1
|
Dimitrova Y, Gruber AJ, Mittal N, Ghosh S, Dimitriades B, Mathow D, Grandy WA, Christofori G, Zavolan M. TFAP2A is a component of the ZEB1/2 network that regulates TGFB1-induced epithelial to mesenchymal transition. Biol Direct 2017; 12:8. [PMID: 28412966 PMCID: PMC5392957 DOI: 10.1186/s13062-017-0180-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/22/2017] [Indexed: 01/28/2023] Open
Abstract
Background The transition between epithelial and mesenchymal phenotypes (EMT) occurs in a variety of contexts. It is critical for mammalian development and it is also involved in tumor initiation and progression. Master transcription factor (TF) regulators of this process are conserved between mouse and human. Methods From a computational analysis of a variety of high-throughput sequencing data sets we initially inferred that TFAP2A is connected to the core EMT network in both species. We then analysed publicly available human breast cancer data for TFAP2A expression and also studied the expression (by mRNA sequencing), activity (by monitoring the expression of its predicted targets), and binding (by electrophoretic mobility shift assay and chromatin immunoprecipitation) of this factor in a mouse mammary gland EMT model system (NMuMG) cell line. Results We found that upon induction of EMT, the activity of TFAP2A, reflected in the expression level of its predicted targets, is up-regulated in a variety of systems, both murine and human, while TFAP2A’s expression is increased in more “stem-like” cancers. We provide strong evidence for the direct interaction between the TFAP2A TF and the ZEB2 promoter and we demonstrate that this interaction affects ZEB2 expression. Overexpression of TFAP2A from an exogenous construct perturbs EMT, however, in a manner similar to the downregulation of endogenous TFAP2A that takes place during EMT. Conclusions Our study reveals that TFAP2A is a conserved component of the core network that regulates EMT, acting as a repressor of many genes, including ZEB2. Reviewers This article has been reviewed by Dr. Martijn Huynen and Dr. Nicola Aceto. Electronic supplementary material The online version of this article (doi:10.1186/s13062-017-0180-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoana Dimitrova
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Andreas J Gruber
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Nitish Mittal
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Souvik Ghosh
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Beatrice Dimitriades
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Daniel Mathow
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - William Aaron Grandy
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Gerhard Christofori
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Mihaela Zavolan
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland.
| |
Collapse
|
2
|
Bysani M, Perfilyev A, de Mello VD, Rönn T, Nilsson E, Pihlajamäki J, Ling C. Epigenetic alterations in blood mirror age-associated DNA methylation and gene expression changes in human liver. Epigenomics 2016; 9:105-122. [PMID: 27911095 DOI: 10.2217/epi-2016-0087] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM To study the impact of aging on DNA methylation and mRNA expression in human liver. EXPERIMENTAL PROCEDURES We analysed genome-wide DNA methylation and gene expression in human liver samples using Illumina 450K and HumanHT12 expression BeadChip arrays. RESULTS DNA methylation analysis of ∼455,000 CpG sites in human liver revealed that age was significantly associated with altered DNA methylation of 20,396 CpG sites. Comparison of liver methylation data with published methylation data in other tissues showed that vast majority of the age-associated significant CpG sites overlapped between liver and blood, whereas a smaller overlap was found between liver and pancreatic islets or adipose tissue, respectively. We identified 151 genes whose liver expression also correlated with age. CONCLUSIONS We identified age-associated DNA methylation and expression changes in human liver that are partly reflected by epigenetic alterations in blood.
Collapse
Affiliation(s)
- Madhusudhan Bysani
- Epigenetics & Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics & Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Vanessa D de Mello
- Department of Clinical Nutrition, Institute of Public Health & Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Tina Rönn
- Epigenetics & Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Emma Nilsson
- Epigenetics & Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Jussi Pihlajamäki
- Department of Clinical Nutrition, Institute of Public Health & Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Clinical Nutrition & Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Charlotte Ling
- Epigenetics & Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
3
|
Transcriptomic characterization of fibrolamellar hepatocellular carcinoma. Proc Natl Acad Sci U S A 2015; 112:E5916-25. [PMID: 26489647 DOI: 10.1073/pnas.1424894112] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fibrolamellar hepatocellular carcinoma (FLHCC) tumors all carry a deletion of ∼ 400 kb in chromosome 19, resulting in a fusion of the genes for the heat shock protein, DNAJ (Hsp40) homolog, subfamily B, member 1, DNAJB1, and the catalytic subunit of protein kinase A, PRKACA. The resulting chimeric transcript produces a fusion protein that retains kinase activity. No other recurrent genomic alterations have been identified. Here we characterize the molecular pathogenesis of FLHCC with transcriptome sequencing (RNA sequencing). Differential expression (tumor vs. adjacent normal tissue) was detected for more than 3,500 genes (log2 fold change ≥ 1, false discovery rate ≤ 0.01), many of which were distinct from those found in hepatocellular carcinoma. Expression of several known oncogenes, such as ErbB2 and Aurora Kinase A, was increased in tumor samples. These and other dysregulated genes may serve as potential targets for therapeutic intervention.
Collapse
|
4
|
Oguro A, Oida S, Imaoka S. Down-regulation of EPHX2 gene transcription by Sp1 under high-glucose conditions. Biochem J 2015; 470:281-91. [PMID: 26341485 DOI: 10.1042/bj20150397] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/15/2015] [Indexed: 12/16/2023]
Abstract
sEH (soluble epoxide hydrolase), which is encoded by the EPHX2 gene, regulates the actions of bioactive lipids, EETs (epoxyeicosatrienoic acids). Previously, we found that high-glucose-induced oxidative stress suppressed sEH levels in a hepatocarcinoma cell line (Hep3B) and sEH was decreased in streptozotocin-induced diabetic mice in vivo. In the present study, we investigated the regulatory mechanisms underlying EPHX2 transcriptional suppression under high-glucose conditions. The decrease in sEH was prevented by an Sp1 (specificity protein 1) inhibitor, mithramycin A, and overexpression or knockdown of Sp1 revealed that Sp1 suppressively regulated sEH expression, in contrast with the general role of Sp1 on transcriptional activation. In addition, we found that AP2α (activating protein 2α) promoted EPHX2 transcription. The nuclear transport of Sp1, but not that of AP2α, was increased under high glucose concomitantly with the decrease in sEH. Within the EPHX2 promoter -56/+32, five Sp1-binding sites were identified, and the mutation of each of these sites showed that the first one (SP1_1) was important in both suppression by Sp1 and activation by AP2α. Furthermore, overexpression of Sp1 diminished the binding of AP2α by DNA-affinity precipitation assay and ChIP, suggesting competition between Sp1 and AP2α on the EPHX2 promoter. These findings provide novel insights into the role of Sp1 in transcriptional suppression, which may be applicable to the transcriptional regulation of other genes.
Collapse
Affiliation(s)
- Ami Oguro
- Research Center for Environmental Bioscience and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Shoko Oida
- Research Center for Environmental Bioscience and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Susumu Imaoka
- Research Center for Environmental Bioscience and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| |
Collapse
|
5
|
Onteru SK, Gorbach DM, Young JM, Garrick DJ, Dekkers JCM, Rothschild MF. Whole Genome Association Studies of Residual Feed Intake and Related Traits in the Pig. PLoS One 2013; 8:e61756. [PMID: 23840294 PMCID: PMC3694077 DOI: 10.1371/journal.pone.0061756] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/11/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Residual feed intake (RFI), a measure of feed efficiency, is the difference between observed feed intake and the expected feed requirement predicted from growth and maintenance. Pigs with low RFI have reduced feed costs without compromising their growth. Identification of genes or genetic markers associated with RFI will be useful for marker-assisted selection at an early age of animals with improved feed efficiency. METHODOLOGY/PRINCIPAL FINDINGS Whole genome association studies (WGAS) for RFI, average daily feed intake (ADFI), average daily gain (ADG), back fat (BF) and loin muscle area (LMA) were performed on 1,400 pigs from the divergently selected ISU-RFI lines, using the Illumina PorcineSNP60 BeadChip. Various statistical methods were applied to find SNPs and genomic regions associated with the traits, including a Bayesian approach using GenSel software, and frequentist approaches such as allele frequency differences between lines, single SNP and haplotype analyses using PLINK software. Single SNP and haplotype analyses showed no significant associations (except for LMA) after genomic control and FDR. Bayesian analyses found at least 2 associations for each trait at a false positive probability of 0.5. At generation 8, the RFI selection lines mainly differed in allele frequencies for SNPs near (<0.05 Mb) genes that regulate insulin release and leptin functions. The Bayesian approach identified associations of genomic regions containing insulin release genes (e.g., GLP1R, CDKAL, SGMS1) with RFI and ADFI, of regions with energy homeostasis (e.g., MC4R, PGM1, GPR81) and muscle growth related genes (e.g., TGFB1) with ADG, and of fat metabolism genes (e.g., ACOXL, AEBP1) with BF. Specifically, a very highly significantly associated QTL for LMA on SSC7 with skeletal myogenesis genes (e.g., KLHL31) was identified for subsequent fine mapping. CONCLUSIONS/SIGNIFICANCE Important genomic regions associated with RFI related traits were identified for future validation studies prior to their incorporation in marker-assisted selection programs.
Collapse
Affiliation(s)
- Suneel K. Onteru
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Danielle M. Gorbach
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Jennifer M. Young
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Dorian J. Garrick
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Jack C. M. Dekkers
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Max F. Rothschild
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|