1
|
Kalfas S, Pour ZK, Claesson R, Johansson A. Leukotoxin A Production and Release by JP2 and Non-JP2 Genotype Aggregatibacter actinomycetemcomitans in Relation to Culture Conditions. Pathogens 2024; 13:569. [PMID: 39057796 PMCID: PMC11279835 DOI: 10.3390/pathogens13070569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aggressive forms of periodontitis, especially in young patients, are often associated with an increased proportion of the Gram-negative bacterium Aggregatibacter actinomycetemcomitans of the microbiota of the affected periodontal sites. One of the virulence factors of A. actinomycetemcomitans is a leukotoxin (LtxA) that induces a pro-inflammatory cell death process in leukocytes. A. actinomycetemcomitans exhibits a large genetic diversity and different genotypes vary in LtxA production capacity. The genotype JP2 is a heavy LtxA producer due to a 530-base pair deletion in the promoter for the toxin genes, and this trait has been associated with an increased pathogenic potential. The present study focused on the production and release of LtxA by different A. actinomycetemcomitans genotypes and serotypes under various growth conditions. Four different strains of this bacterium were cultured in two different culture broths, and the amount of LtxA bound to the bacterial surface or released into the broths was determined. The cultures were examined during the logarithmic and the early stationary phases of growth. The JP2 genotype exhibited the highest LtxA production among the strains tested, and production was not affected by the growth phase. The opposite was observed with the other strains. The composition of the culture broth had no effect on the growth pattern of the tested strains. However, the abundant release of LtxA from the bacterial surface into the culture broth was found in the presence of horse serum. Besides confirming the enhanced leucotoxicity of the JP2 genotype, the study provides new data on LtxA production in the logarithmic and stationary phases of growth and the effect of media composition on the release of the toxin from the bacterial membrane.
Collapse
Affiliation(s)
- Sotirios Kalfas
- Department of Preventive Dentistry, Periodontology and Implant Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Zahra Khayyat Pour
- Department of Odontology, Umeå University, 90187 Umeå, Sweden; (Z.K.P.); (R.C.)
| | - Rolf Claesson
- Department of Odontology, Umeå University, 90187 Umeå, Sweden; (Z.K.P.); (R.C.)
| | - Anders Johansson
- Department of Odontology, Umeå University, 90187 Umeå, Sweden; (Z.K.P.); (R.C.)
| |
Collapse
|
2
|
Heterologously secreted MbxA from Moraxella bovis induces a membrane blebbing response of the human host cell. Sci Rep 2022; 12:17825. [PMID: 36280777 PMCID: PMC9592583 DOI: 10.1038/s41598-022-22480-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2022] [Accepted: 10/14/2022] [Indexed: 01/20/2023] Open
Abstract
Many proteins of the Repeats in Toxins (RTX) protein family are toxins of Gram-negative pathogens including hemolysin A (HlyA) of uropathogenic E. coli. RTX proteins are secreted via Type I secretion systems (T1SS) and adopt their native conformation in the Ca2+-rich extracellular environment. Here we employed the E. coli HlyA T1SS as a heterologous surrogate system for the RTX toxin MbxA from the bovine pathogen Moraxella bovis. In E. coli the HlyA system successfully activates the heterologous MbxA substrate by acylation and secretes the precursor proMbxA and active MbxA allowing purification of both species in quantities sufficient for a variety of investigations. The activating E. coli acyltransferase HlyC recognizes the acylation sites in MbxA, but unexpectedly in a different acylation pattern as for its endogenous substrate HlyA. HlyC-activated MbxA shows host species-independent activity including a so-far unknown toxicity against human lymphocytes and epithelial cells. Using live-cell imaging, we show an immediate MbxA-mediated permeabilization and a rapidly developing blebbing of the plasma membrane in epithelial cells, which is associated with immediate cell death.
Collapse
|
3
|
Hakmi M, Bouricha EM, El Harti J, Amzazi S, Belyamani L, Khanfri JE, Ibrahimi A. Computational modeling and druggability assessment of Aggregatibacter actinomycetemcomitans leukotoxin. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 222:106952. [PMID: 35724475 DOI: 10.1016/j.cmpb.2022.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The leukotoxin (LtxA) of Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) is a protein exotoxin belonging to the repeat-in-toxin family (RTX). Numerous studies have demonstrated that LtxA may play a critical role in the pathogenicity of A. actinomycetemcomitans since hyper-leukotoxic strains have been associated with severe disease. Accordingly, considerable effort has been made to elucidate the mechanisms by which LtxA interacts with host cells and induce their death. However, these attempts have been hampered by the unavailability of a tertiary structure of the toxin, which limits the understanding of its molecular properties and mechanisms. In this paper, we used homology and template free modeling algorithms to build the complete tertiary model of LtxA at atomic level in its calcium-bound Holo-state. The resulting model was refined by energy minimization, validated by Molprobity and ProSA tools, and subsequently subjected to a cumulative 600ns of all-atom classical molecular dynamics simulation to evaluate its structural aspects. The druggability of the proposed model was assessed using Fpocket and FTMap tools, resulting in the identification of four putative cavities and fifteen binding hotspots that could be targeted by rational drug design tools to find new ligands to inhibit LtxA activity.
Collapse
Affiliation(s)
- Mohammed Hakmi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - El Mehdi Bouricha
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Jaouad El Harti
- Therapeutic Chemistry Laboratory, Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Said Amzazi
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Lahcen Belyamani
- Emergency Department, Military Hospital Mohammed V, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Jamal Eddine Khanfri
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
4
|
Looh SC, Soo ZMP, Wong JJ, Yam HC, Chow SK, Hwang JS. Aggregatibacter actinomycetemcomitans as the Aetiological Cause of Rheumatoid Arthritis: What Are the Unsolved Puzzles? Toxins (Basel) 2022; 14:toxins14010050. [PMID: 35051027 PMCID: PMC8777676 DOI: 10.3390/toxins14010050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 01/23/2023] Open
Abstract
Leukotoxin A (LtxA) is the major virulence factor of an oral bacterium known as Aggregatibacter actinomycetemcomitans (Aa). LtxA is associated with elevated levels of anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) patients. LtxA targets leukocytes and triggers an influx of extracellular calcium into cytosol. The current proposed model of LtxA-mediated hypercitrullination involves the dysregulated activation of peptidylarginine deiminase (PAD) enzymes to citrullinate proteins, the release of hypercitrullinated proteins through cell death, and the production of autoantigens recognized by ACPA. Although model-based evidence is yet to be established, its interaction with the host’s immune system sparked interest in the role of LtxA in RA. The first part of this review summarizes the current knowledge of Aa and LtxA. The next part highlights the findings of previous studies on the association of Aa or LtxA with RA aetiology. Finally, we discuss the unresolved aspects of the proposed link between LtxA of Aa and RA.
Collapse
Affiliation(s)
- Sung Cheng Looh
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.C.L.); (H.C.Y.)
| | - Zoey May Pheng Soo
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia; (Z.M.P.S.); (J.J.W.)
| | - Jia Jia Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia; (Z.M.P.S.); (J.J.W.)
| | - Hok Chai Yam
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.C.L.); (H.C.Y.)
| | | | - Jung Shan Hwang
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
5
|
Prince DJ, Patel D, Kachlany SC. Leukotoxin (LtxA/Leukothera) induces ATP expulsion via pannexin-1 channels and subsequent cell death in malignant lymphocytes. Sci Rep 2021; 11:18086. [PMID: 34508147 PMCID: PMC8433231 DOI: 10.1038/s41598-021-97545-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022] Open
Abstract
Leukotoxin (LtxA) (Trade name, Leukothera) is a protein that is secreted from the oral bacterium Aggregatibacter actinomycetemcomitans, which targets and kills activated white blood cells (WBCs) by binding to lymphocyte function associated antigen-1 (LFA-1). Interaction between LtxA and Jurkat T-cells results in cell death and is characterized by increased intracellular Ca2+, activation of caspases, clustering of LtxA and LFA-1 within lipid rafts, and involvement of the Fas death receptor. Here, we show that LtxA can kill malignant lymphocytes via apoptotic and necrotic forms of cell death. We show that LtxA causes activation of caspases and PARP, cleavage of pannexin-1 (Panx1) channels, and expulsion of ATP, ultimately leading to cell death via apoptosis and necrosis. CRISPR-Cas9 mediated knockout (K/O) of Panx1 in Jurkat cells prevented ATP expulsion and resulted in resistance to LtxA for both apoptotic and necrotic forms of death. Resistance to necrosis could only be overcome when supplementing LtxA with endogenous ATP (bzATP). The combination of LtxA and bzATP promoted only necrosis, as no Panx1 K/O cells stained positive for phosphatidylserine (PS) exposure following the combined treatment. Inhibition of LtxA/bzATP-induced necrosis was possible when pretreating Jurkat cells with oATP, a P2X7R antagonist. Similarly, blockage of P2X7Rs with oATP prevented the intracellular mobilization of Ca2+, an important early step in LtxA induced cell death. We show that LtxA is able to kill malignant lymphocytes through an apoptotic death pathway which is potentially linked to a Panx1/P2X7R mediated necrotic form of death. Thus, inhibition of ATP release appears to significantly delay the onset of LtxA induced apoptosis while completely disabling the necrotic death pathway in T-lymphocytes, demonstrating the crucial role of ATP release in LtxA-mediated cell death.
Collapse
Affiliation(s)
- Derek J Prince
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | | | - Scott C Kachlany
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA.
| |
Collapse
|
6
|
Krueger E, Brown AC. Aggregatibacter actinomycetemcomitans leukotoxin: From mechanism to targeted anti-toxin therapeutics. Mol Oral Microbiol 2020; 35:85-105. [PMID: 32061022 PMCID: PMC7359886 DOI: 10.1111/omi.12284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium associated with localized aggressive periodontitis, as well as other systemic diseases. This organism produces a number of virulence factors, all of which provide some advantage to the bacterium. Several studies have demonstrated that clinical isolates from diseased patients, particularly those of African descent, frequently belong to specific clones of A. actinomycetemcomitans that produce significantly higher amounts of a protein exotoxin belonging to the repeats-in-toxin (RTX) family, leukotoxin (LtxA), whereas isolates from healthy patients harbor minimally leukotoxic strains. This finding suggests that LtxA might play a key role in A. actinomycetemcomitans pathogenicity. Because of this correlation, much work over the past 30 years has been focused on understanding the mechanisms by which LtxA interacts with and kills host cells. In this article, we review those findings, highlight the remaining open questions, and demonstrate how knowledge of these mechanisms, particularly the toxin's interactions with lymphocyte function-associated antigen-1 (LFA-1) and cholesterol, enables the design of targeted anti-LtxA strategies to prevent/treat disease.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
7
|
Vega BA, Belinka BA, Kachlany SC. Aggregatibacter actinomycetemcomitans Leukotoxin (LtxA; Leukothera ®): Mechanisms of Action and Therapeutic Applications. Toxins (Basel) 2019; 11:toxins11090489. [PMID: 31454891 PMCID: PMC6784247 DOI: 10.3390/toxins11090489] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is an oral pathogen that produces the RTX toxin, leukotoxin (LtxA; Leukothera®). A. actinomycetemcomitans is strongly associated with the development of localized aggressive periodontitis. LtxA acts as a virulence factor for A. actinomycetemcomitans to subvert the host immune response by binding to the β2 integrin lymphocyte function-associated antigen-1 (LFA-1; CD11a/CD18) on white blood cells (WBCs), causing cell death. In this paper, we reviewed the state of knowledge on LtxA interaction with WBCs and the subsequent mechanisms of induced cell death. Finally, we touched on the potential therapeutic applications of LtxA (trade name Leukothera®) toxin therapy for the treatment of hematological malignancies and immune-mediated diseases.
Collapse
Affiliation(s)
- Brian A Vega
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Actinobac Biomed, Inc., Princeton, NJ 08540, USA
| | | | - Scott C Kachlany
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA.
- Actinobac Biomed, Inc., Princeton, NJ 08540, USA.
| |
Collapse
|
8
|
Aggregatibacter actinomycetemcomitans Leukotoxin (LtxA) Requires Death Receptor Fas, in Addition to LFA-1, To Trigger Cell Death in T Lymphocytes. Infect Immun 2019; 87:IAI.00309-19. [PMID: 31109948 DOI: 10.1128/iai.00309-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2019] [Accepted: 05/10/2019] [Indexed: 11/20/2022] Open
Abstract
Leukotoxin (LtxA) (trade name, Leukothera) is a protein secreted by the oral bacterium Aggregatibacter actinomycetemcomitans A. actinomycetemcomitans is an oral pathogen strongly associated with development of localized aggressive periodontitis. LtxA acts as a virulence factor for A. actinomycetemcomitans by binding to the β2 integrin lymphocyte function-associated antigen-1 (LFA-1; CD11a/CD18) on white blood cells (WBCs) and causing cell death. In addition, because of its specificity for malignant and activated WBCs, LtxA is being investigated as a therapeutic agent for treatment of hematological malignancies and autoimmune diseases. Here, we report the successful generation and characterization of Jurkat T lymphocytes with deletions in CD18, CD11a, and Fas that were engineered using CRISPR/Cas9 gene editing. Using these clones, we demonstrate the specificity of LtxA for cells expressing LFA-1. We also demonstrate the requirement of the cell death receptor Fas for LtxA-mediated cell death in T lymphocytes. We show that LFA-1 and Fas are early events in the LtxA-mediated cell death cascade as caspase activation and mitochondrial perturbation do not occur in the absence of either receptor. To our knowledge, LtxA is the first molecule, other than FasL, known to require the Fas death receptor to initiate cell death. Knowledge of the mechanism of cell death induced by LtxA will facilitate the understanding of LtxA as a bacterial virulence factor and development of it as a potential therapeutic agent.
Collapse
|
9
|
Nygren P, Balashova N, Brown AC, Kieba I, Dhingra A, Boesze-Battaglia K, Lally ET. Aggregatibacter actinomycetemcomitans leukotoxin causes activation of lymphocyte function-associated antigen 1. Cell Microbiol 2018; 21:e12967. [PMID: 30329215 DOI: 10.1111/cmi.12967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2018] [Revised: 09/20/2018] [Accepted: 10/05/2018] [Indexed: 11/29/2022]
Abstract
Repeats-in-toxin leukotoxin (LtxA) produced by the oral bacterium Aggregatibacter actinomycetemcomitans kills human leukocytes in a lymphocyte function-associated antigen 1 (LFA-1, integrin αL /β2 )-dependent manner, although the mechanism for this interaction has not been identified. The LtxA internalisation by LFA-1-expressing cells was explored with florescence resonance energy transfer (FRET) microscopy using a cell line that expresses LFA-1 with a cyan fluorescent protein-tagged cytosolic αL domain and a yellow fluorescent protein-tagged β2 domain. Phorbol 12-myristate 13-acetate activation of LFA-1 caused transient cytosolic domain separation. However, addition of LtxA resulted in an increase in FRET, indicating that LtxA brings the cytosolic domains closer together, compared with the inactive state. Unlike activation, this effect was not transient, lasting more than 30 min. Equilibrium constants of LtxA binding to the cytoplasmic domains of both αL and β2 were determined using surface plasmon resonance. LtxA has a strong affinity for the cytosolic domains of both the αL and β2 subunits (Kd = 15 and 4.2 nM, respectively) and a significantly lower affinity for the cytoplasmic domains of other integrin αM , αX , and β3 subunits (Kd = 400, 180, and 230 nM, respectively), used as controls. Peptide fragments of αL and β2 show that LtxA binds membrane-proximal domain of αL and intermediate domain of β2 .
Collapse
Affiliation(s)
- Patrik Nygren
- Departments of Biochemistry, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nataliya Balashova
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Angela C Brown
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Irene Kieba
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anuradha Dhingra
- Departments of Biochemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Edward T Lally
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Osickova A, Balashova N, Masin J, Sulc M, Roderova J, Wald T, Brown AC, Koufos E, Chang EH, Giannakakis A, Lally ET, Osicka R. Cytotoxic activity of Kingella kingae RtxA toxin depends on post-translational acylation of lysine residues and cholesterol binding. Emerg Microbes Infect 2018; 7:178. [PMID: 30405113 PMCID: PMC6221878 DOI: 10.1038/s41426-018-0179-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022]
Abstract
Kingella kingae is a member of the commensal oropharyngeal flora of young children. Improvements in detection methods have led to the recognition of K. kingae as an emerging pathogen that frequently causes osteoarticular infections in children and a severe form of infective endocarditis in children and adults. Kingella kingae secretes a membrane-damaging RTX (Repeat in ToXin) toxin, RtxA, which is implicated in the development of clinical infections. However, the mechanism by which RtxA recognizes and kills host cells is largely unexplored. To facilitate structure-function studies of RtxA, we have developed a procedure for the overproduction and purification of milligram amounts of biologically active recombinant RtxA. Mass spectrometry analysis revealed the activation of RtxA by post-translational fatty acyl modification on the lysine residues 558 and/or 689 by the fatty-acyltransferase RtxC. Acylated RtxA was toxic to various human cells in a calcium-dependent manner and possessed pore-forming activity in planar lipid bilayers. Using various biochemical and biophysical approaches, we demonstrated that cholesterol facilitates the interaction of RtxA with artificial and cell membranes. The results of analyses using RtxA mutant variants suggested that the interaction between the toxin and cholesterol occurs via two cholesterol recognition/interaction amino acid consensus motifs located in the C-terminal portion of the pore-forming domain of the toxin. Based on our observations, we conclude that the cytotoxic activity of RtxA depends on post-translational acylation of the K558 and/or K689 residues and on the toxin binding to cholesterol in the membrane.
Collapse
Affiliation(s)
- Adriana Osickova
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Nataliya Balashova
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiri Masin
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Miroslav Sulc
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Roderova
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Tomas Wald
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.,Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Evan Koufos
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - En Hyung Chang
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Alexander Giannakakis
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Department of Cell and Molecular Biology at Karolinska Institutet, Stockholm, Sweden
| | - Edward T Lally
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Radim Osicka
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.
| |
Collapse
|
11
|
Brown AC, Boesze-Battaglia K, Balashova NV, Mas Gómez N, Speicher K, Tang HY, Duszyk ME, Lally ET. Membrane localization of the Repeats-in-Toxin (RTX) Leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans. PLoS One 2018; 13:e0205871. [PMID: 30335797 PMCID: PMC6193665 DOI: 10.1371/journal.pone.0205871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
The oral bacterium, Aggregatibacter actinomycetemcomitans, which is associated with localized aggressive periodontitis, as well as systemic infections including endocarditis, produces numerous virulence factors, including a repeats-in-toxin (RTX) protein called leukotoxin (LtxA), which kills human immune cells. The strains of A. actinomycetemcomitans most closely associated with disease have been shown to produce the most LtxA, suggesting that LtxA plays a significant role in the virulence of this organism. LtxA, like many of the RTX toxins, can be divided into four functional domains: an N-terminal hydrophobic domain, which contains a significant fraction of hydrophobic residues and has been proposed to play a role in the membrane interaction of the toxin; the central domain, which contains two lysine residues that are the sites of post-translational acylation; the repeat domain that is characteristic of the RTX toxins, and a C-terminal domain thought to be involved in secretion. In its initial interaction with the host cell, LtxA must bind to both cholesterol and an integrin receptor, lymphocyte function-associated antigen-1 (LFA-1). While both interactions are essential for toxicity, the domains of LtxA involved remain unknown. We therefore undertook a series of experiments, including tryptophan quenching and trypsin digestion, to characterize the structure of LtxA upon interaction with membranes of various lipid compositions. Our results demonstrate that LtxA adopts a U-shaped conformation in the membrane, with the N- and C-terminal domains residing outside of the membrane.
Collapse
Affiliation(s)
- Angela C. Brown
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Nataliya V. Balashova
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Nestor Mas Gómez
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Kaye Speicher
- Wistar Institute, Philadelphia, PA, United States of America
| | - Hsin-Yao Tang
- Wistar Institute, Philadelphia, PA, United States of America
| | - Margaret E. Duszyk
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Edward T. Lally
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Krueger E, Hayes S, Chang EH, Yutuc S, Brown AC. Receptor-Based Peptides for Inhibition of Leukotoxin Activity. ACS Infect Dis 2018; 4:1073-1081. [PMID: 29742342 DOI: 10.1021/acsinfecdis.7b00230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
The Gram-negative bacterium Aggregatibacter actinomycetemcomitans, commonly associated with localized aggressive periodontitis (LAP), secretes an RTX (repeats-in-toxin) protein leukotoxin (LtxA) that targets human white blood cells, an interaction that is driven by its recognition of the lymphocyte function-associated antigen-1 (LFA-1) integrin. In this study, we report on the inhibition of LtxA-LFA-1 binding as an antivirulence strategy to inhibit LtxA-mediated cytotoxicity. Specifically, we designed and synthesized peptides corresponding to the reported LtxA binding domain on LFA-1 and characterized their capability to inhibit LtxA binding to LFA-1 and subsequent cytotoxic activity in human immune cells. We found that several of these peptides, corresponding to sequential β-strands in the LtxA-binding domain of LFA-1, inhibit LtxA activity, demonstrating the effectiveness of this approach. Further investigations into the mechanism by which these peptides inhibit LtxA binding to LFA-1 reveal a correlation between toxin-peptide affinity and LtxA-mediated cytotoxicity, leading to a diminished association between LtxA and LFA-1 on the cell membrane. Our results demonstrate the possibility of using target-based peptides to inhibit LtxA activity, and we expect that a similar approach could be used to hinder the activity of other RTX toxins.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Shannon Hayes
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - En Hyung Chang
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Shailagne Yutuc
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
13
|
Balashova N, Giannakakis A, Brown AC, Koufos E, Benz R, Arakawa T, Tang HY, Lally ET. Generation of a recombinant Aggregatibacter actinomycetemcomitans RTX toxin in Escherichia coli. Gene 2018; 672:106-114. [PMID: 29879499 DOI: 10.1016/j.gene.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2018] [Revised: 05/28/2018] [Accepted: 06/03/2018] [Indexed: 10/14/2022]
Abstract
A leukotoxin (LtxA) that is produced by Aggregatibacter actinomycetemcomitans (Aa) is an important virulence determinant in an aggressive form of periodontitis in adolescents. Understanding the function of this protein at the molecular level is critical to elucidating its role in the disease process. To accomplish genetic analysis of the protein structure and relating these observations to toxin function, we have developed an E. coli expression system for the generation and rapid purification of LtxA. Cloning the structural toxin gene, ltxA, from Aa strain JP2 under control of T7 promoter-1 of pCDFDuet-1 vector resulted in expression of a 114 KDa protein which could be easily purified by the presence of a carboxy-terminal engineered double hexahistidine (double-His6) tag and was immunologically reactive with an anti-LtxA monoclonal antibody, but was not cytotoxic. Cloning a second gene, ltxC, an acyltransferase gene, into the vector under control of T7 promoter-2, resulted in expression of the biologically active LtxA. The toxin was extracted from E. coli inclusion bodies, purified by immobilized metal affinity chromatography, and refolded by dialysis. When compared by circular dichroism (CD) spectroscopy analysis, acylated recombinant LtxA has a secondary structure consistent with wt LtxA, while variations in α-helical structure of nonacylated LtxA were observed. No modifications in α-helix were found upon the toxin's binding with liposome-incorporated cholesterol. Our results suggest that pure, biologically active recombinant LtxA can be isolated by a one-step affinity chromatography from E. coli. The toxic and structural properties of the recombinant LtxA are similar to its wt counterpart.
Collapse
Affiliation(s)
- Nataliya Balashova
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Giannakakis
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Evan Koufos
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Roland Benz
- Department of Life Science and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, a Division of KBI Biopharma, San Diego, CA, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Edward T Lally
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Ji Y, Bachschmid MM, Costello CE, Lin C. S- to N-Palmitoyl Transfer During Proteomic Sample Preparation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:677-85. [PMID: 26729453 PMCID: PMC4794353 DOI: 10.1007/s13361-015-1319-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/22/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 05/06/2023]
Abstract
N-palmitoylation has been reported in a number of proteins and suggested to play an important role in protein localization and functions. However, it remains unclear whether N-palmitoylation is a direct enzyme-catalyzed process, or results from intramolecular S- to N-palmitoyl transfer. Here, using the S-palmitoyl peptide standard, GCpalmLGNAK, as the model system, we observed palmitoyl migration from the cysteine residue to either the peptide N-terminus or the lysine side chain during incubation in both neutral and slightly basic buffers commonly used in proteomic sample preparation. Palmitoyl transfer can take place either intra- or inter-molecularly, with the peptide N-terminus being the preferred migration site, presumably because of its lower basicity. The extent of intramolecular palmitoyl migration was low in the system studied, as it required the formation of an entropically unfavored macrocycle intermediate. Intermolecular palmitoyl transfer, however, remained a tangible problem, and may lead to erroneous reporting of in vivo N-palmitoylation. It was found that addition of the MS-compatible detergent RapiGest could significantly inhibit intermolecular palmitoyl transfer, as well as thioester hydrolysis and DTT-induced thioester cleavage. Finally, palmitoyl transfer from the cysteine residue to the peptide N-terminus can also occur in the gas phase, during collision-induced dissociation, and result in false identification of N-palmitoylation. Therefore, one must be careful with both sample preparation and interpretation of tandem mass spectra in the study of N-palmitoylation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yuhuan Ji
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Markus M Bachschmid
- Cardiovascular Proteomics Center and Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
15
|
Brown AC, Koufos E, Balashova NV, Boesze-Battaglia K, Lally ET. Inhibition of LtxA toxicity by blocking cholesterol binding with peptides. Mol Oral Microbiol 2015; 31:94-105. [PMID: 26352738 DOI: 10.1111/omi.12133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/05/2015] [Indexed: 12/30/2022]
Abstract
The leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans kills host immune cells, allowing the bacterium to establish an ecological niche in the upper aerodigestive tract of its human host. The interaction of LtxA with human immune cells is both complex and multifaceted, involving membrane lipids as well as cell-surface proteins. In the initial encounter with the host cell, LtxA associates with lymphocyte function-associated antigen-1, a cell surface adhesion glycoprotein. However, we have also demonstrated that the toxin associates strongly with the plasma membrane lipids, specifically cholesterol. This association with cholesterol is regulated by a cholesterol recognition amino acid consensus (CRAC) motif, with a sequence of (334) LEEYSKR(340), in the N-terminal region of the toxin. Here, we have demonstrated that removal of cholesterol from the plasma membrane or mutation of the LtxA CRAC motif inhibits the activity of the toxin in THP-1 cells. To inhibit LtxA activity, we designed a short peptide corresponding to the CRAC(336) motif of LtxA (CRAC(336WT)). This peptide binds to cholesterol and thereby inhibits the toxicity of LtxA in THP-1 cells. Previously, we showed that this peptide inhibits LtxA toxicity against Jn.9 (Jurkat) cells, indicating that peptides derived from the cholesterol-binding site of LtxA may have a potential clinical applicability in controlling infections of repeats-in-toxin-producing organisms.
Collapse
Affiliation(s)
- A C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - E Koufos
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - N V Balashova
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E T Lally
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Acylation Enhances, but Is Not Required for, the Cytotoxic Activity of Mannheimia haemolytica Leukotoxin in Bighorn Sheep. Infect Immun 2015. [PMID: 26216418 DOI: 10.1128/iai.00733-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Mannheimia haemolytica causes pneumonia in domestic and wild ruminants. Leukotoxin (Lkt) is the most important virulence factor of the bacterium. It is encoded within the four-gene lktCABD operon: lktA encodes the structural protoxin, and lktC encodes a trans-acylase that adds fatty acid chains to internal lysine residues in the protoxin, which is then secreted from the cell by a type 1 secretion system apparatus encoded by lktB and lktD. It has been reported that LktC-mediated acylation is necessary for the biological effects of the toxin. However, an LktC mutant that we developed previously was only partially attenuated in its virulence for cattle. The objective of this study was to elucidate the role of LktC-mediated acylation in Lkt-induced cytotoxicity. We performed this study in bighorn sheep (Ovis canadensis) (BHS), since they are highly susceptible to M. haemolytica infection. The LktC mutant caused fatal pneumonia in 40% of inoculated BHS. On necropsy, a large number of necrotic polymorphonuclear leukocytes (PMNs) were observed in the lungs. Lkt from the mutant was cytotoxic to BHS PMNs in an in vitro cytotoxicity assay. Flow cytometric analysis of mutant Lkt-treated PMNs revealed the induction of necrosis. Scanning electron microscopic analysis revealed the presence of pores and blebs on mutant-Lkt-treated PMNs. Mass spectrometric analysis confirmed that the mutant secreted an unacylated Lkt. Taken together, these results suggest that acylation is not necessary for the cytotoxic activity of M. haemolytica Lkt but that it enhances the potency of the toxin.
Collapse
|
17
|
DiFranco KM, Johnson-Farley N, Bertino JR, Elson D, Vega BA, Belinka BA, Kachlany SC. LFA-1-targeting Leukotoxin (LtxA; Leukothera®) causes lymphoma tumor regression in a humanized mouse model and requires caspase-8 and Fas to kill malignant lymphocytes. Leuk Res 2015; 39:649-56. [PMID: 25850729 DOI: 10.1016/j.leukres.2015.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2015] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 12/12/2022]
Abstract
Leukotoxin (LtxA) is a protein secreted from the oral bacterium Aggregatibacter actinomycetemcomitans. LtxA binds to the β2 integrin lymphocyte-associated function antigen-1 (LFA-1) on human white blood cells (WBCs), resulting in cell death. LtxA is currently under investigation as a novel therapy (Leukothera(®)) for treating hematologic malignancies and autoimmune diseases. We show here that LtxA has potent in vivo anti-lymphoma activity in mice. LtxA caused complete regression of B-cell tumors and promoted long-term survival of mice. The mechanism of LtxA-mediated killing of malignant lymphocytes was further examined. We found that LtxA kills malignant lymphocytes by a novel mechanism requiring the death receptor Fas and caspase-8, but not Fas ligand (FasL) or caspase-9. We also determined that LFA-1 and Fas are closely associated on the cell surface and this proximity of LFA-1 and Fas could explain how signaling through an integrin can lead to cell death. In addition to LFA-1, this work reveals a second surface protein, Fas, that is critical for LtxA-mediated cell death. Knowledge of the mechanism of cell death induced by LtxA will facilitate the development and understanding of this potent experimental therapeutic agent.
Collapse
Affiliation(s)
- Kristina M DiFranco
- From the Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, United States
| | | | - Joseph R Bertino
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States
| | - David Elson
- From the Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, United States
| | - Brian A Vega
- From the Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, United States
| | | | - Scott C Kachlany
- From the Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, United States; Actinobac Biomed, Inc., North Brunswick, NJ 08902, United States.
| |
Collapse
|
18
|
Abstract
Oral colonising bacteria are highly adapted to the various environmental niches harboured within the mouth, whether that means while contributing to one of the major oral diseases of caries, pulp infections, or gingival/periodontal disease or as part of a commensal lifestyle. Key to these infections is the ability to adhere to surfaces via a range of specialised adhesins targeted at both salivary and epithelial proteins, their glycans and to form biofilm. They must also resist the various physical stressors they are subjected to, including pH and oxidative stress. Possibly most strikingly, they have developed the ability to harvest both nutrient sources provided by the diet and those derived from the host, such as protein and surface glycans. We have attempted to review recent developments that have revealed much about the molecular mechanisms at work in shaping the physiology of oral bacteria and how we might use this information to design and implement new treatment strategies.
Collapse
|
19
|
Acyl Transfer from Membrane Lipids to Peptides Is a Generic Process. J Mol Biol 2013; 425:4379-87. [DOI: 10.1016/j.jmb.2013.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2013] [Revised: 06/24/2013] [Accepted: 07/10/2013] [Indexed: 12/24/2022]
|
20
|
Abstract
A fundamental aspect of most infectious diseases is the need for the invading microbe to proliferate in the host. However, little is known about the metabolic pathways required for pathogenic microbes to colonize and persist in their hosts. In this study, we used RNA sequencing (RNA-seq) to generate a high-resolution transcriptome of the opportunistic pathogen Aggregatibacter actinomycetemcomitans in vivo. We identified 691 A. actinomycetemcomitans transcriptional start sites and 210 noncoding RNAs during growth in vivo and as a biofilm in vitro. Compared to in vitro biofilm growth on a defined medium, ∼14% of the A. actinomycetemcomitans genes were differentially regulated in vivo. A disproportionate number of genes coding for proteins involved in metabolic pathways were differentially regulated in vivo, suggesting that A. actinomycetemcomitans in vivo metabolism is distinct from in vitro growth. Mutational analyses of differentially regulated genes revealed that formate dehydrogenase H and fumarate reductase are important A. actinomycetemcomitans fitness determinants in vivo. These results not only provide a high-resolution genomic analysis of a bacterial pathogen during in vivo growth but also provide new insight into metabolic pathways required for A. actinomycetemcomitans in vivo fitness.
Collapse
|
21
|
So CH, Michal A, Komolov KE, Luo J, Benovic JL. G protein-coupled receptor kinase 2 (GRK2) is localized to centrosomes and mediates epidermal growth factor-promoted centrosomal separation. Mol Biol Cell 2013; 24:2795-806. [PMID: 23904266 PMCID: PMC3771943 DOI: 10.1091/mbc.e13-01-0013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptor kinases (GRKs) play a central role in regulating receptor signaling, but recent studies suggest a broader role in modulating normal cellular functions. For example, GRK5 has been shown to localize to centrosomes and regulate microtubule nucleation and cell cycle progression. Here we demonstrate that GRK2 is also localized to centrosomes, although it has no role in centrosome duplication or microtubule nucleation. Of interest, knockdown of GRK2 inhibits epidermal growth factor receptor (EGFR)-mediated separation of duplicated centrosomes. This EGFR/GRK2-mediated process depends on the protein kinases mammalian STE20-like kinase 2 (Mst2) and Nek2A but does not involve polo-like kinase 1. In vitro analysis and dominant-negative approaches reveal that GRK2 directly phosphorylates and activates Mst2. Collectively these findings demonstrate that GRK2 is localized to centrosomes and plays a central role in mitogen-promoted centrosome separation most likely via its ability to phosphorylate Mst2.
Collapse
Affiliation(s)
- Christopher H So
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | | | | | |
Collapse
|
22
|
Brown AC, Balashova NV, Epand RM, Epand RF, Bragin A, Kachlany SC, Walters MJ, Du Y, Boesze-Battaglia K, Lally ET. Aggregatibacter actinomycetemcomitans leukotoxin utilizes a cholesterol recognition/amino acid consensus site for membrane association. J Biol Chem 2013; 288:23607-21. [PMID: 23792963 DOI: 10.1074/jbc.m113.486654] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans produces a repeats-in-toxin (RTX) leukotoxin (LtxA) that selectively kills human immune cells. Binding of LtxA to its β2 integrin receptor (lymphocyte function-associated antigen-1 (LFA-1)) results in the clustering of the toxin·receptor complex in lipid rafts. Clustering occurs only in the presence of LFA-1 and cholesterol, and LtxA is unable to kill cells lacking either LFA-1 or cholesterol. Here, the interaction of LtxA with cholesterol was measured using surface plasmon resonance and differential scanning calorimetry. The binding of LtxA to phospholipid bilayers increased by 4 orders of magnitude in the presence of 40% cholesterol relative to the absence of cholesterol. The affinity was specific to cholesterol and required an intact secondary structure. LtxA contains two cholesterol recognition/amino acid consensus (CRAC) sites; CRAC(336) ((333)LEEYSKR(339)) is highly conserved among RTX toxins, whereas CRAC(503) ((501)VDYLK(505)) is unique to LtxA. A peptide corresponding to CRAC(336) inhibited the ability of LtxA to kill Jurkat (Jn.9) cells. Although peptides corresponding to both CRAC(336) and CRAC(503) bind cholesterol, only CRAC(336) competitively inhibited LtxA binding to this sterol. A panel of full-length LtxA CRAC mutants demonstrated that an intact CRAC(336) site was essential for LtxA cytotoxicity. The conservation of CRAC(336) among RTX toxins suggests that this mechanism may be conserved among RTX toxins.
Collapse
Affiliation(s)
- Angela C Brown
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mlc is a transcriptional activator with a key role in integrating cyclic AMP receptor protein and integration host factor regulation of leukotoxin RNA synthesis in Aggregatibacter actinomycetemcomitans. J Bacteriol 2013; 195:2284-97. [PMID: 23475968 DOI: 10.1128/jb.02144-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans, a periodontal pathogen, synthesizes leukotoxin (LtxA), a protein that helps the bacterium evade the host immune response. Transcription of the ltxA operon is induced during anaerobic growth. The cyclic AMP (cAMP) receptor protein (CRP) indirectly increases ltxA expression, but the intermediary regulator is unknown. Integration host factor (IHF) binds to and represses the leukotoxin promoter, but neither CRP nor IHF is responsible for the anaerobic induction of ltxA RNA synthesis. Thus, we have undertaken studies to identify other regulators of leukotoxin transcription and to demonstrate how these proteins work together to modulate leukotoxin synthesis. First, analyses of ltxA RNA expression from defined leukotoxin promoter mutations in the chromosome identify positions -69 to -35 as the key control region and indicate that an activator protein modulates leukotoxin transcription. We show that Mlc, which is a repressor in Escherichia coli, functions as a direct transcriptional activator in A. actinomycetemcomitans; an mlc deletion mutant reduces leukotoxin RNA synthesis, and recombinant Mlc protein binds specifically at the -68 to -40 region of the leukotoxin promoter. Furthermore, we show that CRP activates ltxA expression indirectly by increasing the levels of Mlc. Analyses of Δmlc, Δihf, and Δihf Δmlc strains demonstrate that Mlc can increase RNA polymerase (RNAP) activity directly and that IHF represses ltxA RNA synthesis mainly by blocking Mlc binding. Finally, a Δihf Δmlc mutant still induces ltxA during anaerobic growth, indicating that there are additional factors involved in leukotoxin transcriptional regulation. A model for the coordinated regulation of leukotoxin transcription is presented.
Collapse
|
24
|
Reinholdt J, Poulsen K, Brinkmann CR, Hoffmann SV, Stapulionis R, Enghild JJ, Jensen UB, Boesen T, Vorup-Jensen T. Monodisperse and LPS-free Aggregatibacter actinomycetemcomitans leukotoxin: interactions with human β2 integrins and erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:546-58. [PMID: 23234758 DOI: 10.1016/j.bbapap.2012.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/05/2012] [Revised: 11/15/2012] [Accepted: 12/03/2012] [Indexed: 01/08/2023]
Abstract
Aggregatibacter actinomycetemcomitans is a gram-negative, facultatively anaerobic cocco-bacillus and a frequent member of the human oral flora. It produces a leukotoxin, LtxA, belonging to the repeats-in-toxin (RTX) family of bacterial cytotoxins. LtxA efficiently kills neutrophils and mononuclear phagocytes. The known receptor for LtxA on leukocytes is integrin α(L)β(2) (LFA-1 or CD11a/CD18). However, the molecular mechanisms involved in LtxA-mediated cytotoxicity are poorly understood, partly because LtxA has proven difficult to prepare for experiments as free of contaminants and with its native structure. Here, we describe a protocol for the purification of LtxA from bacterial culture supernatant, which does not involve denaturing procedures. The purified LtxA was monodisperse, well folded as judged by the combined use of synchrotron radiation circular dichroism spectroscopy (SRCD) and in silico prediction of the secondary structure content, and free of bacterial lipopolysaccharide. The analysis by SRCD and similarity to a lipase from Pseudomonas with a known three dimensional structure supports the presence of a so-called beta-ladder domain in the C-terminal part of LtxA. LtxA rapidly killed K562 target cells transfected to express β(2) integrin. Cells expressing α(M)β(2) (CD11b/CD18) or α(X)β(2) (CD11c/CD18) were killed as efficiently as cells expressing α(L)β(2). Erythrocytes, which do not express β(2) integrins, were lysed more slowly. In ligand blotting experiments, LtxA bound only to the β(2) chain (CD18). These data support a previous suggestion that CD18 harbors the major binding site for LtxA as well as identifies integrins α(M)β(2) and α(X)β(2) as novel receptors for LtxA.
Collapse
|
25
|
Brown AC, Boesze-Battaglia K, Du Y, Stefano FP, Kieba IR, Epand RF, Kakalis L, Yeagle PL, Epand RM, Lally ET. Aggregatibacter actinomycetemcomitans leukotoxin cytotoxicity occurs through bilayer destabilization. Cell Microbiol 2012; 14:869-81. [PMID: 22309134 DOI: 10.1111/j.1462-5822.2012.01762.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
Abstract
The Gram-negative bacterium, Aggregatibacter actinomycetemcomitans, is a common inhabitant of the human upper aerodigestive tract. The organism produces an RTX (Repeats in ToXin) toxin (LtxA) that kills human white blood cells. LtxA is believed to be a membrane-damaging toxin, but details of the cell surface interaction for this and several other RTX toxins have yet to be elucidated. Initial morphological studies suggested that LtxA was bending the target cell membrane. Because the ability of a membrane to bend is a function of its lipid composition, we assessed the proficiency of LtxA to release of a fluorescent dye from a panel of liposomes composed of various lipids. Liposomes composed of lipids that form nonlamellar phases were susceptible to LtxA-induced damage while liposomes composed of lipids that do not form non-bilayer structures were not. Differential scanning calorimetry demonstrated that the toxin decreased the temperature at which the lipid transitions from a bilayer to a nonlamellar phase, while (31) P nuclear magnetic resonance studies showed that the LtxA-induced transition from a bilayer to an inverted hexagonal phase occurs through the formation of an isotropic intermediate phase. These results indicate that LtxA cytotoxicity occurs through a process of membrane destabilization.
Collapse
Affiliation(s)
- Angela C Brown
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tang G, Kawai T, Komatsuzawa H, Mintz KP. Lipopolysaccharides mediate leukotoxin secretion in Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2011; 27:70-82. [PMID: 22394466 DOI: 10.1111/j.2041-1014.2011.00632.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023]
Abstract
We previously reported that lipopolysaccharide (LPS) -related sugars are associated with the glycosylation of the collagen adhesin EmaA, a virulence determinant of Aggregatibacter actinomycetemcomitans. In this study, the role of LPS in the secretion of other virulence factors was investigated. The secretion of the epithelial adhesin Aae, the immunoglobulin Fc receptor Omp34 and leukotoxin were examined in a mutant strain with inactivated TDP-4-keto-6-deoxy-d-glucose 3,5-epimerase (rmlC), which resulted in altered O-antigen polysaccharides (O-PS) of LPS. The secretion of Aae and Omp34 was not affected. However, the leukotoxin secretion, which is mediated by the TolC-dependent type I secretion system, was altered in the rmlC mutant. The amount of secreted leukotoxin in the bacterial growth medium was reduced nine-fold, with a concurrent four-fold increase of the membrane-bound toxin in the mutant compared with the wild-type strain. The altered leukotoxin secretion pattern was restored to the wild-type by complementation of the rmlC gene in trans. Examination of the ltxA mRNA levels indicated that the leukotoxin secretion was post-transcriptionally regulated in the modified O-PS containing strain. The mutant strain also showed increased resistance to vancomycin, an antibiotic dependent on TolC for internalization, indicating that TolC was affected. Overexpression of TolC in the rmlC mutant resulted in an increased TolC level in the outer membrane but did not restore the leukotoxin secretion profile to the wild-type phenotype. The data suggest that O-PS mediate leukotoxin secretion in A. actinomycetemcomitans.
Collapse
Affiliation(s)
- G Tang
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
27
|
Laugisch O, Schacht M, Guentsch A, Kantyka T, Sroka A, Stennicke HR, Pfister W, Sculean A, Potempa J, Eick S. Periodontal pathogens affect the level of protease inhibitors in gingival crevicular fluid. Mol Oral Microbiol 2011; 27:45-56. [PMID: 22230465 DOI: 10.1111/j.2041-1014.2011.00631.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
In periodontitis, an effective host-response is primarily related to neutrophils loaded with serine proteases, including elastase (NE) and protease 3 (PR3), the extracellular activity of which is tightly controlled by endogenous inhibitors. In vitro these inhibitors are degraded by gingipains, cysteine proteases produced by Porphyromonas gingivalis. The purpose of this study was to determine the level of selected protease inhibitors in gingival crevicular fluid (GCF) in relation to periodontal infection. The GCF collected from 31 subjects (nine healthy controls, seven with gingivitis, five with aggressive periodontitis and 10 with chronic periodontitis) was analyzed for the levels of elafin and secretory leukocyte protease inhibitor (SLPI), two main tissue-derived inhibitors of neutrophil serine proteases. In parallel, activity of NE, PR3 and arginine-specific gingipains (Rgps) in GCF was measured. Finally loads of P. gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola were determined. The highest values of elafin were found in aggressive periodontitis and the lowest in controls. The quantity of elafin correlated positively with the load of P. gingivalis, Ta. forsythia and Tr. denticola, as well as with Rgps activity. In addition, NE activity was positively associated with the counts of those bacterial species, but not with the amount of elafin. In contrast, the highest concentrations of SLPI were found in periodontally healthy subjects whereas amounts of this inhibitor were significantly decreased in patients infected with P. gingivalis. Periodontopathogenic bacteria stimulate the release of NE and PR3, which activities escape the control through degradation of locally produced inhibitors (SLPI and elafin) by host-derived and bacteria-derived proteases.
Collapse
Affiliation(s)
- O Laugisch
- Department of Periodontology, Dental School, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|