1
|
Waszczuk M, Bianchi SE, Pittol V, Martiny S, Delagustin MG, de Carvalho Meirelles G, Benes Raabe V, de Souza Barbosa F, Dos Santos Lacerda D, Araújo ASR, Bassani VL. The challenge of improving pterostilbene (PTS) solubility for solid and semi-solid dosage forms: The obtention of binary and ternary systems. Int J Pharm 2023; 635:122736. [PMID: 36804521 DOI: 10.1016/j.ijpharm.2023.122736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
Pterostilbene (PTS) is a drug candidate with low water solubility and poor bioavailability. On the other hand, drug:cyclodextrins complexes frequently provide bulk powders with low drug concentrations, which is crucial for obtention solid or semi-solid pharmaceutical dosage forms. In order to determine the optimal conditions for enhancing the solubility of PTS:BCD (β-cyclodextrin) complex, a Box-Behnken design was performed. Although the optimal conditions have been applied, low complexation efficiency (0.127) and the bulk powder remained. A PTS:BCD:HPMC (HPMC, hydroxypropyl methylcellulose) ternary system was developed to overcome this limitation, comparing two media, water and a mixture of ethanol-water. When ethanol was used as a co-solvent, the PTS:BCD:HPMC ternary system (freeze-dried) contained 116.65 ± 1.40 mg/g of PTS. This value was 3.4-fold higher than the PTS content observed when the same ternary system was obtained in aqueous media (34.8 mg/g) and 2.8-fold higher than the PTS content observed for PTS:BCD complex (freeze-dried) obtained using ethanol as a co-solvent. Dissolution tests revealed that after 120 min, in a buffer with a pH value of 1.2, only 43% of PTS dissolved. In contrast, 80% and 90% of PTS were dissolved from the PTS:BCD complex and PTS:BCD:HPMC ternary system, respectively. Moreover, the dissolution was fast in a buffer with a pH value of 6.8. PTS:BCD complex reached the maximum PTS dissolution at 75 min and PTS:BCD:HPMC at 45 min. In summary, the results of this study demonstrated, for the first time, that low-bulk powders with a high content of PTS can be obtained from PTS:BCD:HPMC ternary systems using ethanol as a co-solvent. This new finding offers a valuable alternative for producing solid or semi-solid formulations containing highly soluble PTS.
Collapse
Affiliation(s)
- Mairique Waszczuk
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sara Elis Bianchi
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Vanessa Pittol
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Simony Martiny
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria G Delagustin
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriela de Carvalho Meirelles
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Victorya Benes Raabe
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fábio de Souza Barbosa
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Denise Dos Santos Lacerda
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alex S R Araújo
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Valquiria Linck Bassani
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Martín-Illana A, Cazorla-Luna R, Notario-Pérez F, Bedoya LM, Rubio J, Tamayo A, Ruiz-Caro R, Veiga MD. Smart vaginal bilayer films of Tenofovir based on Eudragit® L100/natural polymer for the prevention of the sexual transmission of HIV. Int J Pharm 2021; 602:120665. [PMID: 33933643 DOI: 10.1016/j.ijpharm.2021.120665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
In the absence of an effective vaccine, vaginal microbicides are essential for preventing the sexual transmission of HIV to women. Antiretroviral vaginal films have emerged as promising choices, especially those offering mucoadhesivity and controlled drug release. Tenofovir-loaded bilayer films based on Eudragit® L100 (EL100) and a biopolymer - gum arabic, karaya gum, pectin or tragacanth gum - were developed in a single-stage process. Cytotoxicity studies in three human cell lines indicated no toxicity of the excipients at the concentrations tested. Raman spectroscopy and SEM confirmed the formation of the two layers and their anchoring. Texture analysis showed no major differences between the batches. The swelling of the film is conditioned by its biopolymer nature and by the amount of EL100, which acts as structuring agent thus enhancing swelling. Tragacanth gum-based batches showed high mucoadhesion regardless the amount of EL100. The controlled release of Tenofovir in simulated vaginal fluid was faster in the presence of simulated seminal fluid due to the dissolution of EL100. Films containing 400 mg of EL100 and tragacanth gum are promising candidates for future studies, as they could sexually safeguard women from HIV for at least one week and ensure greater protection during intercourse.
Collapse
Affiliation(s)
- Araceli Martín-Illana
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Raúl Cazorla-Luna
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Fernando Notario-Pérez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Luis Miguel Bedoya
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Juan Rubio
- Institute of Ceramics and Glass, Spanish National Research Council, C/ Kelsen 5, 28049 Madrid, Spain.
| | - Aitana Tamayo
- Institute of Ceramics and Glass, Spanish National Research Council, C/ Kelsen 5, 28049 Madrid, Spain.
| | - Roberto Ruiz-Caro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - María Dolores Veiga
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
3
|
Jain SK, Jain AK, Rajpoot K. Expedition of Eudragit® Polymers in the Development of Novel Drug Delivery Systems. Curr Drug Deliv 2020; 17:448-469. [PMID: 32394836 DOI: 10.2174/1567201817666200512093639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/10/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Eudragit® polymer has been widely used in film-coating for enhancing the quality of products over other materials (e.g., shellac or sugar). Eudragit® polymers are obtained synthetically from the esters of acrylic and methacrylic acid. For the last few years, they have shown immense potential in the formulations of conventional, pH-triggered, and novel drug delivery systems for incorporating a vast range of therapeutics including proteins, vitamins, hormones, vaccines, and genes. Different grades of Eudragit® have been used for designing and delivery of therapeutics at a specific site via the oral route, for instance, in stomach-specific delivery, intestinal delivery, colon-specific delivery, mucosal delivery. Further, these polymers have also shown their great aptitude in topical and ophthalmic delivery. Moreover, available literature evidences the promises of distinct Eudragit® polymers for efficient targeting of incorporated drugs to the site of interest. This review summarizes some potential researches that are being conducted by eminent scientists utilizing the distinct grades of Eudragit® polymers for efficient delivery of therapeutics at various sites of interest.
Collapse
Affiliation(s)
- Sunil Kumar Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| | - Akhlesh K Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| | - Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| |
Collapse
|
4
|
Correlation between drug dissolution and resistance to water-induced phase separation in solid dispersion formulations revealed by solid-state NMR spectroscopy. Int J Pharm 2020; 577:119086. [DOI: 10.1016/j.ijpharm.2020.119086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 11/19/2022]
|
5
|
Zhang X, Liang X, Ma X, Hou R, Li X, Wang F. Highly stable near-infrared dye conjugated cerasomes for fluorescence imaging-guided synergistic chemo-photothermal therapy of colorectal cancer. Biomater Sci 2019; 7:2873-2888. [DOI: 10.1039/c9bm00458k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dye-conjugated cerasome loaded with DOX exhibited high stability and controllable drug release, holding great promise in colorectal cancer photothermal chemotherapy.
Collapse
Affiliation(s)
- Xu Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| | - Xiaolong Liang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing
- China
| | - Xiaotu Ma
- Key Laboratory of Protein and Peptide Pharmaceuticals
- CAS Center for Excellence in Biomacromolecules
- Institute of Biophysics
- Chinese Academy of Sciences
- Beijing
| | - Rui Hou
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| | - Xiaoda Li
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| |
Collapse
|
6
|
Affiliation(s)
- Garima Agrawal
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Paper Mill Road, Saharanpur 247 001, Uttar Pradesh, India
| | - Sangram K. Samal
- Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
7
|
Cartagena AF, Esmerino LA, Polak-Junior R, Olivieri Parreiras S, Domingos Michél M, Farago PV, Campanha NH. New denture adhesive containing miconazole nitrate polymeric microparticles: Antifungal, adhesive force and toxicity properties. Dent Mater 2017; 33:e53-e61. [DOI: 10.1016/j.dental.2016.09.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 09/14/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022]
|
8
|
Jablan J, Jug M. Development of Eudragit® S100 based pH-responsive microspheres of zaleplon by spray-drying: Tailoring the drug release properties. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.05.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Moustafa A, Abd Rabo Moustafa MM, Zilinskas GJ, Gillies ER. Covalent drug immobilization in poly(ester amide) nanoparticles for controlled release. CAN J CHEM ENG 2015. [DOI: 10.1002/cjce.22323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Amira Moustafa
- Department of Chemical and Biochemical Engineering; University of Western Ontario; 1151 Richmond Street London ON N6A 5B9 Canada
| | | | - Gregory J. Zilinskas
- Biomedical Engineering Graduate Program; University of Western Ontario; 1151 Richmond Street London ON N6A 5B9 Canada
| | - Elizabeth R. Gillies
- Department of Chemical and Biochemical Engineering; University of Western Ontario; 1151 Richmond Street London ON N6A 5B9 Canada
- Department of Chemistry; University of Western Ontario; 1151 Richmond Street London ON N6A 5B7 Canada
| |
Collapse
|
10
|
Smith GP, McGoverin CM, Fraser SJ, Gordon KC. Raman imaging of drug delivery systems. Adv Drug Deliv Rev 2015; 89:21-41. [PMID: 25632843 DOI: 10.1016/j.addr.2015.01.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/05/2015] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
Abstract
This review article includes an introduction to the principals of Raman spectroscopy, an outline of the experimental systems used for Raman imaging and the associated important considerations and limitations of this method. Common spectral analysis methods are briefly described and examples of interesting published studies which utilised Raman imaging of pharmaceutical and biomedical devices are discussed, along with summary tables of the literature at this point in time.
Collapse
|
11
|
Xu J, Li W, Liu Z, Li J, Zhao X, Li D, Guo S, Zhang X. Preparation, characterization and pharmacokinetics evaluation of clarithromycin-loaded Eudragit(®) L-100 microspheres. Eur J Drug Metab Pharmacokinet 2015; 41:287-93. [PMID: 25652786 DOI: 10.1007/s13318-015-0261-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/28/2015] [Indexed: 12/21/2022]
Abstract
The aim of this work was to prepare pH-dependent clarithromycin microsphere formulation by emulsion solvent evaporation method, employing Eudragit(®) L-100. Prepared microspheres were evaluated by carrying out in vitro release and in vivo pharmacokinetics studies. Drug-polymer interactions were studied by differential scanning calorimetry, X-ray diffractometry analyses and results showed that clarithromycin was molecularly dispersed in the polymer. The particle size distribution of microspheres was found over the range of 10~50 μm. The drug is hardly released in the HCl solution pH 1.2 in the first 2 h, but is rapidly released in phosphate buffer pH 7.2, and the cumulated release reached 98.1 % at 8 h. The pharmacokinetic profiles were conducted open, randomized, two-period crossover design with a 7-day interval between doses in healthy beagle dogs. The results indicated that the extent of absorption of the clarithromycin-load microspheres was the same as pure drug, but different in the rate of drug absorption in vivo.
Collapse
Affiliation(s)
- Jinghua Xu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Zhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jinghan Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - DongYang Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Shuang Guo
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiangrong Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
12
|
Shu Y, Pi F, Sharma A, Rajabi M, Haque F, Shu D, Leggas M, Evers BM, Guo P. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 2014; 66:74-89. [PMID: 24270010 DOI: 10.1016/j.addr.2013.11.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
Human genome sequencing revealed that only ~1.5% of the DNA sequence coded for proteins. More and more evidence has uncovered that a substantial part of the 98.5% so-called "junk" DNAs actually code for noncoding RNAs. Two milestones, chemical drugs and protein drugs, have already appeared in the history of drug development, and it is expected that the third milestone in drug development will be RNA drugs or drugs that target RNA. This review focuses on the development of RNA therapeutics for potential cancer treatment by applying RNA nanotechnology. A therapeutic RNA nanoparticle is unique in that its scaffold, ligand, and therapeutic component can all be composed of RNA. The special physicochemical properties lend to the delivery of siRNA, miRNA, ribozymes, or riboswitches; imaging using fluogenenic RNA; and targeting using RNA aptamers. With recent advances in solving the chemical, enzymatic, and thermodynamic stability issues, RNA nanoparticles have been found to be advantageous for in vivo applications due to their uniform nano-scale size, precise stoichiometry, polyvalent nature, low immunogenicity, low toxicity, and target specificity. In vivo animal studies have revealed that RNA nanoparticles can specifically target tumors with favorable pharmacokinetic and pharmacodynamic parameters without unwanted accumulation in normal organs. This review summarizes the key studies that have led to the detailed understanding of RNA nanoparticle formation as well as chemical and thermodynamic stability issue. The methods for RNA nanoparticle construction, and the current challenges in the clinical application of RNA nanotechnology, such as endosome trapping and production costs, are also discussed.
Collapse
Affiliation(s)
- Yi Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Fengmei Pi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ashwani Sharma
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Mehdi Rajabi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Farzin Haque
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Dan Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Markos Leggas
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
13
|
Liu W, Selomulya C, Chen XD. Design of polymeric microparticles for pH-responsive and time-sustained drug release. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Shu Y, Shu D, Haque F, Guo P. Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells. Nat Protoc 2013; 8:1635-59. [PMID: 23928498 DOI: 10.1038/nprot.2013.097] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RNA nanotechnology is a term that refers to the design, fabrication and use of nanoparticles that are mainly composed of RNAs via bottom-up self-assembly. The packaging RNA (pRNA) of the bacteriophage phi29 DNA packaging motor has been developed into a nanodelivery platform. This protocol describes the synthesis, assembly and functionalization of pRNA nanoparticles on the basis of three 'toolkits' derived from pRNA structural features: interlocking loops for hand-in-hand interactions, palindrome sequences for foot-to-foot interactions and an RNA three-way junction for branch extension. siRNAs, ribozymes, aptamers, chemical ligands, fluorophores and other functionalities can also be fused to the pRNA before the assembly of the nanoparticles, so as to ensure the production of homogeneous nanoparticles and the retention of appropriate folding and function of the incorporated modules. The resulting self-assembled multivalent pRNA nanoparticles are thermodynamically and chemically stable, and they remain intact at ultralow concentrations. Gene-silencing effects are progressively enhanced with increasing numbers of siRNAs in each pRNA nanoparticle. Systemic injection of the pRNA nanoparticles into xenograft-bearing mice has revealed strong binding to tumors without accumulation in vital organs or tissues. The pRNA-based nanodelivery scaffold paves a new way for nanotechnological application of pRNA-based nanoparticles for disease detection and treatment. The time required for completing one round of this protocol is 3-4 weeks when including in vitro functional assays, or 2-3 months when including in vivo studies.
Collapse
Affiliation(s)
- Yi Shu
- Nanobiotechnology Center, Markey Cancer Center, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
15
|
Therapeutic strategies based on polymeric microparticles. J Biomed Biotechnol 2012; 2012:672760. [PMID: 22665988 PMCID: PMC3363323 DOI: 10.1155/2012/672760] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/28/2012] [Accepted: 03/13/2012] [Indexed: 01/06/2023] Open
Abstract
The development of the field of materials science, the ability to perform multidisciplinary scientific work, and the need for novel administration technologies that maximize therapeutic effects and minimize adverse reactions to readily available drugs have led to the development of delivery systems based on microencapsulation, which has taken one step closer to the target of personalized medicine. Drug delivery systems based on polymeric microparticles are generating a strong impact on preclinical and clinical drug development and have reached a broad development in different fields supporting a critical role in the near future of medical practice. This paper presents the foundations of polymeric microparticles based on their formulation, mechanisms of drug release and some of their innovative therapeutic strategies to board multiple diseases.
Collapse
|
16
|
Rizi K, Green RJ, Donaldson MX, Williams AC. Using pH Abnormalities in Diseased Skin to Trigger and Target Topical Therapy. Pharm Res 2011; 28:2589-98. [DOI: 10.1007/s11095-011-0488-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/19/2011] [Indexed: 11/29/2022]
|