1
|
Mandigers PJJ, Santifort KM, Lowrie M, Garosi L. Canine paroxysmal dyskinesia-a review. Front Vet Sci 2024; 11:1441332. [PMID: 39119350 PMCID: PMC11308868 DOI: 10.3389/fvets.2024.1441332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Paroxysmal dyskinesias (PDs) are a group of involuntary, hyperkinetic movement disorders that recur episodically and may last seconds to hours. An important feature of PD is that there is no loss of consciousness during the episode. Using a clinical classification, three main types of PDs have been distinguished in canine PD: (1) paroxysmal kinesigenic dyskinesia (PKD) that commences after (sudden) movements, (2) paroxysmal non-kinesigenic dyskinesia (PNKD) not associated with exercise and can occur at rest, and (3) paroxysmal exertion-induced dyskinesia (PED) associated with fatigue. Canine PDs are diagnosed based on the clinical presentation, history, and phenomenology. For the latter, a video recording of the paroxysmal event is extremely useful. An etiological classification of canine PDs includes genetic (proven and suspected), reactive (drug-induced, toxic, metabolic, and dietary), structural (neoplasia, inflammatory, and other structural causes), and unknown causes. In this review, an overview of all reported canine PDs is provided with emphasis on phenotype, genotype, and, where possible, pathophysiology and treatment for each reported canine PD.
Collapse
Affiliation(s)
- Paul J. J. Mandigers
- Department of Clinical Sciences, Expertise Centre of Genetics, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, Netherlands
- Evidensia Referral Hospital Arnhem, Arnhem, Netherlands
| | - Koen M. Santifort
- Department of Clinical Sciences, Expertise Centre of Genetics, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, Netherlands
- Evidensia Referral Hospital Arnhem, Arnhem, Netherlands
- Evidensia Referral Hospital “Hart van Brabant”, Waalwijk, Netherlands
| | - Mark Lowrie
- Movement Referrals: Independent Veterinary Specialists, Preston Brook, United Kingdom
| | | |
Collapse
|
2
|
Baptista da Silva C, Hermans M, Ruiz-Suárez N, Verdoodt F, Bhatti SFM, Hesta M. Long-term nutritional management of an obese German Spitz with paroxysmal dyskinesia, calcium oxalate urolithiasis, and suspected pancreatitis—A case report. Front Vet Sci 2023; 10:1054251. [PMID: 36998641 PMCID: PMC10043185 DOI: 10.3389/fvets.2023.1054251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundTo our knowledge, this is the first description of long-term nutritional management in a dog with paroxysmal dyskinesia.Case summaryAn obese 9-year-old, male entire, German Spitz was presented for dietary management after being diagnosed with calcium oxalate urolithiasis and suspected pancreatitis. Since he was seven years old, the dog has had a history of neurological signs, which were thought to be epileptic seizures. He was treated with phenobarbital and potassium bromide and was clinically controlled. For his nutritional advice, aiming to minimize one of the most important risk factors for the diseases, a weight loss program was started and successfully executed. However, 10 months later, the dog restarted presenting neurological episodes at a high frequency (3x/week). Based on videos and the characteristics of the neurological signs, the dog was diagnosed with paroxysmal dyskinesia. To investigate the role of gluten intake on this patient's neurological signs, a dietary trial with a commercial hypoallergenic diet (gluten-free; hydrolyzed protein) was followed. During the 3 months of the dietary trial, four neurologic episodes related to food indiscretion occurred. Upon the decrease in neurological episodes, the anti-seizure drugs were slowly discontinued. During this period, the dog presented only two neurologic episodes that were related to the days that the anti-seizure drugs were decreased. For 4 months the dog remained episode-free. However, a change in the dog's diet to another gluten-free diet (higher fat) led the dog to vomit and experience another neurologic episode. Once the dog was back to the previous gluten-free diet, it clinically improved, and no other clinical signs were reported by the client during the next 5 months.ConclusionAlthough a relationship between gluten and paroxysmal dyskinesia cannot be confirmed, the dog's improvement after the nutritional management and the removal of the anti-seizure therapy is supportive of dietary association.
Collapse
Affiliation(s)
- Camila Baptista da Silva
- Department of Morphology, Imaging, Orthopaedics, Rehabilitation and Nutrition, Ghent University, Merelbeke, Belgium
- *Correspondence: Camila Baptista da Silva
| | - Michelle Hermans
- Department of Small Animal, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Norberto Ruiz-Suárez
- Department of Morphology, Imaging, Orthopaedics, Rehabilitation and Nutrition, Ghent University, Merelbeke, Belgium
| | - Fien Verdoodt
- Department of Morphology, Imaging, Orthopaedics, Rehabilitation and Nutrition, Ghent University, Merelbeke, Belgium
- Department of Small Animal, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Myriam Hesta
- Department of Morphology, Imaging, Orthopaedics, Rehabilitation and Nutrition, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Rogers CB, Meyerhoff N, Volk HA. Gluten serological testing in various dog breeds with paroxysmal dyskinesia. Front Vet Sci 2023; 10:1119441. [PMID: 36937013 PMCID: PMC10020495 DOI: 10.3389/fvets.2023.1119441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Background Paroxysmal gluten-sensitive dyskinesia is a subtype of movement disorder classified as canine paroxysmal dyskinesia (cPD), which until now has only been described in Border Terriers (BT). Objectives Our aim was to report cPD with positive gluten serology in dog breeds other than BT. Animals Thirty-one client-owned dogs with suspected cPD were examined in this study. Methods The hospital records of the dogs where the serum was tested for modified gliadin peptide immunoglobulin G (gliadin IgG) and tissue transglutaminase-2 immunoglobulin A (transglutaminase-2 IgA) were studied. A total of 31 dogs were presented to the clinic with cPD. A work-up consistent with Tier 1 or Tier 2 confidence levels for canine epilepsy was undertaken in all dogs. The dogs' diets and episode descriptions or videos in 16/31 cases were additionally studied. A follow-up was held to inquire about the dogs' wellbeing and response to the diet changes. Results Fourteen of the 31 dogs tested positive for gluten sensitivity with either gliadin IgG or transglutaminase-2 IgA or both ratios elevated. In seven dogs, serology was classified as questionable with gliadin IgG or transglutaminase ratios mildly elevated. Ten dogs tested negative. According to the owners' reports, five of the dogs that tested positive had no more episodes after changing to a strictly gluten-free diet, with one of the dogs relapsing twice after being fed treats containing gluten. Three dogs had a reduction in episode frequency of >50%, and two dogs had shorter and less intense episodes. Conclusion A considerable subset of dog breeds presented for presumed cPD showed laboratory signs of gluten sensitivity and responded to a gluten-free diet.
Collapse
|
4
|
Cerda-Gonzalez S, Packer RA, Garosi L, Lowrie M, Mandigers PJJ, O'Brien DP, Volk HA. International veterinary canine dyskinesia task force ECVN consensus statement: Terminology and classification. J Vet Intern Med 2021; 35:1218-1230. [PMID: 33769611 PMCID: PMC8162615 DOI: 10.1111/jvim.16108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Movement disorders are a heterogeneous group of clinical syndromes in humans and animals characterized by involuntary movements without changes in consciousness. Canine movement disorders broadly include tremors, peripheral nerve hyperexcitability disorders, paroxysmal dyskinesia, and dystonia. Of these, canine paroxysmal dyskinesias remain one of the more difficult to identify and characterize in dogs. Canine paroxysmal dyskinesias include an array of movement disorders in which there is a recurrent episode of abnormal, involuntary, movement. In this consensus statement, we recommend standard terminology for describing the various movement disorders with an emphasis on paroxysmal dyskinesia, as well as a preliminary classification and clinical approach to reporting cases. In the clinical approach to movement disorders, we recommend categorizing movements into hyperkinetic vs hypokinetic, paroxysmal vs persistent, exercise‐induced vs not related to exercise, using a detailed description of movements using the recommended terminology presented here, differentiating movement disorders vs other differential diagnoses, and then finally, determining whether the paroxysmal dyskinesia is due to either inherited or acquired etiologies. This consensus statement represents a starting point for consistent reporting of clinical descriptions and terminology associated with canine movement disorders, with additional focus on paroxysmal dyskinesia. With consistent reporting and identification of additional genetic mutations responsible for these disorders, our understanding of the phenotype, genotype, and pathophysiology will continue to develop and inform further modification of these recommendations.
Collapse
Affiliation(s)
| | - Rebecca A Packer
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | - Mark Lowrie
- Dovecote Veterinary Hospital, Derby, United Kingdom
| | - Paul J J Mandigers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Dennis P O'Brien
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Devinsky O, Boesch JM, Cerda-Gonzalez S, Coffey B, Davis K, Friedman D, Hainline B, Houpt K, Lieberman D, Perry P, Prüss H, Samuels MA, Small GW, Volk H, Summerfield A, Vite C, Wisniewski T, Natterson-Horowitz B. A cross-species approach to disorders affecting brain and behaviour. Nat Rev Neurol 2019; 14:677-686. [PMID: 30287906 DOI: 10.1038/s41582-018-0074-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Structural and functional elements of biological systems are highly conserved across vertebrates. Many neurological and psychiatric conditions affect both humans and animals. A cross-species approach to the study of brain and behaviour can advance our understanding of human disorders via the identification of unrecognized natural models of spontaneous disorders, thus revealing novel factors that increase vulnerability or resilience, and via the assessment of potential therapies. Moreover, diagnostic and therapeutic advances in human neurology and psychiatry can often be adapted for veterinary patients. However, clinical and research collaborations between physicians and veterinarians remain limited, leaving this wealth of comparative information largely untapped. Here, we review pain, cognitive decline syndromes, epilepsy, anxiety and compulsions, autoimmune and infectious encephalitides and mismatch disorders across a range of animal species, looking for novel insights with translational potential. This comparative perspective can help generate novel hypotheses, expand and improve clinical trials and identify natural animal models of disease resistance and vulnerability.
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, New York University (NYU) Langone Medical Center and NYU School of Medicine, New York, NY, USA.
| | - Jordyn M Boesch
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Barbara Coffey
- Department of Child and Adolescent Psychiatry, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kathryn Davis
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Friedman
- Department of Neurology, New York University (NYU) Langone Medical Center and NYU School of Medicine, New York, NY, USA
| | - Brian Hainline
- Department of Neurology, New York University (NYU) Langone Medical Center and NYU School of Medicine, New York, NY, USA
| | - Katherine Houpt
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Daniel Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Pamela Perry
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Harald Prüss
- Department of Neurology with Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany, and German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | | | - Gary W Small
- University of California-Los Angeles (UCLA) Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Holger Volk
- Veterinary Neurology and Neurosurgery, The Royal Veterinary College, University of London, London, UK
| | - Artur Summerfield
- Institute of Virology and Immunology and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Charles Vite
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Wisniewski
- Department of Neurology, New York University (NYU) Langone Medical Center and NYU School of Medicine, New York, NY, USA
| | - Barbara Natterson-Horowitz
- Department of Ecology and Evolutionary Biology, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
6
|
Myotonia congenita in a Labrador Retriever with truncated CLCN1. Neuromuscul Disord 2018; 28:597-605. [DOI: 10.1016/j.nmd.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 11/20/2022]
|
7
|
Richter A, Hamann M, Wissel J, Volk HA. Dystonia and Paroxysmal Dyskinesias: Under-Recognized Movement Disorders in Domestic Animals? A Comparison with Human Dystonia/Paroxysmal Dyskinesias. Front Vet Sci 2015; 2:65. [PMID: 26664992 PMCID: PMC4672229 DOI: 10.3389/fvets.2015.00065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022] Open
Abstract
Dystonia is defined as a neurological syndrome characterized by involuntary sustained or intermittent muscle contractions causing twisting, often repetitive movements, and postures. Paroxysmal dyskinesias are episodic movement disorders encompassing dystonia, chorea, athetosis, and ballism in conscious individuals. Several decades of research have enhanced the understanding of the etiology of human dystonia and dyskinesias that are associated with dystonia, but the pathophysiology remains largely unknown. The spontaneous occurrence of hereditary dystonia and paroxysmal dyskinesia is well documented in rodents used as animal models in basic dystonia research. Several hyperkinetic movement disorders, described in dogs, horses and cattle, show similarities to these human movement disorders. Although dystonia is regarded as the third most common movement disorder in humans, it is often misdiagnosed because of the heterogeneity of etiology and clinical presentation. Since these conditions are poorly known in veterinary practice, their prevalence may be underestimated in veterinary medicine. In order to attract attention to these movement disorders, i.e., dystonia and paroxysmal dyskinesias associated with dystonia, and to enhance interest in translational research, this review gives a brief overview of the current literature regarding dystonia/paroxysmal dyskinesia in humans and summarizes similar hereditary movement disorders reported in domestic animals.
Collapse
Affiliation(s)
- Angelika Richter
- Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, Leipzig, Germany
| | - Melanie Hamann
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Free University Berlin, Berlin, Germany
| | - Jörg Wissel
- Department of Neurological Rehabilitation and Physical Therapy, Vivantes Hospital Spandau and Humboldt Hospital, Berlin, Germany
- Department of Neurology, Vivantes Hospital Spandau and Humboldt Hospital, Berlin, Germany
| | - Holger A. Volk
- Clinical Science and Services, The Royal Veterinary College, Hatfield, UK
| |
Collapse
|
8
|
Genetic animal models of dystonia: common features and diversities. Prog Neurobiol 2014; 121:91-113. [PMID: 25034123 DOI: 10.1016/j.pneurobio.2014.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 01/13/2023]
Abstract
Animal models are pivotal for studies of pathogenesis and treatment of disorders of the central nervous system which in its complexity cannot yet be modeled in vitro or using computer simulations. The choice of a specific model to test novel therapeutic strategies for a human disease should be based on validity of the model for the approach: does the model reflect symptoms, pathogenesis and treatment response present in human patients? In the movement disorder dystonia, prior to the availability of genetically engineered mice, spontaneous mutants were chosen based on expression of dystonic features, including abnormal muscle contraction, movements and postures. Recent discovery of a number of genes and gene products involved in dystonia initiated research on pathogenesis of the disorder, and the creation of novel models based on gene mutations. Here we present a review of current models of dystonia, with a focus on genetic rodent models, which will likely be first choice in the future either for pathophysiological or for preclinical drug testing or both. In order to help selection of a model depending on expression of a specific feature of dystonia, this review is organized by symptoms and current knowledge of pathogenesis of dystonia. We conclude that albeit there is increasing need for research on pathogenesis of the disease and development of improved models, current models do replicate features of dystonia and are useful tools to develop urgently demanded treatment for this debilitating disorder.
Collapse
|
9
|
Myokymia and neuromyotonia in veterinary medicine: a comparison with peripheral nerve hyperexcitability syndrome in humans. Vet J 2013; 197:153-62. [PMID: 23583699 DOI: 10.1016/j.tvjl.2013.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/12/2013] [Accepted: 03/04/2013] [Indexed: 01/17/2023]
Abstract
Involuntary muscle hyperactivity can result from muscle or peripheral nerve hyperexcitability or central nervous system dysfunction. In humans, diseases causing hyperexcitability of peripheral nerves are grouped together under the term 'peripheral nerve hyperexcitability' (PNH). Hyperexcitability of the peripheral motor nerve can result into five different phenotypic main variants, i.e. fasciculations, myokymia, neuromyotonia, cramps and tetany, each with their own clinical and electromyographic characteristics. This review focuses on the most commonly described expressions of PNH in veterinary medicine, i.e. myokymia and neuromyotonia, in particular in young Jack Russell terriers. Data from 58 veterinary cases with generalized myokymia and neuromyotonia were analyzed, including unpublished treatment and follow-up data on eight Jack Russell terriers from a previous study and seven additional Jack Russell terriers. A dysfunction of the potassium channel or its associated proteins has been found in many human syndromes characterized by PNH, in particular in generalized myokymia and neuromyotonia, and is suspected to occur in veterinary medicine. Potential pathomechanisms of potassium channel dysfunction leading to signs of PNH are broad and include genetic mutations, antibody-mediated attack or ion channel maldistribution due to axonal degeneration or demyelination. A more accurate classification of the different PNH syndromes will facilitate a more rapid diagnosis and guide further research into natural occurring PNH in animals.
Collapse
|
10
|
Schenk HC, Krampfl K, Baumgärtner W, Tipold A. Canine muscle cell culture and consecutive patch-clamp measurements - a new approach to characterize muscular diseases in dogs. BMC Vet Res 2012; 8:227. [PMID: 23171640 PMCID: PMC3539935 DOI: 10.1186/1746-6148-8-227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 11/18/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The recognition of functional muscular disorders, (e.g. channelopathies like Myotonia) is rising in veterinary neurology. Morphologic (e.g. histology) and even genetic based studies in these diseases are not able to elucidate the functional pathomechanism. As there is a deficit of knowledge and skills considering this special task, the aim of the current pilot study was to develop a canine muscle cell culture system derived from muscle biopsies of healthy client-owned dogs, which allows sampling of the biopsies under working conditions in the daily veterinary practise. RESULTS Muscular biopsies from 16 dogs of different age and breed were taken during standard surgical procedures and were stored for one to three days at 4°C in a transport medium in order to simulate shipping conditions. Afterwards biopsies were professionally processed, including harvesting of satellite cells, inducing their proliferation, differentiating them into myotubes and recultivating myotubes after long-term storage in liquid nitrogen. Myogenic origin of cultured cells was determined by immunofluorescence, immunohistology and by their typical morphology after inducing differentiation. Subsequent to the differentiation into myotubes feasibility of patch-clamp recordings of voltage gated ion channels was successfully. CONCLUSION We have developed a canine muscle cell culture system, which allows sampling of biopsies from young and old dogs of different breeds under practical conditions. Patch clamp measurements can be carried out with the cultured myotubes demonstrating potential of these cells as source for functional research.
Collapse
Affiliation(s)
- Henning Christian Schenk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany.
| | | | | | | |
Collapse
|
11
|
Vanhaesebrouck A, Granger N, Garosi L. Extreme generalised muscular stiffness in young labrador retrievers. Vet Rec 2012; 170:161-2. [PMID: 22331787 DOI: 10.1136/vr.e946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|