1
|
Linehan V, Hirasawa M. Short-term fasting induces alternate activation of orexin and melanin-concentrating hormone neurons in rats. Neuroscience 2022; 491:156-165. [DOI: 10.1016/j.neuroscience.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
|
2
|
McGill MR, Findley DL, Mazur A, Yee EU, Allard FD, Powers A, Coward L, Blough ER, Gorman G, Hambuchen MD. Radiation Effects on Methamphetamine Pharmacokinetics and Pharmacodynamics in Rats. Eur J Drug Metab Pharmacokinet 2022; 47:319-330. [PMID: 35137360 DOI: 10.1007/s13318-022-00755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES Whole-body radiation exposure has been shown to alter the pharmacokinetics of certain drugs in both animal models and humans, but little is known about the effect of radiation on psychoactive medications. These drugs may have altered pharmacokinetics when administered during or after space travel or therapeutic or accidental radiation exposure, resulting in reduced efficacy or increased toxicity. METHODS Methamphetamine was used to determine the effects of acutely administered 1, 3, and 6 Gy radiation on drug pharmacokinetics and pharmacodynamics. Male Wistar rats were exposed to 0, 1, 3, or 6 Gy X-ray radiation on day 0. The serum pharmacokinetics of subcutaneously administered 1 mg/kg methamphetamine was determined on day 3. Methamphetamine-induced (1 mg/kg) locomotor activity was measured on day 5. Brain methamphetamine concentrations were determined 2 h after methamphetamine administration (1 mg/kg) on day 6. Renal and hepatic serum biomarkers were assessed on days 3 and 6, with liver histology performed on day 6. RESULTS While serum half-life and unchanged methamphetamine urine clearance were unaffected by any radiation dose, maximum methamphetamine concentrations and methamphetamine and amphetamine metabolite area under the serum concentration-time curve values from 0 to 300 min were significantly reduced after 6 Gy radiation exposure. Additionally, methamphetamine-induced locomotor activity and the brain to serum methamphetamine concentration ratio were significantly elevated after 6 Gy radiation. CONCLUSIONS While 1-6 Gy radiation exposure did not affect methamphetamine elimination, 6 Gy exposure had effects on both subcutaneous absorption and brain distribution. These effects should be considered when administering drugs during or after radiation exposure.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR, 72205, USA
| | - David L Findley
- Department of Pharmaceutical Science, Marshall University School of Pharmacy, Kopp Hall 353, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Anna Mazur
- Department of Biomedical Science, Marshall University School of Medicine, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Eric U Yee
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Felicia D Allard
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Allison Powers
- Office of Radiation Safety, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Lori Coward
- Department of Pharmaceutical, Social and Administrative Sciences, Samford University McWhorter School of Pharmacy, 800 Lakeshore Drive, Birmingham, AL, 35229, USA
| | - Eric R Blough
- Department of Pharmaceutical Science, Marshall University School of Pharmacy, Kopp Hall 353, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | - Greg Gorman
- Department of Pharmaceutical, Social and Administrative Sciences, Samford University McWhorter School of Pharmacy, 800 Lakeshore Drive, Birmingham, AL, 35229, USA
| | - Michael D Hambuchen
- Department of Pharmaceutical Science, Marshall University School of Pharmacy, Kopp Hall 353, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
3
|
Bau-Gaudreault L, Arndt T, Provencher A, Brayton CF. Research-Relevant Clinical Pathology Resources: Emphasis on Mice, Rats, Rabbits, Dogs, Minipigs, and Non-Human Primates. ILAR J 2021; 62:203-222. [PMID: 34877602 DOI: 10.1093/ilar/ilab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Clinical pathology testing for investigative or biomedical research and for preclinical toxicity and safety assessment in laboratory animals is a distinct specialty requiring an understanding of species specific and other influential variables on results and interpretation. This review of clinical pathology principles and testing recommendations in laboratory animal species aims to provide a useful resource for researchers, veterinary specialists, toxicologists, and clinical or anatomic pathologists.
Collapse
Affiliation(s)
- Liza Bau-Gaudreault
- Clinical Laboratories, Charles River Laboratories - ULC, Senneville, Quebec, Canada
| | - Tara Arndt
- Labcorp Drug Development, Madison, Wisconsin, United States
| | - Anne Provencher
- Clinical Laboratories, Charles River Laboratories - ULC, Sherbrooke, Quebec, Canada
| | - Cory F Brayton
- Molecular and Comparative Pathobiology, John Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Siegel A, M. Walton R. Hematology and Biochemistry of Small Mammals. FERRETS, RABBITS, AND RODENTS 2020. [PMCID: PMC7258700 DOI: 10.1016/b978-0-323-48435-0.00039-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Raff H, Hoeynck B, Jablonski M, Leonovicz C, Phillips JM, Gehrand AL. Insulin sensitivity, leptin, adiponectin, resistin, and testosterone in adult male and female rats after maternal-neonatal separation and environmental stress. Am J Physiol Regul Integr Comp Physiol 2017; 314:R12-R21. [PMID: 28877872 DOI: 10.1152/ajpregu.00271.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Care of premature infants often requires parental and caregiver separation, particularly during hypoxic and hypothermic episodes. We have established a neonatal rat model of human prematurity involving maternal-neonatal separation and hypoxia with spontaneous hypothermia prevented by external heat. Adults previously exposed to these neonatal stressors show a sex difference in the insulin and glucose response to arginine stimulation suggesting a state of insulin resistance. The current study used this cohort of adult rats to evaluate insulin resistance [homeostatic model assessment of insulin resistance (HOMA-IR)], plasma adipokines (reflecting insulin resistance states), and testosterone. The major findings were that daily maternal-neonatal separation led to an increase in body weight and HOMA-IR in adult male and female rats and increased plasma leptin in adult male rats only; neither prior neonatal hypoxia (without or with body temperature control) nor neonatal hypothermia altered subsequent adult HOMA-IR or plasma adiponectin. Adult male-female differences in plasma leptin were lost with prior exposure to neonatal hypoxia or hypothermia; male-female differences in resistin were lost in the adults that were exposed to hypoxia and spontaneous hypothermia as neonates. Exposure of neonates to daily hypoxia without spontaneous hypothermia led to a decrease in plasma testosterone in adult male rats. We conclude that neonatal stressors result in subsequent adult sex-dependent increases in insulin resistance and adipokines and that our rat model of prematurity with hypoxia without hypothermia alters adult testosterone dynamics.
Collapse
Affiliation(s)
- Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin.,Departments of Medicine, Surgery, and Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Brian Hoeynck
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin
| | - Mack Jablonski
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin
| | - Cole Leonovicz
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin
| | - Jonathan M Phillips
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin
| | - Ashley L Gehrand
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin
| |
Collapse
|
6
|
Aulbach A, Provencher A, Tripathi N. Influence of Study Design Variables on Clinical Pathology Data. Toxicol Pathol 2016; 45:288-295. [DOI: 10.1177/0192623316677066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A number of factors related to study design have the potential to impact clinical pathology test results during the conduct of nonclinical safety studies. A thorough understanding of these factors is paramount in drawing accurate conclusions from clinical pathology data generated during such studies, particularly when attempting to make the distinction between test article and nontest article–related effects. Study design and conduct variables with potential to impact clinical pathology data discussed in this overview include those related to species and test system, animal age, animal care and husbandry practices, fasting, acclimatization periods, effects of transportation and stressors, route of administration, effects of in-life and surgical procedures, influence of study length, timing of blood collections, impact of vehicle/formulation composition, and some general concepts related to drug class. The material presented here is a summary based on information presented at the 35th Annual Symposium of the Society of Toxicologic Pathology (June 2016), during Symposium Session 2 titled “Deciphering Sources of Variability in Clinical Pathology—It’s Not Just about the Numbers.”
Collapse
|
7
|
Gehrand AL, Hoeynck B, Jablonski M, Leonovicz C, Ye R, Scherer PE, Raff H. Sex differences in adult rat insulin and glucose responses to arginine: programming effects of neonatal separation, hypoxia, and hypothermia. Physiol Rep 2016; 4:e12972. [PMID: 27664190 PMCID: PMC5037920 DOI: 10.14814/phy2.12972] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 01/26/2023] Open
Abstract
Acute neonatal hypoxia, a common stressor, causes a spontaneous decrease in body temperature which may be protective. There is consensus that hypothermia should be prevented during acute hypoxia in the human neonate; however, this may be an additional stress with negative consequences. We hypothesize that maintaining body temperature during hypoxia in the first week of postnatal life alters the subsequent insulin, glucose, and glucagon secretion in adult rats. Rat pups were separated from their dam daily from postnatal days (PD) 2-6 for the following 90 min experimental treatments: (1) normoxic separation (control), (2) hypoxia (8% O2) allowing spontaneous hypothermia, (3) normoxic hypothermia with external cold, and (4) exposure to 8% O2 while maintaining body temperature using external heat. An additional normoxic non-separated control group was performed to determine if separation per se changed the adult phenotype. Plasma insulin, glucose, and glucagon responses to arginine stimulation were evaluated from PD105 to PD133. Maternal separation (compared to non-separated neonates) had more pronounced effects on the adult response to arginine compared to the hypoxic, hypothermic, and hypoxic-isothermic neonatal treatments. Adult males exposed to neonatal maternal separation had augmented insulin and glucose responses to arginine compared to unseparated controls. Additionally, neonatal treatment had a significant effect on body weight gain; adults exposed to neonatal maternal separation were significantly heavier. Female adults had significantly smaller insulin and glucose responses to arginine regardless of neonatal treatment. Neonatal maternal separation during the first week of life significantly altered adult beta-cell function in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Ashley L Gehrand
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Brian Hoeynck
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Mack Jablonski
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Cole Leonovicz
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Risheng Ye
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin Departments of Medicine, Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
8
|
Gehrand AL, Kaldunski ML, Bruder ED, Jia S, Hessner MJ, Raff H. Intermittent neonatal hypoxia elicits the upregulation of inflammatory-related genes in adult male rats through long-lasting programming effects. Physiol Rep 2015; 3:3/12/e12646. [PMID: 26660555 PMCID: PMC4760434 DOI: 10.14814/phy2.12646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The long-term effects of neonatal intermittent hypoxia (IH), an accepted model of apnea-induced hypoxia, are unclear. We have previously shown lasting "programming" effects on the HPA axis in adult rats exposed to neonatal IH. We hypothesized that neonatal rat exposure to IH will subsequently result in a heightened inflammatory state in the adult. Rat pups were exposed to normoxia (control) or six cycles of 5% IH or 10% IH over one hour daily from postnatal day 2-6. Plasma samples from blood obtained at 114 days of age were analyzed by assessing the capacity to induce transcription in a healthy peripheral blood mononuclear cell (PBMC) population and read using a high-density microarray. The analysis of plasma from adult rats previously exposed to neonatal 5% IH versus 10% IH resulted in 2579 significantly regulated genes including increased expression of Cxcl1, Cxcl2, Ccl3, Il1a, and Il1b. We conclude that neonatal exposure to intermittent hypoxia elicits a long-lasting programming effect in the adult resulting in an upregulation of inflammatory-related genes.
Collapse
Affiliation(s)
- Ashley L Gehrand
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center Aurora Research Institute, Milwaukee, Wisconsin
| | - Mary L Kaldunski
- Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Eric D Bruder
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center Aurora Research Institute, Milwaukee, Wisconsin
| | - Shuang Jia
- Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Martin J Hessner
- Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center Aurora Research Institute, Milwaukee, Wisconsin Departments of Medicine, Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
9
|
Kale VP, Joshi GS, Gohil PB, Jain MR. Effect of fasting duration on clinical pathology results in Wistar rats. Vet Clin Pathol 2009; 38:361-6. [PMID: 19351329 DOI: 10.1111/j.1939-165x.2009.00143.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Fasting is an important preanalytical factor that may affect the interpretation of hematology and clinical biochemistry data in toxicology or pharmacology studies. Limited information is available on how the results may be affected by different durations of fasting. OBJECTIVE The purpose of this study was to assess the influence of fasting duration on clinical pathology results in male and female rats and to determine an optimum fasting time for preclinical studies. METHODS Male and female Wistar rats (10 each per group) were fasted for 0, 4, 8, 16, 24, and 48 hours. Changes in body weight and in the results of routine CBC and clinical chemistry analysis were evaluated by 1-way ANOVA. RESULTS Body weight was significantly decreased by 4 hours of fasting in all rats, and hemoglobin concentration was significantly increased at 16 hours in male rats. Serum glucose and triglyceride concentrations in both sexes and cholesterol and high-density lipoprotein-C concentrations in female rats were also significantly decreased beginning at 16 hours. The creatinine concentration was increased in females after 16 hours of fasting. Serum alkaline phosphatase and alanine aminotransferase activities were significantly decreased after 8 hours in males and 16 hours in females. CONCLUSIONS Fasting-induced changes in clinical pathology results were consistent with hemoconcentration and altered nutrition and metabolic function. Most changes occurred at 16 hours, with minimal subsequent changes. Hence, a 16-hour fasting duration may be recommended for preclinical studies involving clinical pathology measurements.
Collapse
Affiliation(s)
- Vijay P Kale
- Department of Pharmacology and Toxicology, Zydus Research Centre, Ahmedabad, Gujarat, India
| | | | | | | |
Collapse
|
10
|
Grance SRM, Teixeira MA, Leite RS, Guimarães EB, de Siqueira JM, de Oliveira Filiu WF, de Souza Vasconcelos SB, do Carmo Vieira M. Baccharis trimera: effect on hematological and biochemical parameters and hepatorenal evaluation in pregnant rats. JOURNAL OF ETHNOPHARMACOLOGY 2008; 117:28-33. [PMID: 18346859 DOI: 10.1016/j.jep.2007.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 12/24/2007] [Accepted: 12/31/2007] [Indexed: 05/26/2023]
Abstract
AIM OF THE STUDY This investigation evaluated the effect of a hydroethanolic extract of Baccharis trimera on pregnant Wistar rats, once the plant is well-known consumed in pregnancy and little is known on its potentially toxic effects on pregnant women. MATERIAL AND METHODS Thirty-five female rats were distributed into three groups. Those in treatments 1 and 2 were given 8.4 mg/kg of the extract orally from gestational day (GD) 1 to 19 and from GD 6 to 15, respectively, whereas those in the control group received distilled water orally from GD 1 to 19. Body weights were recorded on GD 1, 6, 15, and 20. On GD 20 animals were anesthetized, blood samples were collected and maternal livers, kidneys, and spleens were weighed and processed for histological studies. RESULTS No clinical signs of maternal toxicity and no changes in hematological parameters were observed. Urea levels and kidney weights differed significantly between animals receiving treatment 1 and controls. Histopathological alterations were found in kidneys and livers in both treatment groups. CONCLUSIONS The hydroethanolic extract of Baccharis trimera administered to pregnant rats at 8.4 mg/kg was toxic to maternal kidney and liver cells, although such alterations are reversible once administration is discontinued.
Collapse
Affiliation(s)
- Simone Reschke Mendes Grance
- Program in Animal Science, Universidade Federal de Mato Grosso do Sul (UFMS), Cx. Postal 549, Campo Grande, MS 79070-900, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|