1
|
Vieira-Neto A, Lean IJ, Santos JEP. Periparturient Mineral Metabolism: Implications to Health and Productivity. Animals (Basel) 2024; 14:1232. [PMID: 38672379 PMCID: PMC11047658 DOI: 10.3390/ani14081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mineral metabolism, in particular Ca, and to a lesser extent phosphorus (P) and magnesium (Mg), is altered with the onset of lactation because of extensive irreversible loss to synthesize colostrum and milk. The transient reduction in the concentration of Ca in blood, particularly when it lasts days, increases the risk of mineral-related disorders such as hypocalcemia and, to a lesser extent, hypophosphatemia. Although the incidence of clinical hypocalcemia can be reduced by prepartum dietary interventions, subclinical hypocalcemia remains prevalent, affecting up to 60% of the dairy cows in the first 3 d postpartum. More importantly, strong associations exist between hypocalcemia and increased susceptibility to other peripartum diseases and impaired reproductive performance. Mechanistic experiments have demonstrated the role of Ca on innate immune response in dairy cows, which presumably predisposes them to other diseases. Hypocalcemia is not related to inadequate Ca intake as prepartum diets marginal to deficient in Ca reduce the risk of the disease. Therefore, the understanding of how Ca homeostasis is regulated, in particular how calciotropic hormones such as parathyroid hormone and 1,25-dihydroxyvitamin D3, affect blood Ca concentrations, gastrointestinal Ca absorption, bone remodeling, and renal excretion of Ca become critical to develop novel strategies to prevent mineral imbalances either by nutritional or pharmacological interventions. A common method to reduce the risk of hypocalcemia is the manipulation of the prepartum dietary cation-anion difference. Feeding acidogenic diets not only improves Ca homeostasis and reduces hypocalcemia, but also reduces the risk of uterine diseases and improves productive performance. Feeding diets that induce a negative Ca balance in the last weeks of gestation also reduce the risk of clinical hypocalcemia, and recent work shows that the incorporation of mineral sequestering agents, presumably by reducing the absorption of P and Ca prepartum, increases blood Ca at calving, although benefits to production and health remain to be shown. Alternative strategies to minimize subclinical hypocalcemia with the use of vitamin D metabolites either fed prepartum or as a pharmacological agent administered immediately after calving have shown promising results in reducing hypocalcemia and altering immune cell function, which might prove efficacious to prevent diseases in early lactation. This review summarizes the current understanding of Ca homeostasis around parturition, the limited knowledge of the exact mechanisms for gastrointestinal Ca absorption in bovine, the implications of hypocalcemia on the health of dairy cows, and discusses the methods to minimize the risk of hypocalcemia and their impacts on productive performance and health in dairy cows.
Collapse
Affiliation(s)
- Achilles Vieira-Neto
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Ian J. Lean
- Scibus, Camden, NSW 2570, Australia;
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - José Eduardo P. Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
- DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Liu L, Lu K, Xie J, Che H, Li H, Wancui X. Melanin from Sepia pharaonis ink alleviates mucosal damage and reduces inflammation to prevent alcohol-induced gastric ulcers. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
3
|
Batista C, Sales VM, Merino VF, Bader M, Feres T, Pesquero JB. Role of Endothelial Kinin B1 Receptor on the Membrane Potential of Transgenic Rat Aorta. Physiol Res 2022. [DOI: 10.33549/physiolres.934904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The kinin receptors are classically involved in inflammation, pain and sepsis. The effects of the kinin B1 receptor agonist des-Arg9-bradykinin (DBK) and lipopolysaccharide (LPS) were investigated by comparing the membrane potential responses of aortic rings from transgenic rats overexpressing the kinin B1 receptor (B1R) in the endothelium (TGR(Tie2B1)) and Sprague Dawley (SD) rats. No difference in the resting membrane potential in the aorta’s smooth muscle from the transgenic and SD rats was observed. The aorta rings from SD rats hyperpolarized only to LPS but not to DBK, whereas the aorta rings from TGR(Tie2B1) responded by the administration of both drugs. DBK and LPS responses were inhibited by the B1 receptor antagonist R715 and by iberiotoxin in both cases. Thapsigargin induced a hyperpolarization in the smooth muscle of SD rats that was not reversed by R715, but was reversed by iberiotoxin and this hyperpolarization was further augmented by DBK administration. These results show that the model of overexpression of vascular B1 receptors in the TGR(Tie2B1) rats represent a good model to study the role of functional B1 receptors in the absence of any pathological stimulus. The data also show that KCa channels are the final mediators of the hyperpolarizing responses to DBK and LPS. In addition, we suggest an interaction between the B1R and TLR4, since the hyperpolarization induced by LPS could be abolished in the presence of R715.
Collapse
Affiliation(s)
- C Batista
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil. E-mail:
| | | | | | | | | | - JB Pesquero
- Department of Biophysics, Universidade Federal de São Paulo, 04023-062, São Paulo, SP, Brazil. E-mail:
| |
Collapse
|
4
|
Layunta E, Forcén R, Grasa L. TLR2 and TLR4 Modulate Mouse Ileal Motility by the Interaction with Muscarinic and Nicotinic Receptors. Cells 2022; 11:cells11111791. [PMID: 35681486 PMCID: PMC9180263 DOI: 10.3390/cells11111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic functional bowel disorder characterized by intestinal dysmotility. Changes in intestinal microbiota (dysbiosis) can lead to alterations in neuro-muscular functions in the gut. Toll-like receptors (TLRs) 2 and 4 recognize intestinal bacteria and are involved in the motor response induced by gastrointestinal (GI) neurotransmitters. Acetylcholine (ACh) is a well-known neurotransmitter involved in the regulation of GI motility. This study aimed to evaluate the role of TLR2 and TLR4 in the intestinal motor-response induced by ACh in the mouse ileum, as well as the expression and function of the muscarinic and nicotinic ACh receptors. Muscle contractility studies showed that the contractions induced by ACh were significantly lower in TLR2−/− and TLR4−/− with respect to WT mice. In WT mice, the contractions induced by ACh were reduced in the presence of AF-DX AF-DX 116 (a muscarinic ACh receptor (mAChR) M2 antagonist), 4-DAMP (a mAChR M3 antagonist), mecamylamine (a nicotinic AChR receptor (nAChR) α3β4 antagonist) and α-bungarotoxin (a nAChR α7 antagonist). In TLR2−/− mice, the contractions induced by ACh were increased by AF-DX 116 and mecamylamine. In TLR4−/− mice, the contractions induced by ACh were reduced by α-bungarotoxin and 4-DAMP. The mRNA and protein expressions of M3 and α3 receptors were diminished in the ileum from TLR2−/− and TLR4−/− with respect to WT mice. However, the levels of mRNA and protein of β4 were diminished only in TLR4−/− but not in TLR2−/− mice. In conclusion, our results show that TLR2 and TLR4 modulates the motor responses to ACh in the mouse ileum. TLR2 acts on muscarinic M2 and M3 and nicotinic α3β4 ACh receptors, while TLR4 acts on muscarinic M3 and nicotinic α3β4 and α7 ACh receptors.
Collapse
Affiliation(s)
- Elena Layunta
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Sweden;
| | - Raquel Forcén
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain;
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain;
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2—(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
5
|
Carotti S, Guarino MPL, Vespasiani-Gentilucci U, Morini S. Starring role of toll-like receptor-4 activation in the gut-liver axis. World J Gastrointest Pathophysiol 2015; 6:99-109. [PMID: 26600967 PMCID: PMC4644892 DOI: 10.4291/wjgp.v6.i4.99] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/21/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023] Open
Abstract
Since the introduction of the term “gut-liver axis”, many studies have focused on the functional links of intestinal microbiota, barrier function and immune responses to liver physiology. Intestinal and extra-intestinal diseases alter microbiota composition and lead to dysbiosis, which aggravates impaired intestinal barrier function via increased lipopolysaccharide translocation. The subsequent increased passage of gut-derived product from the intestinal lumen to the organ wall and bloodstream affects gut motility and liver biology. The activation of the toll-like receptor 4 (TLR-4) likely plays a key role in both cases. This review analyzed the most recent literature on the gut-liver axis, with a particular focus on the role of TLR-4 activation. Findings that linked liver disease with dysbiosis are evaluated, and links between dysbiosis and alterations of intestinal permeability and motility are discussed. We also examine the mechanisms of translocated gut bacteria and/or the bacterial product activation of liver inflammation and fibrogenesis via activity on different hepatic cell types.
Collapse
|
6
|
Grasa L, Abecia L, Forcén R, Castro M, de Jalón JAG, Latorre E, Alcalde AI, Murillo MD. Antibiotic-Induced Depletion of Murine Microbiota Induces Mild Inflammation and Changes in Toll-Like Receptor Patterns and Intestinal Motility. MICROBIAL ECOLOGY 2015; 70:835-48. [PMID: 25896428 DOI: 10.1007/s00248-015-0613-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/02/2015] [Indexed: 05/21/2023]
Abstract
We examine the impact of changes in microbiota induced by antibiotics on intestinal motility, gut inflammatory response, and the function and expression of toll-like receptors (TLRs). Alterations in mice intestinal microbiota were induced by antibiotics and evaluated by q-PCR and DGGE analysis. Macroscopic and microscopic assessments of the intestine were performed in control and antibiotic-treated mice. TLR expression was determined in the intestine by q-RT-PCR. Fecal parameter measurements, intestinal transit, and muscle contractility studies were performed to evaluate alterations in intestinal motility. Antibiotics reduced the total bacterial quantity 1000-fold, and diversity was highly affected by treatment. Mice with microbiota depletion had less Peyer's patches, enlarged ceca, and mild gut inflammation. Treatment with antibiotics increased the expression of TLR4, TLR5, and TLR9 in the ileum and TLR3, TLR4, TLR6, TLR7, and TLR8 in the colon, and it reduced the expression of TLR2, TLR3, and TLR6 in the ileum and TLR2 and TLR9 in the colon. Antibiotics decreased fecal output, delayed the whole gut and colonic transit, and reduced the spontaneous contractions and the response to acetylcholine (ACh) in the ileum and colon. Activation of TLR4 by lipopolysaccharide (LPS) reverted the reduction of the spontaneous contractions induced by antibiotics in the ileum. Activation of TLR4 by LPS and TLR5 by flagellin reduced the response to ACh in the ileum in control mice. Our results confirm the role of the microbiota in the regulation of TLRs expression and shed light on the microbiota connection to motor intestinal alterations.
Collapse
Affiliation(s)
- Laura Grasa
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain.
| | - Leticia Abecia
- Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Raquel Forcén
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| | - Marta Castro
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| | | | - Eva Latorre
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| | - Ana Isabel Alcalde
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| | - María Divina Murillo
- Department of Pharmacology and Physiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| |
Collapse
|
7
|
Gonzalo S, Valero MS, Martínez de Salinas F, Vergara C, Arruebo MP, Plaza MÁ, Murillo MD, Grasa L. Roles of Toll-Like Receptor 4, IκB Kinase, and the Proteasome in the Intestinal Alterations Caused by Sepsis. Dig Dis Sci 2015; 60:1223-31. [PMID: 25371155 DOI: 10.1007/s10620-014-3418-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/29/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Lipopolysaccharide decreases intestinal contractility and induces the production of cytokines, which play an important role in the pathogenesis of sepsis. AIM The objective of the present study was to examine the role of Toll-like receptor 4, IκB kinase, and the proteasome in the intestinal alterations induced by lipopolysaccharide. METHODS Sepsis was induced in rabbits by intravenous injection of lipopolysaccharide. Contractility studies of rabbit duodenum were performed in an organ bath. Expressions of interleukin-1β, interleukin-6, interleukin-8, interleukin-10, IκB kinase-α, IκB kinase-β, IκB kinase-γ, and the proteasome mRNA were determined by RT-PCR on rabbit duodenum. RESULTS Neomycin and polymyxin B (Toll-like receptor 4 inhibitors), IKK NBD peptide (IκB kinase complex inhibitor), and MG-132 (proteasome inhibitor) blocked partially the effects of lipopolysaccharide on the acetylcholine-, prostaglandin E2-, substance P-, and KCl-induced contractions in the longitudinal and circular smooth muscle of rabbit duodenum. Lipopolysaccharide increased the mRNA expression of interleukin-6 and interleukin-8 in duodenal tissue, and this effect was partly reversed by neomycin, polymyxin B, IKK NBD peptide, and MG-132. IκB kinase-α, IκB kinase-β, IκB kinase-γ, and the proteasome mRNA expressions was not affected by lipopolysaccharide treatment. CONCLUSIONS Toll-like receptor 4, the IκB kinase complex, and the proteasome could be therapeutic targets in the treatment of sepsis symptoms in the intestine.
Collapse
Affiliation(s)
- Sergio Gonzalo
- Department of Pharmacology and Physiology, Faculty of Veterinary Medicine, University of Zaragoza, c/ Miguel Servet 177, 50013, Saragossa, Spain,
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ihara E, Yu Q, Chappellaz M, MacDonald JA. ERK and p38MAPK pathways regulate myosin light chain phosphatase and contribute to Ca2+ sensitization of intestinal smooth muscle contraction. Neurogastroenterol Motil 2015; 27:135-46. [PMID: 25557225 DOI: 10.1111/nmo.12491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/20/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated protein kinase (ERK) and p38MAPK, are known regulators of smooth muscle contractility. The contraction of smooth muscle is mainly regulated by the phosphorylation of regulatory light chains of myosin II (LC20), which is driven by the balance between myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). We hypothesized that one possible mechanism for MAPK-dependent modulation of intestinal smooth muscle contractility is via the regulation of MLCP activity. METHODS Contractile responses to carbachol (CCh) and effects of MAPK inhibitors on CCh-induced contractions were assessed with isolated rat ileal longitudinal smooth muscle strips. Biochemical assessments of MLCP activity and myosin phosphatse targeting subunit (MYPT1) and CPI-17 phosphorylations were completed. KEY RESULTS Treatment of ileal smooth muscle with PD98059 (10 μM; MEK inhibitor) or SB203580 (10 μM; p38MAPK inhibitor) significantly inhibited CCh-induced contractile force. Decreased MLCP activity was observed during sustained contractions induced by CCh; the MLCP activity was recovered by treatment with PD98059 and SB203580. However, MYPT1 (Thr697 and Thr855) and CPI-17 (Thr38) phosphorylations were not affected. Application of ML-7 (MLCK inhibitor) during CCh-induced sustained contraction elicited an MLCP-dependent relaxation, the rate of which was accelerated by application of PD98059 and SB203580 with proportional changes in LC20 phosphorylation levels but not MYPT1 phosphorylation (Thr697 or Thr855). CONCLUSIONS & INFERENCES ERK and p38MAPK contribute to CCh-induced sustained contraction in a LC20 phosphorylation dependent manner. Moreover, both kinases inhibit MLCP activity possibly by a novel mechanism.
Collapse
Affiliation(s)
- E Ihara
- Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB, Canada; Department of Medicine and Bioregulatory Science, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | |
Collapse
|
9
|
Guarino MPL, Sessa R, Altomare A, Cocca S, Di Pietro M, Carotti S, Schiavoni G, Alloni R, Emerenziani S, Morini S, Severi C, Cicala M. Human colonic myogenic dysfunction induced by mucosal lipopolysaccharide translocation and oxidative stress. Dig Liver Dis 2013; 45:1011-6. [PMID: 23891549 DOI: 10.1016/j.dld.2013.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/03/2013] [Accepted: 06/08/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Impairment of gastrointestinal motility is frequently observed in patients with severe infection. AIM To assess whether exposure of human colonic mucosa to pathogenic lipopolysaccharide affects smooth muscle contractility. METHODS Human colonic mucosa and submucosa were sealed between two chambers, with the luminal side facing upwards and covered with Krebs solution, with or without lipopolysaccharide from a pathogenic strain of Escherichia coli (O111:B4; 1,000 ng/mL), and with the submucosal side facing downwards into Krebs. The solution on the submucosal side was collected following 30-min mucosal exposure to Krebs without (N-undernatant) or with lipopolysaccharide (lipopolysaccharide undernatant). Undernatants were tested for lipopolysaccharide and hydrogen peroxide levels and for their effects on smooth muscle cells in the presence of catalase, indomethacin or MG132. RESULTS Smooth muscle cells incubated with N-undernatant had a maximal contraction of 32 ± 5% that was reduced by 62.9 ± 12% when exposed to lipopolysaccharide undernatant. Inhibition of contraction was reversed by catalase, indomethacin and MG132. Lipopolysaccharide levels were higher in the lipopolysaccharide undernatant (2.7 ± 0.7 ng/mL) than in N-undernatant (0.45 ± 0.06 ng/mL) as well as hydrogen peroxide levels (133.75 ± 15.9 vs 82 ± 7.5 nM respectively). CONCLUSIONS Acute exposure of colonic mucosa to pathogenic lipopolysaccharide impairs muscle cell contractility owing to both lipopolysaccharide mucosal translocation and production of free radicals.
Collapse
|
10
|
MEKK1-MKK4-JNK-AP1 pathway negatively regulates Rgs4 expression in colonic smooth muscle cells. PLoS One 2012; 7:e35646. [PMID: 22545125 PMCID: PMC3335800 DOI: 10.1371/journal.pone.0035646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/19/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Regulator of G-protein Signaling 4 (RGS4) plays an important role in regulating smooth muscle contraction, cardiac development, neural plasticity and psychiatric disorder. However, the underlying regulatory mechanisms remain elusive. Our recent studies have shown that upregulation of Rgs4 by interleukin (IL)-1β is mediated by the activation of NFκB signaling and modulated by extracellular signal-regulated kinases, p38 mitogen-activated protein kinase, and phosphoinositide-3 kinase. Here we investigate the effect of the c-Jun N-terminal kinase (JNK) pathway on Rgs4 expression in rabbit colonic smooth muscle cells. METHODOLOGY/PRINCIPAL FINDINGS Cultured cells at first passage were treated with or without IL-1β (10 ng/ml) in the presence or absence of the selective JNK inhibitor (SP600125) or JNK small hairpin RNA (shRNA). The expression levels of Rgs4 mRNA and protein were determined by real-time RT-PCR and Western blot respectively. SP600125 or JNK shRNA increased Rgs4 expression in the absence or presence of IL-1β stimulation. Overexpression of MEKK1, the key upstream kinase of JNK, inhibited Rgs4 expression, which was reversed by co-expression of JNK shRNA or dominant-negative mutants for MKK4 or JNK. Both constitutive and inducible upregulation of Rgs4 expression by SP600125 was significantly inhibited by pretreatment with the transcription inhibitor, actinomycin D. Dual reporter assay showed that pretreatment with SP600125 sensitized the promoter activity of Rgs4 in response to IL-1β. Mutation of the AP1-binding site within Rgs4 promoter increased the promoter activity. Western blot analysis confirmed that IL-1β treatment increased the phosphorylation of JNK, ATF-2 and c-Jun. Gel shift and chromatin immunoprecipitation assays validated that IL-1β increased the in vitro and ex vivo binding activities of AP1 within rabbit Rgs4 promoter. CONCLUSION/SIGNIFICANCE Activation of MEKK1-MKK4-JNK-AP1 signal pathway plays a tonic inhibitory role in regulating Rgs4 transcription in rabbit colonic smooth muscle cells. This negative regulation may aid in maintaining the transient level of RGS4 expression.
Collapse
|
11
|
Wu J, Li J, Cai Y, Pan Y, Ye F, Zhang Y, Zhao Y, Yang S, Li X, Liang G. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J Med Chem 2011; 54:8110-23. [PMID: 21988173 DOI: 10.1021/jm200946h] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Major anti-inflammatory agents, steroids and cyclooxygenase, were proved to have serious side effects. Here, a series of chalcone derivatives were synthesized and screened for anti-inflammatory activities. QSAR study revealed that the presence of electron-withdrawing groups in B-ring and electron-donating groups in A-ring of chalcones was important for inhibition of LPS-induced IL-6 expression. Further, compounds 22, 23, 26, 40, and 47 inhibited TNF-α and IL-6 release in a dose-dependent manner and decreased LPS-induced TNF-α, IL-1β, IL-6, IL-12, and COX-2 mRNA production. Mechanistically, compounds 23 and 26 interfered with JNK/NF-κB signaling and dose-dependently prevented ERK and p38 activation. In addition, 23 and 26 exhibited a significant protection against LPS-induced death and were able to block high glucose-activated cytokine profiles in macrophages. Together, these data show a series of anti-inflammatory chalcones with potential therapeutic effects in inflammatory diseases.
Collapse
Affiliation(s)
- Jianzhang Wu
- School of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|