1
|
Jeepipalli S, Gurusamy P, Luz Martins AR, Colella E, Nadakuditi SR, Desaraju T, Yada A, Onime J, William J, Bhattacharyya I, Chan EKL, Kesavalu L. Altered microRNA Expression Correlates with Reduced TLR2/4-Dependent Periodontal Inflammation and Bone Resorption Induced by Polymicrobial Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632435. [PMID: 39829929 PMCID: PMC11741372 DOI: 10.1101/2025.01.10.632435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Periodontitis (PD) is a polymicrobial dysbiotic immuno-inflammatory disease. Toll-like receptors (TLRs) are present on gingival epithelial cells and recognize pathogen-associated molecular patterns (PAMPs) on pathogenic bacteria, induce the secretion of proinflammatory cytokines, and initiate innate and adaptive antigen-specific immune responses to eradicate the invading microbes. Since PD is a chronic inflammatory disease, TLR2/TLR4 plays a vital role in disease pathogenesis and maintaining the periodontium during health. Many factors modulate the TLR-mediated signaling pathway, including specific miRNAs. The present study was designed to characterize the function of TLR2/4 signaling to the miRNA profile after polybacterial infection with Streptococcus gordonii, Fusobacterium nucleatum, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in C57BL6/J wild-type, TLR2 -/- , and TLR4 -/- mice (n=16/group) using RT-qPCR. The selection of 15 dominant miRNAs for RT-qPCR analysis was based on prior NanoString global miRNA expression profiling in response to polymicrobial and monobacterial infection. Polybacterial infections established gingival colonization in wild-type, TLR2 -/- and TLR4 -/- mice with induction of bacterial-specific IgG. A significant reduction in alveolar bone resorption (ABR) and gingival inflammation was observed in the mandibles of TLR2/4 -/- mice compared to C57BL6/J wild-type mice ( p <0.0001). Periodontal bacteria disseminated from gingival tissue to the multiple organs in wild-type and TLR2 -/- mice (heart, lungs, brain, kidney) and limited to heart ( F. nucleatum ), lungs ( P. gingivalis ), kidney ( T. forsythia ) in TLR4 -/- mice. The diagnostic potential of miRNAs was assessed by receiver operating characteristic (ROC) curves. Among 15 miRNAs, three were upregulated in C57BL6/J wild-type mice, two in TLR2 -/- , and seven in TLR4 -/- mice. Notably, the anti-inflammatory miR-146a-5p was consistently upregulated in all the mice. Additionally, miR-15a-5p was upregulated in wild-type and TLR2 -/- mice. let-7c-5p was upregulated in TLR4 -/- mice and downregulated in the wild-type mice. Multi-species oral bacterial infection alters the TLR2/4 signaling pathways by modulating the expression of several potential biomarker miRNAs in periodontium. IMPORTANCE Periodontitis is the most prevalent chronic immuno-infectious multispecies dysbiotic disease of the oral cavity. The Toll-like receptors (TLR) provide the first line of defense, one of the best-characterized pathogens-detection systems and play a vital role in recognizing multiple microbial products. Multispecies infection with periodontal bacteria S. gordonii, F. nucleatum, P. gingivalis, T. denticola, and T. forsythia induced gingival inflammation, alveolar bone resorption (ABR) and miRNA expression in the C57BL6/J wild-type mice and whereas infection did not increase significant ABR in the TLR2/4 deficient mice. Among the 15 miRNAs investigated, miR-146a - 5p, miR-15a-5p were upregulated in wild-type and TLR2 -/- mice and miR-146a-5p, miR-30c-5p, let-7c-5p were upregulated in the TLR4 -/- mice compared to sham-infected controls. Notably, inflammatory miRNA miR-146a-5p was upregulated uniquely among the three different infection groups. The upregulated miRNAs (miR-146a, miR-15-a-5p, let-7c-5p) and downregulated miRNAs could be markers for TLRs-mediated induction of periodontitis.
Collapse
|
2
|
Wang S, Zhang K, Huang Q, Meng F, Deng S. TLR4 signalling in ischemia/reperfusion injury: a promising target for linking inflammation, oxidative stress and programmed cell death to improve organ transplantation outcomes. Front Immunol 2024; 15:1447060. [PMID: 39091500 PMCID: PMC11291251 DOI: 10.3389/fimmu.2024.1447060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Transplantations represent the principal therapeutic interventions for terminal organ failure, a procedure that has salvaged myriad lives annually. Ischemia/reperfusion injury (IRI) is frequently correlated with an unfavourable prognosis and is relevant for early graft dysfunction and graft survival. IRI constitutes a complex pathological state influenced by a series of factors such as oxidative stress, metabolic stress, leukocytic infiltration, programmed cell death pathways, and inflammatory immune responses. Reducing ischemia/reperfusion injury is one of the main directions of transplantation research. Toll-like receptors (TLRs) are important pattern-recognition receptors expressed on various organs that orchestrate the immune responses upon recognising PAMPs and DAMPs. Targeting the TLR4 signalling has recently been suggested as a promising approach for alleviating IRI by affecting inflammation, oxidative stress and programmed cell death (PCD). In this minireview, we summarise the role of TLR4 signalling in regulating inflammation, oxidative stress and PCD in organ transplantation and discuss their interactions during IRI. A detailed understanding of the multiple functions of TLR4 in IRI provides novel insights into developing therapies to improve organ transplantation outcomes.
Collapse
Affiliation(s)
- Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fanming Meng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Liang Q, Chen H, Xu X, Jiang W. miR-182-5p Attenuates High-Fat -Diet-Induced Nonalcoholic Steatohepatitis in Mice. Ann Hepatol 2019; 18:116-125. [PMID: 31113580 DOI: 10.5604/01.3001.0012.7902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/29/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM Patients with NASH have increased risk for sepsis or cardiovascular disease after Liver transplantation. An important role of Toll-like receptor (TLR) 4 in the pathogenesis of nonalcoholic steatohepatitis (NASH) was demonstrated. Here, we study the role of miR-182-5p in TLR4 expression and high-fat-diet (HFD)-induced NASH in vitro and in vivo Material and methods. Following transfection with a miR-182-5p mimic, the effect of miR-182-5p on TLR4 in RAW264.7 and HepG2 cells was investigated. Following administration of the miR-182-5p mimic into the livers of HFD-induced NASH mice, we determined the in vivo expression of TLR4, TNFa, and IL-6 and assessed the histologic features of the livers. Results Following lipopolysaccharide (LPS) treatment of RAW264.7 cells, real-time RT-PCR and western blot results indicated decreases levels of TLR4 mRNA and protein in the miR-182-5p group as compared with levels observed in controls, with similar trends were observed in TNFa and IL-6 protein levels. Following oleic acid (OA) treatment of HepG2 cells, TLR4, TNFa, and IL-6 levels were significantly decreased in the miR-182-5p group as compared with levels observed in controls. Following miR-182-5p administration, TLR4 mRNA and protein levels decreased along with those of TNFa and IL-6 proteins, and the liver weight/body weight ratio of treated mice was less than that observed in controls. Furthermore, hematoxylin and eosin staining showed that the miR-182-5p-treated group exhibited low adiposecell cross-sectional areas, and Oil Red O staining showed decreases in the size of lipid droplets in the miR-182-5p-treated group. CONCLUSIONS miR-182-5p ameliorated HFD-induced NASH by suppressing TLR4.
Collapse
Affiliation(s)
- Qionghe Liang
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Huan Chen
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoqun Xu
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Jiang
- Department of Neonatal Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China; Institute of Pediatric Research, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Zhang T, Xiu HH, Liu JX, Ma Y, Xu KQ, Huang WQ. Protective effect of aspirin-triggered resolvin D1 on hepatic ischemia/reperfusion injury in rats: The role of miR-146b. Int Immunopharmacol 2017; 51:140-147. [PMID: 28837866 DOI: 10.1016/j.intimp.2017.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 01/03/2023]
Abstract
PURPOSE Inflammatory responses play an important role in the tissue injury during liver ischemia/reperfusion (I/R). We previously reported that resolvin D1 (RvD1) administrated prior to hepatic I/R attenuates liver injury through inhibition of inflammatory response. In this study, we investigated the effects of the aspirin-triggered resolvin D1 (AT-RvD1) on hepatic I/R and the role of miR-146b in this process. METHODS Partial warm ischemia was performed in the left and middle hepatic lobes of Sprague-Dawley rats for 1h, followed by 6h of reperfusion. Rats received either AT-RvD1 (5μg/kg), vehicle, or AT-RvD1+miR-146b antagomir by intravenous injection 30min before ischemia. Blood and tissue samples of the rats were collected after 6-h reperfusion. RESULTS Pretreatment with AT-RvD1 significantly diminished I/R-induced elevations of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and significantly blunted the histological injury of the liver. Moreover, AT-RvD1 significantly inhibited inflammatory response, as indicated by attenuations of TNF-α and myeloperoxidase levels. Reduced apoptosis, and increased survival rate were observed in the AT-RvD1 group compared with the control I/R group. AT-RvD1 pretreatment increased miR-146b expression in the liver of the rats with hepatic I/R. Administration of miR-146b antagomir impaired the effects of AT-RvD1 on hepatic I/R injury in rats. Downregulation of miR-146b inhibited TRAF6 and NF-κB expression in liver. CONCLUSIONS Pre-administration of AT-RvD1 attenuates hepatic I/R injury partly through modulation of miR-146b.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Huan-Huan Xiu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia-Xin Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Ma
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Kang-Qing Xu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Qi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
5
|
Barcelos RP, Bresciani G, Cuevas MJ, Martínez-Flórez S, Soares FAA, González-Gallego J. Diclofenac pretreatment modulates exercise-induced inflammation in skeletal muscle of rats through the TLR4/NF-κB pathway. Appl Physiol Nutr Metab 2017; 42:757-764. [DOI: 10.1139/apnm-2016-0593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonsteroidal anti-inflammatory drugs, such as diclofenac, are widely used to treat inflammation and pain in several conditions, including sports injuries. This study analyzes the influence of diclofenac on the toll-like receptor-nuclear factor kappa B (TLR-NF-κB) pathway in skeletal muscle of rats submitted to acute eccentric exercise. Twenty male Wistar rats were divided into 4 groups: control-saline, control-diclofenac, exercise-saline, and exercise-diclofenac. Diclofenac or saline were administered for 7 days prior to an acute eccentric exercise bout. The inflammatory status was evaluated through mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α), and protein content of COX-2, IL-6, and TNF-α in vastus lateralis muscle. Data obtained showed that a single bout of eccentric exercise significantly increased COX-2 gene expression. Similarly, mRNA expression and protein content of other inflammation-related genes also increased after the acute exercise. However, these effects were attenuated in the exercise + diclofenac group. TLR4, myeloid differentiation primary response gene 88 (MyD88), and p65 were also upregulated after the acute eccentric bout and the effect was blunted by the anti-inflammatory drug. These findings suggest that pretreatment with diclofenac may represent an effective tool to ameliorate the pro-inflammatory status induced by acute exercise in rat skeletal muscle possibly through an attenuation of the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Rômulo Pillon Barcelos
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, RS, 99052-900, Brazil
- Institute of Biomedicine, University of León, Campus Universitario, 24071 León, Spain
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900 Brazil
| | - Guilherme Bresciani
- Grupo de Investigación en Rendimiento Físico y Salud Escuela de Educación Física, Pontificia Universidad Católica de Valparaiso, Valparaiso, 2530388 Chile
| | - Maria José Cuevas
- Institute of Biomedicine, University of León, Campus Universitario, 24071 León, Spain
| | | | - Félix Alexandre Antunes Soares
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | |
Collapse
|
6
|
Jiang W, Liu G, Tang W. MicroRNA-182-5p Ameliorates Liver Ischemia-Reperfusion Injury by Suppressing Toll-Like Receptor 4. Transplant Proc 2016; 48:2809-2814. [DOI: 10.1016/j.transproceed.2016.06.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
|
7
|
Jiang W, Liu J, Dai Y, Zhou N, Ji C, Li X. MiR-146b attenuates high-fat diet-induced non-alcoholic steatohepatitis in mice. J Gastroenterol Hepatol 2015; 30:933-43. [PMID: 25559563 DOI: 10.1111/jgh.12878] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. In this study, we investigated the role of miR-146b in the Toll-like receptor-4 signaling pathway and high-fat diet (HFD)-induced NASH in vivo and in vitro. METHODS The effect of miR-146b on the expression of IL-1 receptor-associated kinase 1 (IRAK1) and tumor necrosis factor receptor-associated factor 6 (TRAF6) in RAW264.7 cells and HepG2 was studied, and the effect of miR-146b on lipid accumulation in HepG2 was also studied in vitro. The levels of IRAK1, TRAF6, NF-κB, and pro-inflammatory cytokines, as well as the histologic features and lipid accumulation in the livers of HFD-induced non-alcoholic steatohepatitis (NASH) and an miR-146b-administered HFD mouse model, were studied in vivo. RESULTS After miR-146b administration, TRAF6 and IRAK1 mRNA and protein levels in macrophages after lipopolysaccharide administration and in HepG2 cells after oleic acid (OA) administration were significantly decreased in 146b group compared with control group (P < 0.001). The lipid accumulation in HepG2 cells exposed to OA was also decreased by inactivation of IRAK1 and TRAF6, then downregulation of the downstream molecules (NF-κB) and upregulation of the tension homolog deleted on chromosome 10 (PTEN) level. In vivo, after administration of miR-146b, TRAF6 and IRAK1 mRNA and protein levels as well as TNF-α and IL-6 mRNA and protein levels were decreased, and hematoxylin and eosin staining showed that the 146b group had low average adipose cell cross-sectional areas compared with control group. CONCLUSION MiR-146b ameliorated HFD-induced NASH by directly suppressing IRAK1 and TRAF6.
Collapse
Affiliation(s)
- Weiwei Jiang
- Institute of Pediatric Research, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China; Department of Neonatal Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
8
|
Jiang W, Ni Q, Tan L, Kong L, Lu Y, Xu X, Kong L. The microRNA-146a/b attenuates acute small-for-size liver graft injury in rats. Liver Int 2015; 35:914-24. [PMID: 25156638 DOI: 10.1111/liv.12674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/17/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS A critical role of the Toll-like receptor (TLR)-4 and its downstream mediators in the pathogenesis of small-for-size liver graft injury has been documented. Recently, the microRNA-146 (miR-146) was identified as a potent negative regulator of the TLR4 signalling pathway. In this study, the role of miR-146a and miR-146b in the attenuation of TLR-4 signalling and small-for-size liver graft injury was investigated. METHODS The expression levels of miR-146a and miR-146b during small-for-size liver graft injury were studied in vivo. In addition, the effects of miR-146a and miR-146b on the expression of IRAK1 and TRAF6 in the rat macrophage cell line NR8383 and rat liver kupffer cells were studied in vitro. The in vivo effect of miR-146a and miR-146b on small-for-size liver graft injury was studied by the tail vein injection of miR-146a mimics and miR-146b mimics. RESULTS The levels of miR-146a and miR-146b decreased with a small-for-size liver graft. MiR-146a and miR-146b inhibited IRAK1 and TRAF6 expression by binding to the 3'UTR of IRAK1 or TRAF6, respectively, in the rat macrophage cell line NR8383. The administration of miR-146a mimics and miR-146b mimics prevented liver graft injury in small-for-size liver graft injury via the inactivation of IRAK1 and TRAF6 in vivo. CONCLUSIONS miR-146a and miR-146b prevent liver injury in small-for-size liver graft injury via the inactivation of IRAK1 and TRAF6.
Collapse
Affiliation(s)
- Weiwei Jiang
- Department of Neonatal Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Triptolide Attenuates Acute Small-for-Size Liver Graft Injury in Rats by Inhibition of Toll-like Receptor 4. Transplant Proc 2014; 46:3303-8. [DOI: 10.1016/j.transproceed.2014.07.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/19/2014] [Accepted: 07/15/2014] [Indexed: 01/19/2023]
|
10
|
Rodriguez-Miguelez P, Fernandez-Gonzalo R, Almar M, Mejías Y, Rivas A, de Paz JA, Cuevas MJ, González-Gallego J. Role of Toll-like receptor 2 and 4 signaling pathways on the inflammatory response to resistance training in elderly subjects. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9734. [PMID: 25427999 PMCID: PMC4245402 DOI: 10.1007/s11357-014-9734-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 11/14/2014] [Indexed: 05/03/2023]
Abstract
This study assessed the effects of a resistance exercise training program on the inflammatory response associated with Toll-like receptor (TLR) 2 and TLR4 signaling pathways in senior participants. Twenty-six healthy subjects (age, 69.5 ± 1.3) were randomized to a training (TG; n = 16) or a control (CG; n = 10) group. TG performed an 8-week resistance training program, while CG followed their daily routines. Peripheral blood mononuclear cells were isolated from blood samples obtained before and after the intervention, and levels of proteins involved in the TLR2, TLR4, and myeloid differentiation primary response gene 88 (MyD88)-dependent and MyD88-independent pathways were analyzed. The inflammatory status was evaluated through messenger RNA (mRNA) and protein content of interleukin (IL)-10 and tumor necrosis factor alpha (TNF-α) and plasma levels of C-reactive protein (CRP). After the 8-week resistance training, TLR2 and TLR4 protein expression was reduced in TG. MyD88, p65, phospho-p38, TIR domain-containing adaptor inducing interferon (TRIF), IKKi/IKKε, phospho-interferon regulatory factor (IRF) 3, and phosho-IRF7 were also downregulated in TG after the intervention. The training program induced an increase of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2) and Hsp70 and a reduction of Hsp60. While TNF-α mRNA and protein values remained unchanged in both TG and CG, IL-10 mRNA and protein content were upregulated in TG after the intervention. CRP values decreased in TG only. The increase in Hsp70 negatively correlated with TLR2 and TLR4 downregulation. These data suggest that resistance exercise may represent an effective tool to ameliorate the pro-inflammatory status of old participants through an attenuation of MyD88-dependent and MyD88-independent TLR2 and TLR4 signaling pathways.
Collapse
Affiliation(s)
- Paula Rodriguez-Miguelez
- />Institute of Biomedicine (IBIOMED), University of León, Campus Vegazana s/n, 24071 León, Spain
| | | | - Mar Almar
- />Institute of Biomedicine (IBIOMED), University of León, Campus Vegazana s/n, 24071 León, Spain
| | - Yubisay Mejías
- />Institute of Biomedicine (IBIOMED), University of León, Campus Vegazana s/n, 24071 León, Spain
| | - Ana Rivas
- />Institute of Biomedicine (IBIOMED), University of León, Campus Vegazana s/n, 24071 León, Spain
| | - José A. de Paz
- />Institute of Biomedicine (IBIOMED), University of León, Campus Vegazana s/n, 24071 León, Spain
| | - María J. Cuevas
- />Institute of Biomedicine (IBIOMED), University of León, Campus Vegazana s/n, 24071 León, Spain
| | - Javier González-Gallego
- />Institute of Biomedicine (IBIOMED), University of León, Campus Vegazana s/n, 24071 León, Spain
| |
Collapse
|
11
|
Down-regulation of microRNA-146a in the early stage of liver ischemia-reperfusion injury. Transplant Proc 2013; 45:492-6. [PMID: 23498784 DOI: 10.1016/j.transproceed.2012.10.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 05/28/2012] [Accepted: 10/09/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs), 21-23-nucleotide noncoding RNAs, act as regulators of gene expression transcriptionally. MicroRNA-146a(miR-146a) has been demonstrated to be one of the key molecules in oncogenesis and inflammatory responses. Few data describe the expression of miR-146a in liver ischemia-reperfusion (IR) injury. The present study sought to explore the relationship of miR-146a to Toll-like receptor 4 (TLR4) signaling pathways in a rat model of warm IR injury. METHODS The expression of miR-146a was detected by real-time reverse-transcriptase polymerase chain reaction using a partial warm hepatic IR injury model. The expression of TLR4, tumor necrosis factor receptor-associated factor 6 (TRAF6), and interleukin-1 receptor-associated kinase (IRAK 1) protein was assessed by Western blotting as well as the signaling pathways induced by TLR4. RESULTS The expression of hepatic miR-146a was down-regulated in IR injury during the 24 hours after reperfusion, reaching the lowest level at 6 hours after reperfusion. Increases in TLR4, TRAF6, and IRAK1 were accompanied by decreased miR-146a during the 24 hours after reperfusion, peaking at 6 hours. Immunohistochemistry showed cytoplasmic expression of cells positive for TLR4, and nuclear expression of cells positive for nuclear factor κB p65 and c-jun to be increased among IR groups after reperfusion. CONCLUSION miR-146a was down-regulated in the early stage of liver IR injury.
Collapse
|
12
|
Amano MT, Camara NOS. The immunomodulatory role of carbon monoxide during transplantation. Med Gas Res 2013; 3:1. [PMID: 23295066 PMCID: PMC3582539 DOI: 10.1186/2045-9912-3-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/31/2012] [Indexed: 01/03/2023] Open
Abstract
The number of organ and tissue transplants has increased worldwide in recent decades. However, graft rejection, infections due to the use of immunosuppressive drugs and a shortage of graft donors remain major concerns. Carbon monoxide (CO) had long been regarded solely as a poisonous gas. Ultimately, physiological studies unveiled the endogenous production of CO, particularly by the heme oxygenase (HO)-1 enzyme, recognizing CO as a beneficial gas when used at therapeutic doses. The protective properties of CO led researchers to develop uses for it, resulting in devices and molecules that can deliver CO in vitro and in vivo. The resulting interest in clinical investigations was immediate. Studies regarding the CO/HO-1 modulation of immune responses and their effects on various immune disorders gave rise to transplantation research, where CO was shown to be essential in the protection against organ rejection in animal models. This review provides a perspective of how CO modulates the immune system to improve transplantation and suggests its use as a therapy in the field.
Collapse
Affiliation(s)
- Mariane Tami Amano
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | |
Collapse
|
13
|
Jiang W, Tang W, Geng Q, Xu X. Inhibition of Toll-like receptor 4 with vasoactive intestinal peptide attenuates liver ischemia-reperfusion injury. Transplant Proc 2011; 43:1462-7. [PMID: 21693218 DOI: 10.1016/j.transproceed.2011.01.191] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/11/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) has attracted a great deal of attention in ischemia-reperfusion (IR) injury in recent years. Vasoactive intestinal peptide (VIP) plays an important role in anti-inflammatory and immunomodulatory activity in several animal models. There are no data available regarding the effect of VIP on TLR4 expression in IR injury in vivo. In the present study, we study the effect of VIP on TLR4 expression in mouse macrophage cell line RAW 264.7 and a mouse partial IR model. METHODS The potential inhibitory effect of VIP on TLR4 mRNA and protein in a mouse macrophage cell line and in a mouse model of partial warm hepatic IR injury was assessed. We also assessed the expression tumor necrosis factor (TNF)-α and interleukin (IL)-6 in this model. RESULTS Expression of TLR4 mRNA levels was significantly decreased at 6, 12, and 24 hours after treat with VIP in mouse macrophage cell line RAW 264.7. Expression of TLR4 mRNA, TLR4 protein, alanine aminotransferase, TNF-α, and IL-6 levels were significantly increased in the IR group but significantly decreased in groups pretreated with VIP at a concentration of 5 and 10 nmol. Hematoxylin and eosin staining show apparent edema and necrosis were observed in the IR group, but in the VIP pretreatment group, edema and necrosis in IR modes were reduced. CONCLUSION This study showed that VIP might inhibit TLR4 in vitro and in vivo, and pretreatment with VIP might inhibited TLR4 activation and reduced warm IR injury.
Collapse
Affiliation(s)
- W Jiang
- Department of Neonatal Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | | | | | | |
Collapse
|
14
|
Triptolide suppresses lipopolysaccharide-induced activity of toll-like receptor 4 in mouse macrophage cell line RAW 264.7. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9650-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Arslan F, Keogh B, McGuirk P, Parker AE. TLR2 and TLR4 in ischemia reperfusion injury. Mediators Inflamm 2010; 2010:704202. [PMID: 20628516 PMCID: PMC2902053 DOI: 10.1155/2010/704202] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/07/2010] [Indexed: 12/15/2022] Open
Abstract
Ischemia reperfusion (I/R) injury refers to the tissue damage which occurs when blood supply returns to tissue after a period of ischemia and is associated with trauma, stroke, myocardial infarction, and solid organ transplantation. Although the cause of this injury is multifactorial, increasing experimental evidence suggests an important role for the innate immune system in initiating the inflammatory cascade leading to detrimental/deleterious changes. The Toll-like Receptors (TLRs) play a central role in innate immunity recognising both pathogen- and damage-associated molecular patterns and have been implicated in a range of inflammatory and autoimmune diseases. In this paper, we summarise the current state of knowledge linking TLR2 and TLR4 to I/R injury, including recent studies which demonstrate that therapeutic inhibition of TLR2 has beneficial effects on I/R injury in a murine model of myocardial infarction.
Collapse
Affiliation(s)
- F. Arslan
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - B. Keogh
- Opsona Therapeutics Ltd., Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James' Hospital, Dublin 8, Ireland
| | - P. McGuirk
- Opsona Therapeutics Ltd., Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James' Hospital, Dublin 8, Ireland
| | - A. E. Parker
- Opsona Therapeutics Ltd., Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James' Hospital, Dublin 8, Ireland
| |
Collapse
|