cells gives insights into oncoviral immune escape strategies, providing knowledge to develop novel immunotherapeutic approaches in chronic HBV-carrier patients.
Collapse
Affiliation(s)
- Issam Tout
- Centre International de Recherche en Infectiologie, INSERM, U1111, 69007 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Lyon, France
- CNRS, UMR5308, 69100 Lyon, France
- École Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
- Hospices Civils de Lyon, 69495 Lyon, France
| | - Melissa Gomes
- Centre Hospitalier Universitaire Dupuytren, 87042 Limoges, France
| | - Michelle Ainouze
- Centre International de Recherche en Infectiologie, INSERM, U1111, 69007 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Lyon, France
- CNRS, UMR5308, 69100 Lyon, France
- École Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
- Hospices Civils de Lyon, 69495 Lyon, France
| | - Marie Marotel
- Centre International de Recherche en Infectiologie, INSERM, U1111, 69007 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Lyon, France
- CNRS, UMR5308, 69100 Lyon, France
- École Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
- Hospices Civils de Lyon, 69495 Lyon, France
| | - Timothee Pecoul
- Centre International de Recherche en Infectiologie, INSERM, U1111, 69007 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Lyon, France
- CNRS, UMR5308, 69100 Lyon, France
- École Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
- Hospices Civils de Lyon, 69495 Lyon, France
| | - David Durantel
- Cancer Research Center of Lyon, INSERM U1052-CNRS UMR5286, 69373 Lyon, France; and
| | | | - Bertrand Dubois
- Cancer Research Center of Lyon, INSERM U1052-CNRS UMR5286, 69373 Lyon, France; and
| | | | - Thierry Walzer
- Centre International de Recherche en Infectiologie, INSERM, U1111, 69007 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Lyon, France
- CNRS, UMR5308, 69100 Lyon, France
- École Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
- Hospices Civils de Lyon, 69495 Lyon, France
| | - Sophie Alain
- Centre Hospitalier Universitaire Dupuytren, 87042 Limoges, France
| | - Isabelle Chemin
- Cancer Research Center of Lyon, INSERM U1052-CNRS UMR5286, 69373 Lyon, France; and
| | - Uzma Hasan
- Centre International de Recherche en Infectiologie, INSERM, U1111, 69007 Lyon, France;
- Université Claude Bernard Lyon 1, 69100 Lyon, France
- CNRS, UMR5308, 69100 Lyon, France
- École Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
- Hospices Civils de Lyon, 69495 Lyon, France
| |
Collapse
|
9
|
Wong D, Littlejohn M, Edwards R, Jackson K, Revill P, Gaggar A, Kitrinos K, Subramanian M, Marcellin P, Buti-Ferret M, Janssen H, Gane E, Locarnini S, Thompson A. ALT flares during nucleotide analogue therapy are associated with HBsAg loss in genotype A HBeAg-positive chronic hepatitis B. Liver Int 2018; 38:1760-1769. [PMID: 29427368 DOI: 10.1111/liv.13716] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alanine aminotransferase (ALT) flares during NA therapy are uncommon but occur. Evaluation of ALT flares during nucleos(t)ide analogue (NA) therapy is important as new immunomodulatory therapies for hepatitis B virus (HBV) are developed. We evaluated the association between ALT flares and HBsAg loss during long-term therapy for genotype A CHB. METHODS This analysis included genotype A subjects from a phase III study of tenofovir vs adefovir in HBeAg-positive HBV. ALT flare was defined as (i) a rise in ALT >2x ULN from normal ALT levels; or (ii) a rise in ALT >2x baseline ALT level. HBsAg response at week 384 was recorded as one of HBsAg loss vs HBsAg decline (≥1 log10 IU/mL decline) vs non-response. The primary analysis evaluated the association between ALT flare and HBsAg response. RESULTS 54 subjects were included. 23/54 (43%) subjects experienced an on-treatment ALT flare. 45% achieved an HBsAg reduction ≥1 log10 IU/mL, and of these 67% achieved HBsAg loss at a median of 102 weeks [IQR: 64-156]. Flare was associated with HBsAg decline vs non-response (67% vs 23%, P = .002), and were more common in subjects who achieved HBsAg loss vs non-response (56% vs 23%), P = .049). There was a median delay of 56 weeks [IQR: 40-80] between a flare and HBsAg loss. CONCLUSION In genotype A subjects undergoing long-term NA therapy, ALT flares predict for HBsAg response. The delay between ALT flare and HBsAg loss has implications for clinical trial design for early phase development of immunomodulatory strategies aiming for HBsAg loss.
Collapse
Affiliation(s)
- Darren Wong
- Division of Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute Melbourne, Royal Melbourne Hospital, Melbourne, Vic., Australia.,Department of Gastroenterology, St. Vincent's Hospital, Fitzroy, Vic., Australia
| | - Margaret Littlejohn
- Division of Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute Melbourne, Royal Melbourne Hospital, Melbourne, Vic., Australia
| | - Rosalind Edwards
- Division of Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute Melbourne, Royal Melbourne Hospital, Melbourne, Vic., Australia
| | - Kathy Jackson
- Division of Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute Melbourne, Royal Melbourne Hospital, Melbourne, Vic., Australia
| | - Peter Revill
- Division of Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute Melbourne, Royal Melbourne Hospital, Melbourne, Vic., Australia
| | | | | | | | | | - Maria Buti-Ferret
- Liver Unit, Vall d'Hebron (Ciberehd) University Hospital, Barcelona, Spain
| | - Harry Janssen
- Toronto Center for Liver Diseases, Toronto Western and General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Ed Gane
- New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand
| | - Stephen Locarnini
- Division of Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute Melbourne, Royal Melbourne Hospital, Melbourne, Vic., Australia
| | - Alexander Thompson
- Department of Gastroenterology, St. Vincent's Hospital, Fitzroy, Vic., Australia
| |
Collapse
|
10
|
Tolerance and immunity to pathogens in early life: insights from HBV infection. Semin Immunopathol 2017; 39:643-652. [PMID: 28685270 PMCID: PMC5711997 DOI: 10.1007/s00281-017-0641-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
Abstract
Immunity is not static but varies with age. The immune system of a newborn infant is not "defective" or "immature." Rather, there are distinct features of innate and adaptive immunity from fetal life to adulthood, which may alter the susceptibility of newborn infants to infections compared to adults. Increased protection to certain infectious diseases during early life may benefit from a dampened immune response as a result of decreased immune pathology. This concept may offer an alternative interpretation of the different pathological manifestations clinically observed in hepatitis B virus (HBV)-infected patients during the natural history of infection. Herein, we review the immune pathological features of HBV infection from early life to adulthood and challenge the concept of a generic immune tolerant state in young people. We then discuss how the different clinical and virological manifestations during HBV infection may be related to the differential antiviral immunity and pro-inflammatory capacity generated at different ages. Lastly, we address the potential to consider earlier therapeutic intervention in HBV-infected young patients to achieve effective immune control leading to better outcomes.
Collapse
|
11
|
Hepatitis B core antigen upregulates B7-H1 on dendritic cells by activating the AKT/ERK/P38 pathway: a possible mechanism of hepatitis B virus persistence. J Transl Med 2016; 96:1156-1164. [PMID: 27617403 DOI: 10.1038/labinvest.2016.96] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/12/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023] Open
Abstract
B7-H1 binding to programmed death-1 may deliver a coinhibitory signal to T cells that is involved in the regulation of T-cell activation and tolerance. B7-H1 plays a key role in dysfunction of dendritic cells (DCs) during chronic HBV infection, but the expression mechanism of B7-H1 remains unclear. One hundred and twenty-nine patients with chronic HBV infection were categorized into either the immune tolerance phase (HBV-IT), the immune clearance phase (HBV-IC), or the inactive carrier phase (HBV-IA). Twenty healthy volunteers were enrolled as controls. Another 16 patients with HBeAg-positive chronic Hepatitis B were enrolled, and entecavir was administrated at 0.5 mg per day for 6 months. The B7-H1 expression level on peripheral DCs was tested by flow cytometry. In vitro, expression levels of B7-H1 and signaling molecules on monocyte-derived DC (MO-DC) induced by recombinant hepatitis B virus C antigen (rhHBcAg) were examined by RT-PCR, flow cytometry, and western blotting, and the apoptosis rate was tested by flow cytometry. The percentages of peripheral DCs and myeloid DCs (mDCs) were decreased and B7-H1 levels were increased in patients compared with controls. Serum HBV-DNA levels were positively correlated with B7-H1 levels on mDCs in patients with HBV-IT. B7-H1 levels on peripheral DCs from patients with chronic hepatitis B decreased after antiviral therapy. In vitro studies demonstrated that the B7-H1 level on MO-DC was upregulated by rhHBcAg, which resulted from the activation of PI3K-AKT, ERK, and P38 signaling pathways, and the percentage of MO-DC was downregulated by rhHBcAg. In addition, rhHBcAg promoted the apoptosis of MO-DC. The data suggest that HBcAg induced B7-H1 upregulation by activating AKT, ERK, and P38 signaling pathways, which inhibited the clearance of HBV-DNA and the reduction of DCs contributed to immune tolerance, which may correlate with apoptosis.
Collapse
|
12
|
Shi Y, Wang J, Wang Y, Wang A, Guo H, Wei F, Mehta SR, Espitia S, Smith DM, Liu L, Zhang Y, Chen D. A novel mutant 10Ala/Arg together with mutant 144Ser/Arg of hepatitis B virus X protein involved in hepatitis B virus-related hepatocarcinogenesis in HepG2 cell lines. Cancer Lett 2015; 371:285-91. [PMID: 26706415 DOI: 10.1016/j.canlet.2015.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/05/2015] [Accepted: 12/07/2015] [Indexed: 12/26/2022]
Abstract
Hepatitis B virus (HBV) infection-related hepatocellular carcinoma (HCC) represents a major health problem worldwide. HBV X (HBx) protein is the most common open reading frame that may undergo mutations, resulting in the development of HCC. This study aimed to determine specific HBx mutations that differentiate the central- and para-tumor tissues, and identify their association with HCC development. HBx gene from HCC tumor and para-tumor tissues of 47 HCC patients was amplified, sequenced and statistically analyzed. A novel combination of 2 mutations at residues 10 and 144 was identified which might play a significant role in HCC development. Expression vectors carrying HBx with the specific mutations were constructed and transfected into HepG2 and p53-null HepG2 cells. Compared to wild type (WT) and single mutation of HBx at residue 10 or 144, the 10/144 double mutations strongly up-regulated p21 expression and prolonged G1/S transition in WT- and p53-null HepG2 cells. Apoptosis was also inhibited by HBx harboring 10/44 double-mutation. Binding of 10/144 double-mutant HBx to p53 was lower than WT HBx. Conclusively, the 10/144 double mutation of HBx might play a crucial role in HCC formation.
Collapse
Affiliation(s)
- Ying Shi
- Capital Medical University Affiliated Beijing Youan Hospital, Beijing Institute of Hepatology, Beijing 100054, China
| | - Junwei Wang
- Capital Medical University Affiliated Beijing Youan Hospital, Beijing Institute of Hepatology, Beijing 100054, China; Shandong Cancer Hospital and Institute, Jinan, China
| | - Yuhe Wang
- Department of General Surgery, Changping District Hospital, Beijing 102200, China
| | - Anna Wang
- Capital Medical University Affiliated Beijing Youan Hospital, Beijing Institute of Hepatology, Beijing 100054, China
| | - Hongliang Guo
- Shandong Cancer Hospital and Institute, Jinan, China
| | - Feili Wei
- Capital Medical University Affiliated Beijing Youan Hospital, Beijing Institute of Hepatology, Beijing 100054, China
| | - Sanjay R Mehta
- Department of General Surgery, Changping District Hospital, Beijing 102200, China
| | - Stephen Espitia
- San Diego Veterans Affairs Medical Center, La Jolla, CA, USA; Division of Infectious Diseases, University of California, San Diego, CA, USA
| | - Davey M Smith
- San Diego Veterans Affairs Medical Center, La Jolla, CA, USA; Division of Infectious Diseases, University of California, San Diego, CA, USA
| | - Longgen Liu
- Department of Infectious Diseases, The Third Hospital of Changzhou, Changzhou Institute of Hepatology, Changzhou City 213001, Jiangsu Province, China.
| | - Yulin Zhang
- Capital Medical University Affiliated Beijing Youan Hospital, Beijing Institute of Hepatology, Beijing 100054, China; Department of Infectious Diseases, The Third Hospital of Changzhou, Changzhou Institute of Hepatology, Changzhou City 213001, Jiangsu Province, China.
| | - Dexi Chen
- Capital Medical University Affiliated Beijing Youan Hospital, Beijing Institute of Hepatology, Beijing 100054, China.
| |
Collapse
|
13
|
Giersch K, Dandri M. Hepatitis B and Delta Virus: Advances on Studies about Interactions between the Two Viruses and the Infected Hepatocyte. J Clin Transl Hepatol 2015; 3:220-9. [PMID: 26623269 PMCID: PMC4663204 DOI: 10.14218/jcth.2015.00018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/11/2015] [Accepted: 07/12/2015] [Indexed: 12/14/2022] Open
Abstract
The mechanisms determining persistence of hepatitis B virus (HBV) infection and long-term pathogenesis of HBV-associated liver disease appear to be multifactorial. Although viral replication can be efficiently suppressed by the antiviral treatments currently available, viral clearance is generally not achieved since HBV has developed unique replication strategies, enabling persistence of its genome within the infected hepatocytes. Moreover, no direct antiviral therapy exists for the more than 15 million people worldwide that are also coinfected with the hepatitis delta virus (HDV), a defective virus that needs the HBV envelope proteins for propagation. The limited availability of robust HBV and HDV infection systems has hindered the understanding of the complex network of virus-virus and virus-host interactions that are established in the course of infection and slowed down progress in drug development. Since chronic HBV/HDV coinfection leads to the most severe form of chronic viral hepatitis, elucidation of the molecular mechanisms regulating virus-host interplay and pathogenesis are urgently needed. This article summarizes the current knowledge regarding the interactions among HBV, HDV, and the infected target cell and discusses the dependence of HDV on HBV activity and possible future therapeutic approaches.
Collapse
Affiliation(s)
- Katja Giersch
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel site, Germany
- Correspondence to: Maura Dandri, Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany. Tel: +49-40741052949, Fax: +49-40741057232, E-mail:
| |
Collapse
|
14
|
Said ZNA, Abdelwahab KS. Induced immunity against hepatitis B virus. World J Hepatol 2015; 7:1660-1670. [PMID: 26140085 PMCID: PMC4483547 DOI: 10.4254/wjh.v7.i12.1660] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/15/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023] Open
Abstract
Prevention of hepatitis B virus (HBV) infection with its consequent development of HBV chronic liver disease and hepatocellular carcinoma is a global mandatory goal. Fortunately, safe and effective HBV vaccines are currently available. Universal hepatitis B surface antigen HBV vaccination coverage is almost done. Growing knowledge based upon monitoring and surveillance of HBV vaccination programs has accumulated and the policy of booster vaccination has been evaluated. This review article provides an overview of the natural history of HBV infection, immune responses and the future of HBV infection. It also summarizes the updated sources, types and uses of HBV vaccines, whether in the preclinical phase or in the post-field vaccination.
Collapse
|
15
|
Block TM, Rawat S, Brosgart CL. Chronic hepatitis B: A wave of new therapies on the horizon. Antiviral Res 2015; 121:69-81. [PMID: 26112647 DOI: 10.1016/j.antiviral.2015.06.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/21/2015] [Indexed: 02/07/2023]
Abstract
This year marks the 50th anniversary of the discovery of the Australia antigen (Blumberg et al., 1965), which in 1967 was identified to be the hepatitis B virus (HBV) surface antigen. Even though several antiviral medications have been in use for the management of chronic HBV infection for more than 20years, sustained clearance of HBsAg, similar to the sustained viral response (SVR) or cure in chronic hepatitis C, occurs in only a minority of treated patients. Moreover, even after 10years of effective suppression of HBV viremia with current therapy, there is only a 40-70% reduction in deaths from liver cancer. Recent success in developing antivirals for hepatitis C that are effective across all genotypes has renewed interest in a similar cure for chronic HBV infection. In this article, we review a wave of newly identified drug targets, investigational compounds and experimental strategies that are now under clinical evaluation or in preclinical development. The paper forms part of a symposium in Antiviral Research on "An unfinished story: From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B."
Collapse
Affiliation(s)
- Timothy M Block
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| | - Siddhartha Rawat
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Carol L Brosgart
- University of California, San Francisco, School of Medicine, Departments of Medicine, Epidemiology and Biostatistics, USA
| |
Collapse
|
16
|
Koh S, Bertoletti A. Circumventing failed antiviral immunity in chronic hepatitis B virus infection: triggering virus-specific or innate-like T cell response? Med Microbiol Immunol 2014; 204:87-94. [PMID: 25511870 DOI: 10.1007/s00430-014-0377-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023]
Abstract
Therapeutic vaccination for the treatment of chronic hepatitis B has thus far been unsatisfactory. In this review, we discuss potential new therapeutic vaccination strategies and other immunotherapeutic approaches that aim to achieve efficient restoration of HBV immunity in chronically infected patients.
Collapse
Affiliation(s)
- Sarene Koh
- Viral Hepatitis Unit, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,
| | | |
Collapse
|
17
|
The hepatitis B virus (HBV) HBx protein activates AKT to simultaneously regulate HBV replication and hepatocyte survival. J Virol 2014; 89:999-1012. [PMID: 25355887 DOI: 10.1128/jvi.02440-14] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Chronic infection with hepatitis B virus (HBV) is a risk factor for developing liver diseases such as hepatocellular carcinoma (HCC). HBx is a multifunctional protein encoded by the HBV genome; HBx stimulates HBV replication and is thought to play an important role in the development of HBV-associated HCC. HBx can activate the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway in some cell lines; however, whether HBx regulates PI3K/AKT signaling in normal hepatocytes has not been evaluated. In studies described here, we assessed HBx activation of PI3K/AKT signaling in an ex vivo model of cultured primary hepatocytes and determined how this HBx activity affects HBV replication. We report that HBx activates AKT in primary hepatocytes and that the activation of AKT decreases HBV replication and HBV mRNA and core protein levels. We show that the transcription factor hepatocyte nuclear factor 4α (HNF4α) is a target of HBx-regulated AKT, and we link HNF4α to HBx-regulated AKT modulation of HBV transcription and replication. Although we and others have shown that HBx stimulates and is likely required for HBV replication, we now report that HBx also activates signals that can diminish the overall level of HBV replication. While this may seem counterintuitive, we show that an important effect of HBx activation of AKT is inhibition of apoptosis. Consequently, our studies suggest that HBx balances HBV replication and cell survival by stimulating signaling pathways that enhance hepatocyte survival at the expense of higher levels of HBV replication. IMPORTANCE Chronic hepatitis B virus (HBV) infection is a common cause of the development of liver cancer. Regulation of cell signaling pathways by the HBV HBx protein is thought to influence the development of HBV-associated liver cancer. HBx stimulates, and may be essential for, HBV replication. We show that HBx activates AKT in hepatocytes to reduce HBV replication. While this seems contradictory to an essential role of HBx during HBV replication, HBx activation of AKT inhibits hepatocyte apoptosis, and this may facilitate persistent, noncytopathic HBV replication. AKT regulates HBV replication by reducing the activity of the transcription factor hepatocyte nuclear factor 4α (HNF4α). HBx activation of AKT may contribute to the development of liver cancer by facilitating persistent HBV replication, augmenting the dedifferentiation of hepatocytes by inhibiting HNF4α functions, and activating AKT-regulated oncogenic pathways. AKT-regulated factors may provide therapeutic targets for inhibiting HBV replication and the development of HBV-associated liver cancer.
Collapse
|
18
|
Gill US, Kennedy PTF. Chronic hepatitis B virus in young adults: the need for new approaches to management. Expert Rev Anti Infect Ther 2014; 12:1045-53. [PMID: 25052517 DOI: 10.1586/14787210.2014.940899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One in four patients infected with hepatitis B virus (HBV) at birth or in early childhood will develop cirrhosis or hepatocellular carcinoma. Historically, guidelines have overlooked treatment in young people, as the immune tolerant disease phase is considered synonymous with chronic infection in the young. Current treatment aims to suppress HBV replication through long-term nucleos(t)ide therapy with little emphasis on virus eradication. To achieve HBsAg loss, it is accepted that effective immune control of virus is required, mimicking that seen in those who resolve acute HBV infection. We have recently challenged the accuracy of a generic immune tolerant state in young people, thus raising a potential role for earlier treatment. Here we report on our immunological analysis of HBV in young people and the role of a dedicated clinic; we make the case for earlier intervention to achieve effective immune control leading to better outcomes.
Collapse
Affiliation(s)
- Upkar S Gill
- Hepatology Unit, Centre for Digestive Diseases, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | |
Collapse
|
19
|
Rawat S, Clippinger AJ, Bouchard MJ. Modulation of apoptotic signaling by the hepatitis B virus X protein. Viruses 2012; 4:2945-72. [PMID: 23202511 PMCID: PMC3509679 DOI: 10.3390/v4112945] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/23/2012] [Accepted: 10/31/2012] [Indexed: 12/18/2022] Open
Abstract
Worldwide, an estimated 350 million people are chronically infected with the Hepatitis B Virus (HBV); chronic infection with HBV is associated with the development of severe liver diseases including hepatitis and cirrhosis. Individuals who are chronically infected with HBV also have a significantly higher risk of developing hepatocellular carcinoma (HCC) than uninfected individuals. The HBV X protein (HBx) is a key regulatory HBV protein that is important for HBV replication, and likely plays a cofactor role in the development of HCC in chronically HBV-infected individuals. Although some of the functions of HBx that may contribute to the development of HCC have been characterized, many HBx activities, and their putative roles during the development of HBV-associated HCC, remain incompletely understood. HBx is a multifunctional protein that localizes to the cytoplasm, nucleus, and mitochondria of HBV‑infected hepatocytes. HBx regulates numerous cellular signal transduction pathways and transcription factors as well as cell cycle progression and apoptosis. In this review, we will summarize reports in which the impact of HBx expression on cellular apoptotic pathways has been analyzed. Although various effects of HBx on apoptotic pathways have been observed in different model systems, studies of HBx activities in biologically relevant hepatocyte systems have begun to clarify apoptotic effects of HBx and suggest mechanisms that could link HBx modulation of apoptotic pathways to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- Siddhartha Rawat
- Graduate Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| | - Amy J. Clippinger
- Department of Cancer Biology, Abramson Family Cancer Research Institute, School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA;
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
20
|
Yang FQ, Yu YY, Wang GQ, Chen J, Li JH, Li YQ, Rao GR, Mo GY, Luo XR, Chen GM. A pilot randomized controlled trial of dual-plasmid HBV DNA vaccine mediated by in vivo electroporation in chronic hepatitis B patients under lamivudine chemotherapy. J Viral Hepat 2012; 19:581-93. [PMID: 22762143 DOI: 10.1111/j.1365-2893.2012.01589.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A DNA vaccine against the hepatitis B virus (HBV), enhanced by IL-2/IFN-γ fusion protein expression from a plasmid construct and mediated by in vivo electroporation, was evaluated in a total of 39 HBeAg-positive patients with chronic hepatitis B (CHB). The six of 39 patients with a serum alanine aminotransferase (ALT) value of 1-2 times upper limit of normal (ULN) were assigned to the open-label arm (Group01) receiving vaccine monotherapy; the remaining 33 patients with an ALT of more than two times ULN were enroled to the randomized and controlled arm (Group02) receiving lamivudine (LAM) monotherapy (LAM+placebo) or combined therapy (LAM+DNA vaccine) in 1:2 ratio. In Group01, a significant elevation of HBV-specific IFN-γ-secreting T-cell counts in comparison with baseline was observed. In Group02, the proportion of patients with HBV DNA suppression was higher with LAM+DNA vaccine than with LAM monotherapy at each visit time point after the final injection of DNA vaccine at week 36, revealing a significant difference between the two groups (P = 0.03) at week 60. The incidence of dual-site mutations of rtM204/I/S+rtL180M was significantly lower (P = 0.03) with an identified lower virological breakthrough (VBT) rate (P = 0.03) in patients receiving LAM+DNA vaccine than LAM monotherapy, accompanied with a significant higher positive T-cell response rate in patients receiving LAM+DNA vaccine (P = 0.03). In conclusion, this study provides evidence that HBV DNA vaccination is safe and immunologically effective, and that the HBV-specific T-cell responses induced by DNA vaccination under LAM chemotherapy showed a correlation with the suppression of viral replication in patients with CHB.
Collapse
Affiliation(s)
- F-Q Yang
- Liver Disease Research Center, Guangzhou 458 Hospital, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA. Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 2012; 58:215-279. [PMID: 22403078 DOI: 10.1007/978-94-007-3012-0_7] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, 3800, Clayton, Australia
| | | | | | | | | |
Collapse
|
22
|
Gujar SA, Jenkins AKM, Macparland SA, Michalak TI. Pre-acute hepadnaviral infection is associated with activation-induced apoptotic death of lymphocytes in the woodchuck (Marmota monax) model of hepatitis B. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:999-1008. [PMID: 20451550 DOI: 10.1016/j.dci.2010.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 04/30/2010] [Accepted: 05/01/2010] [Indexed: 05/29/2023]
Abstract
Woodchucks (Marmota monax) infected with woodchuck hepatitis virus (WHV) represent a highly valuable immunopathogenic model of hepatitis B virus (HBV) infection. Both WHV and HBV are noncytopathic hepadnaviruses which induce a strong but delayed virus-specific cellular immune response believed to be a cause of hepatitis. The reason behind this postponement is not well understood and its dissection in the woodchuck model has been hampered by the lack of appropriate research tools. In this study, we applied an assay for the simultaneous detection of cell apoptosis and proliferation to determine the fate of T lymphocytes after WHV infection leading to acute hepatitis. The results revealed that pre-acute WHV infection is associated with the significantly heightened susceptibility of T lymphocytes to activation-induced apoptotic death. This suggests that T lymphocyte function is compromised very early in the course of hepadnaviral infection and this may directly contribute to the postponement of virus-specific T cell response.
Collapse
Affiliation(s)
- Shashi A Gujar
- Molecular Virology and Hepatology Research Group, Division of BioMedical Science, Faculty of Medicine, Health Sciences Center, Memorial University, St. John's, Newfoundland, Canada
| | | | | | | |
Collapse
|
23
|
Abstract
Among current treatment options for chronic hepatitis B, nucleoside/nucleotide analog therapy has better tolerability and most patients respond to the therapy, while interferon (IFN) therapy has rather severe side-effects and a lower response rate. However, nucleoside/nucleotide analog therapies have problems of the emergence of drug resistance and poor sustainability of response after discontinuation. After the first nucleoside/nucleotide analog lamivudine, adefovir and entecavir are now utilized in many countries. Adefovir has efficacy for lamivudine resistant patients and current data suggests that adding adefovir to ongoing lamivudine is better than switching to adefovir in terms of viral suppression and the occurrence of resistance. Entecavir can be the first choice for naïve patients, although cross-resistance has been known for lamivudine resistant patients and mutational screening should take place before using entecavir with such patients. Many other new nucleoside/nucleotide analogs are being developed such as telbivudine, clevudine and tenofovir; the details of each drug will be disclosed in near future.
Collapse
Affiliation(s)
- Mari Inada
- Department of Medicine and Clinical Oncology, Postgraduate School of Medicine, Chiba University, Chiba, Japan
| | | |
Collapse
|