1
|
Zhou Z, Han SY, Pardo-Navarro M, Wall EG, Desai R, Vas S, Handelsman DJ, Herbison AE. GnRH pulse generator activity in mouse models of polycystic ovary syndrome. eLife 2025; 13:RP97179. [PMID: 39761106 DOI: 10.7554/elife.97179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
One in ten women in their reproductive age suffer from polycystic ovary syndrome (PCOS) that, alongside subfertility and hyperandrogenism, typically presents with increased luteinizing hormone (LH) pulsatility. As such, it is suspected that the arcuate kisspeptin (ARNKISS) neurons that represent the GnRH pulse generator are dysfunctional in PCOS. We used here in vivo GCaMP fiber photometry and other approaches to examine the behavior of the GnRH pulse generator in two mouse models of PCOS. We began with the peripubertal androgen (PPA) mouse model of PCOS but found that it had a reduction in the frequency of ARNKISS neuron synchronization events (SEs) that drive LH pulses. Examining the prenatal androgen (PNA) model of PCOS, we observed highly variable patterns of pulse generator activity with no significant differences detected in ARNKISS neuron SEs, pulsatile LH secretion, or serum testosterone, estradiol, and progesterone concentrations. However, a machine learning approach identified that the ARNKISS neurons of acyclic PNA mice continued to exhibit cyclical patterns of activity similar to that of normal mice. The frequency of ARNKISS neuron SEs was significantly increased in algorithm-identified 'diestrous stage' PNA mice compared to controls. In addition, ARNKISS neurons exhibited reduced feedback suppression to progesterone in PNA mice and their gonadotrophs were also less sensitive to GnRH. These observations demonstrate the importance of understanding GnRH pulse generator activity in mouse models of PCOS. The existence of cyclical GnRH pulse generator activity in the acyclic PNA mouse indicates the presence of a complex phenotype with deficits at multiple levels of the hypothalamo-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Ziyue Zhou
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Su Young Han
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Maria Pardo-Navarro
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ellen G Wall
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Reena Desai
- ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Szilvia Vas
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | - Allan E Herbison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Kudo C, Harriott AM, Moskowitz MA, Waeber C, Ayata C. Estrogen modulation of cortical spreading depression. J Headache Pain 2023; 24:62. [PMID: 37237336 PMCID: PMC10214707 DOI: 10.1186/s10194-023-01598-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND AND AIMS Cortical spreading depression (CSD), a transient neuronal and glial depolarization that propagates slowly across the cerebral cortex, is the putative electrophysiological event underlying migraine aura and a headache trigger. Migraine is three times more prevalent in women than men, linked to circulating female hormones. High estrogen levels or estrogen withdrawal may be a migraine trigger for many women. We, therefore, aimed to examine whether sex, gonadectomy, and female hormone supplementation and withdrawal affect the susceptibility to CSD. METHODS To determine CSD susceptibility, we recorded the frequency of CSDs triggered during 2-h topical KCl application in intact or gonadectomized female and male rats, without or with estradiol or progesterone supplementation via daily intraperitoneal injections. Estrogen or progesterone treatment followed by withdrawal was studied in a separate cohort. To take the first step towards identifying potential mechanisms, we studied glutamate and GABAA receptor binding using autoradiography. RESULTS The CSD frequency in intact female rats was higher than intact male and ovariectomized rats. We did not detect a change in CSD frequency during different stages of the estrous cycle in intact females. Daily estrogen injections for three weeks did not change CSD frequency. However, one-week estrogen withdrawal after two weeks of treatment significantly increased CSD frequency compared with the vehicle group in gonadectomized females. The same protocol of estrogen treatment and withdrawal was ineffective in gonadectomized males. In contrast to estrogen, daily progesterone injections for three weeks elevated CSD susceptibility, and one-week withdrawal after two weeks of treatment partially normalized this effect. Autoradiography did not reveal significant changes in glutamate or GABAA receptor binding density after estrogen treatment and withdrawal. CONCLUSIONS These data suggest that females are more susceptible to CSD, and sexual dimorphism is abrogated by gonadectomy. Moreover, estrogen withdrawal after prolonged daily treatment enhances CSD susceptibility. These findings may have implications for estrogen-withdrawal migraine, although the latter tends to be without aura.
Collapse
Affiliation(s)
- Chiho Kudo
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 5650871, Japan
| | - Andrea M Harriott
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Michael A Moskowitz
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Christian Waeber
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- School of Pharmacy, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
- Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
3
|
Wang L, Chen Q, Ma R, Zhang B, Yang P, Cao T, Jiao S, Chen H, Lin C, Cai H. Insight into mitochondrial dysfunction mediated by clozapine-induced inhibition of PGRMC1 in PC12 cells. Toxicology 2023; 491:153515. [PMID: 37087062 DOI: 10.1016/j.tox.2023.153515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
Clozapine is usually considered as the last resort for treatment-resistant schizophrenia (TRS). However, it shows limited efficacy in cognition improvement. Moreover, the metabolic side effects induced by clozapine can aggravate cognitive impairment, which is closely related to its neurotoxicity. Nevertheless, the mechanisms underlying clozapine's neurotoxicity remain largely elusive. In this study, PC12 cells were simultaneously treated with different concentrations (0μM, 10μM, 20μM, 40μM and 80μM) of clozapine and AG205 which functions as a blocking reagent of progesterone receptor membrane component 1 (PGRMC1). In addition, we examined the effect of PGRMC1 in clozapine-induced neurotoxicity through overexpressing or downregulating PGRMC1. Molecular docking and surface plasmon resonance (SPR) analysis indicated that clozapine and AG205 inhibited the binding of endogenous progesterone to PGRMC1. The results showed that high concentration of clozapine and AG205 induced a significant increase in cytotoxicity, reactive oxygen species (ROS) accumulation and mitochondrial membrane potential (MMP) collapse, all of which were worsened as concentration increases, while overexpression of PGRMC1 reverted the above toxic effect of clozapine on PC12 cells. Furthermore, clozapine and AG205 also downregulated the expression of PGRMC1, glucagon-like peptide-1 receptor (GLP-1R) and mitofusin2 (Mfn2). Interestingly, overexpression of PGRMC1 could revert these effects. Our data suggest that overexpression of PGRMC1 in PC12 cells prevents and restores clozapine-induced oxidative and mitochondrial damage. We propose PGRMC1 activation as a promising therapeutic strategy for clozapine-induced neurotoxicity to facilitate the relief of neuronal damage.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Qian Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Rui Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Ping Yang
- Department of Psychiatry, Hunan Brain Hospital, 427# Furong Road, Changsha, Hunan 410000, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
4
|
Nasre-Nasser RG, Severo MMR, Pires GN, Hort MA, Arbo BD. Effects of Progesterone on Preclinical Animal Models of Traumatic Brain Injury: Systematic Review and Meta-analysis. Mol Neurobiol 2022; 59:6341-6362. [PMID: 35922729 DOI: 10.1007/s12035-022-02970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/21/2022] [Indexed: 12/09/2022]
Abstract
Since the publication of two phase III clinical trials not supporting the use of progesterone in patients with traumatic brain injury (TBI), several possible explanations have been postulated, including limitations in the analysis of results from preclinical evidence. Therefore, to address this question, a systematic review and meta-analysis was performed to evaluate the effects of progesterone as a neuroprotective agent in preclinical animal models of TBI. A total of 48 studies were included for review: 29 evaluated brain edema, 21 evaluated lesion size, and 0 studies reported the survival rate. In the meta-analysis, it was found that progesterone reduced brain edema (effect size - 1.73 [- 2.02, - 1.44], p < 0.0001) and lesion volume (effect size - 0.40 [- 0.65, - 0.14], p = 0.002). Lack of details in the studies hindered the assessment of risk of bias (through the SYRCLE tool). A funnel plot asymmetry was detected, suggesting a possible publication bias. In conclusion, preclinical studies show that progesterone has an anti-edema effect in animal models of TBI, decreasing lesion volume or increasing remaining tissue. However, more studies are needed using assessing methods with lower risk of histological artifacts.
Collapse
Affiliation(s)
- Raif Gregorio Nasre-Nasser
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande (FURG), Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Manoela Rezende Severo
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos 2600, Building UFRGS 21116, Room 430, Zip code, Porto Alegre - RS, 90035-003, Brazil
| | - Gabriel Natan Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA), Rio de Janeiro, Brazil
| | - Mariana Appel Hort
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande (FURG), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno Dutra Arbo
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande (FURG), Porto Alegre, Rio Grande do Sul, Brazil.
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos 2600, Building UFRGS 21116, Room 430, Zip code, Porto Alegre - RS, 90035-003, Brazil.
| |
Collapse
|
5
|
Kawadkar M, Mandloi AS, Singh N, Mukharjee R, Dhote VV. Combination therapy for cerebral ischemia: do progesterone and noscapine provide better neuroprotection than either alone in the treatment? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:167-185. [PMID: 34988596 DOI: 10.1007/s00210-021-02187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
Ischemic stroke presents multifaceted pathological outcomes with overlapping mechanisms of cerebral injury. High mortality and disability with stroke warrant a novel multi-targeted therapeutic approach. The neuroprotection with progesterone (PG) and noscapine (NOS) on cerebral ischemia-reperfusion (I-R) injury was demonstrated individually, but the outcome of combination treatment to alleviate cerebral damage is still unexplored. Randomly divided groups of rats (n = 6) were Sham-operated, I-R, PG (8 mg/kg), NOS (10 mg/kg), and PG + NOS (8 mg/kg + 10 mg/kg). The rats were exposed to bilateral common carotid artery occlusion, except Sham-operated, to investigate the therapeutic outcome of PG and NOS alone and in combination on I-R injury. Besides the alterations in cognitive and motor abilities, we estimated infarct area, oxidative stress, blood-brain barrier (BBB) permeability, and histology after treatment. Pharmacokinetic parameters like Cmax, Tmax, half-life, and AUC0-t were estimated in biological samples to substantiate the therapeutic outcomes of the combination treatment. We report PG and NOS prevent loss of motor ability and improve spatial memory after cerebral I-R injury. Combination treatment significantly reduced inflammation and restricted infarction; it attenuated oxidative stress and BBB damage and improved grip strength. Histopathological analysis demonstrated a significant reduction in leukocyte infiltration with the most profound effect in the combination group. Simultaneous analysis of PG and NOS in plasma revealed enhanced peak drug concentration, improved AUC, and prolonged half-life; the drug levels in the brain have increased significantly for both. We conclude that PG and NOS have beneficial effects against brain damage and the co-administration further reinforced neuroprotection in the cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Manisha Kawadkar
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Avinash S Mandloi
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Nidhi Singh
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Rajesh Mukharjee
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Vipin V Dhote
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India.
| |
Collapse
|
6
|
Saeki K, Chang G, Kanaya N, Wu X, Wang J, Bernal L, Ha D, Neuhausen SL, Chen S. Mammary cell gene expression atlas links epithelial cell remodeling events to breast carcinogenesis. Commun Biol 2021; 4:660. [PMID: 34079055 PMCID: PMC8172904 DOI: 10.1038/s42003-021-02201-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
The female mammary epithelium undergoes reorganization during development, pregnancy, and menopause, linking higher risk with breast cancer development. To characterize these periods of complex remodeling, here we report integrated 50 K mouse and 24 K human mammary epithelial cell atlases obtained by single-cell RNA sequencing, which covers most lifetime stages. Our results indicate a putative trajectory that originates from embryonic mammary stem cells which differentiates into three epithelial lineages (basal, luminal hormone-sensing, and luminal alveolar), presumably arising from unipotent progenitors in postnatal glands. The lineage-specific genes infer cells of origin of breast cancer using The Cancer Genome Atlas data and single-cell RNA sequencing of human breast cancer, as well as the association of gland reorganization to different breast cancer subtypes. This comprehensive mammary cell gene expression atlas ( https://mouse-mammary-epithelium-integrated.cells.ucsc.edu ) presents insights into the impact of the internal and external stimuli on the mammary epithelium at an advanced resolution.
Collapse
Affiliation(s)
- Kohei Saeki
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lauren Bernal
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Desiree Ha
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
7
|
Kokras N, Poulogiannopoulou E, Sotiropoulos MG, Paravatou R, Goudani E, Dimitriadou M, Papakonstantinou E, Doxastakis G, Perrea DN, Hloupis G, Angelis A, Argyropoulou A, Tsarbopoulos A, Skaltsounis AL, Dalla C. Behavioral and Neurochemical Effects of Extra Virgin Olive Oil Total Phenolic Content and Sideritis Extract in Female Mice. Molecules 2020; 25:molecules25215000. [PMID: 33126727 PMCID: PMC7663189 DOI: 10.3390/molecules25215000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to determine the cognitive and behavioral effects of extra virgin olive oil total phenolic content (TPC) and Sideritis (SID) extracts in female mice, and identify the associated neurochemical changes in the hippocampus and the prefrontal cortex. All animals received intraperitoneal low or high doses of TPC, SID or vehicle treatment for 7 days and were subjected to the Open Field (OF), Novel Object Recognition (NOR) and Tail Suspension Test (TST). The prefrontal cortex and hippocampus were dissected for analysis of neurotransmitters and aminoacids with high performance liquid chromatography with electrochemical detection (HPLC-ED). Both TPC doses enhanced vertical activity and center entries in the OF, which could indicate an anxiolytic-like effect. In addition, TPC enhanced non-spatial working memory and, in high doses, exerted antidepressant effects. On the other hand, high SID doses remarkably decreased the animals’ overall activity. Locomotor and exploratory activities were closely associated with cortical increases in serotonin turnover induced by both treatments. Cognitive performance was linked to glutamate level changes. Furthermore, TPC reduced cortical taurine levels, while SID reduced cortical aspartate levels. TPC seems to have promising cognitive, anxiolytic and antidepressant effects, whereas SID has sedative effects in high doses. Both extracts act in the brain, but their specific actions and properties merit further exploration.
Collapse
Affiliation(s)
- Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Vas. Sofias Avenue 72–74, 11528 Athens, Greece
| | - Eleni Poulogiannopoulou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - Marinos G. Sotiropoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - Rafaella Paravatou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - Eleni Goudani
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - Maria Dimitriadou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - Electra Papakonstantinou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
| | - George Doxastakis
- Electronic Devices and Materials Laboratory, Department of Electrical and Electronic Engineering, School of Engineering, University of West Attica, Agiou Spiridonos 28, Egaleo, 12243 Athens, Greece; (G.D.); (G.H.)
| | - Despina N. Perrea
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11521 Athens, Greece;
| | - George Hloupis
- Electronic Devices and Materials Laboratory, Department of Electrical and Electronic Engineering, School of Engineering, University of West Attica, Agiou Spiridonos 28, Egaleo, 12243 Athens, Greece; (G.D.); (G.H.)
| | - Apostolis Angelis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (A.A.); (A.A.); (A.-L.S.)
| | - Aikaterini Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (A.A.); (A.A.); (A.-L.S.)
| | - Anthony Tsarbopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
- Bioanalytical Department, GAIA Research Center, The Goulandris Natural History Museum, Othonos 100, Kifissia, 14562 Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (A.A.); (A.A.); (A.-L.S.)
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; (N.K.); (E.P.); (M.G.S.); (R.P.); (E.G.); (M.D.); (E.P.); (A.T.)
- Correspondence:
| |
Collapse
|
8
|
Kokras N, Dioli C, Paravatou R, Sotiropoulos MG, Delis F, Antoniou K, Calogeropoulou T, Charalampopoulos I, Gravanis A, Dalla C. Psychoactive properties of BNN27, a novel neurosteroid derivate, in male and female rats. Psychopharmacology (Berl) 2020; 237:2435-2449. [PMID: 32506234 DOI: 10.1007/s00213-020-05545-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022]
Abstract
RATIONALE Νeurosteroids, like dehydroepiandrosterone (DHEA), play an important role in neurodegeneration and neural protection, but they are metabolized in androgens, estrogens, or other active metabolites. A newly developed synthetic DHEA analog, BNN27 ((20R)-3β,21-dihydroxy-17R,20-epoxy-5-pregnene), exerts neurotrophic and neuroprotective actions without estrogenic or androgenic effects. OBJECTIVES This study aimed to investigate potential anxiolytic or antidepressant properties of BNN27. METHODS Male and female adult Wistar rats were treated with BNN27 (10, 30, or 90 mg/kg, i.p.) and subjected to behavioral tests measuring locomotion, exploration, and "depressive-like" behavior (open field, light/dark box, hole-board, and forced swim tests). The hippocampus and prefrontal cortex were collected for glutamate and GABA measurements, and trunk blood was collected for gonadal hormone analysis. RESULTS Acute high-dose BNN27 reduced locomotion and exploratory behavior in both sexes. Intermediate acute doses (30 mg/kg) of BNN27 reduced exploration and testosterone levels only in males, and enhanced progesterone levels in both sexes. Notably, with the present design, BNN27 had neither anxiolytic nor antidepressant effects and did not affect estrogen levels. Interestingly, acute administration of a low BNN27 dose (10 mg/kg) increased glutamate turnover, GABA, and glutamine levels in the hippocampus. The same dose also enhanced glutamate levels in the prefrontal cortex of males only. Sex differences were apparent in the basal levels of behavioral, hormonal, and neurochemical parameters, as expected. CONCLUSIONS BNN27 affects locomotion, progesterone, and testosterone levels, as well as the glutamatergic and GABAergic systems of the hippocampus and prefrontal cortex in a sex-dependent way.
Collapse
Affiliation(s)
- Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece.,First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysoula Dioli
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece
| | - Rafaella Paravatou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece
| | - Marinos G Sotiropoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece.,Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Hale ΒΤΜ 9002AA, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Theodora Calogeropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave, 11635, Athens, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, School of Medicine, University of Crete, 71110, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, 71110, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece.
| |
Collapse
|
9
|
Zhao J, Yuan Q, Cai W, Sun P, Ding L, Jin F. Formulation, Optimization, Characterization, and Pharmacokinetics of Progesterone Intravenous Lipid Emulsion for Traumatic Brain Injury Therapy. AAPS PharmSciTech 2017; 18:1475-1487. [PMID: 27796907 DOI: 10.1208/s12249-016-0637-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/21/2016] [Indexed: 11/30/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and disability throughout the world. Progesterone (PROG) plays an important role in neurologic treatment. The aim of this study was to develop a progesterone formulation with good physical and chemical stability. Progesterone intravenous lipid emulsion (PILE) was prepared based on one-factor-at-a-time experiments and orthogonal design. The optimal PILE was evaluated for mean particle size, particle size distribution, zeta potential, morphology, pH, osmolarity, entrapment efficiency, storage stability, and pharmacokinetics in ICR mice compared with the commercial progesterone products. The droplets of PILE had the smallest possible diameters of 218.0 ± 1.8 nm and adequate zeta potential of -41.1 ± 0.9 mV. The volume percentage of droplets exceeding 5 μm (PFAT5) of PILE was 0.003 ± 0.0015% and much less than the specified standard. The TEM imaging proved that emulsion droplets had a smooth spherical appearance. Chemically and physically stable PILE was obtained with excellent entrapment efficiency that was up to 95.23%, with suitable pH at 7.15 ± 0.01 and osmolarity at 301.3 ± 1.2 mOsmol/l. Storage stability tests indicated that the emulsion was stable long term under ambient temperature conditions. Animal studies demonstrated that the emulsion was more effective with the higher progesterone concentration in the brain compared with commercial products. Therefore, the optimized PILE would offer great promise as a means of progesterone delivery for TBI therapy.
Collapse
|
10
|
Howard RB, Sayeed I, Stein DG. Suboptimal Dosing Parameters as Possible Factors in the Negative Phase III Clinical Trials of Progesterone for Traumatic Brain Injury. J Neurotrauma 2016; 34:1915-1918. [PMID: 26370183 PMCID: PMC5455214 DOI: 10.1089/neu.2015.4179] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To date, outcomes for all Phase III clinical trials for traumatic brain injury (TBI) have been negative. The recent disappointing results of the Progesterone for the Treatment of Traumatic Brain Injury (ProTECT) and Study of a Neuroprotective Agent, Progesterone, in Severe Traumatic Brain Injury (SyNAPSe) Phase III trials for progesterone in TBI have triggered considerable speculation about the reasons for the negative outcomes of these two studies in particular and for those of all previous Phase III TBI clinical trials in general. Among the factors proposed to explain the ProTECT III and SyNAPSe results, the investigators themselves and others have cited: 1) the pathophysiological complexity of TBI itself; 2) issues with the quality and clinical relevance of the preclinical animal models; 3) insufficiently sensitive clinical endpoints; and 4) inappropriate clinical trial designs and strategies. This paper highlights three critical trial design factors that may have contributed substantially to the negative outcomes: 1) suboptimal doses and treatment durations in the Phase II studies; 2) the strategic decision not to perform Phase IIB studies to optimize these variables before initiating Phase III; and 3) the lack of incorporation of the preclinical and Chinese Phase II results, as well as allometric scaling principles, into the Phase III designs. Given these circumstances and the exceptional pleiotropic potential of progesterone as a TBI (and stroke) therapeutic, we are advocating a return to Phase IIB testing. We advocate the incorporation of dose and schedule optimization focused on lower doses and a longer duration of treatment, combined with the addressing of other potential trial design problems raised by the authors in the recently published trial results.
Collapse
Affiliation(s)
- Randy B Howard
- 1 Pharmacology Consultant, Drug Discovery and Development, Emory University , Atlanta, Georgia
| | - Iqbal Sayeed
- 2 Department of Emergency Medicine, Emory University , Atlanta, Georgia
| | - Donald G Stein
- 2 Department of Emergency Medicine, Emory University , Atlanta, Georgia
| |
Collapse
|
11
|
Bourque M, Morissette M, Al Sweidi S, Caruso D, Melcangi RC, Di Paolo T. Neuroprotective Effect of Progesterone in MPTP-Treated Male Mice. Neuroendocrinology 2016; 103:300-14. [PMID: 26227546 DOI: 10.1159/000438789] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/15/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Numerous studies have reported on the neuroprotective activity of estradiol, whereas the effect of the other ovarian steroid, progesterone, is much less documented. METHODS This study sought to investigate neuroprotection with a low dose of progesterone (1 µg) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated male mice to model Parkinson's disease and compare it to the effect of this steroid in intact mice (experiment 1). We also investigated if high doses of progesterone could protect dopaminergic neurons already exposed to MPTP (experiment 2). We measured progesterone effects on various dopaminergic markers [dopamine and its metabolites, dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2)] and on neuroactive steroids in both plasma and the brain. RESULTS For experiment 1, our results showed that progesterone completely prevented the effect of MPTP toxicity on dopamine concentrations, on the increase in the 3-methoxytyramine/dopamine ratio, as well as on VMAT2-specific binding in the striatum and the substantia nigra. Progesterone decreased MPTP effects on 3,4-dihydroxyphenylacetic acid concentrations and DAT-specific binding in the lateral part of the anterior striatum and in the middle striatum (medial and lateral parts). Progesterone treatment of intact mice had no effect on the markers investigated. For experiment 2, measures of dopaminergic markers in the striatum showed that 8 mg/kg of progesterone was the most effective dose to reduce MPTP effects, and more limited effects were observed with 16 mg/kg. We found that progesterone treatment increases the levels of brain progesterone itself as well as of its metabolites. CONCLUSION Our result showed that progesterone has neuroprotective effects on dopaminergic neurons in MPTP-treated male mice.
Collapse
Affiliation(s)
- Mélanie Bourque
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Qux00E9;bec, Centre Hospitalier de l'Universitx00E9; Laval, Quebec City, Que., Canada
| | | | | | | | | | | |
Collapse
|
12
|
Wong R, Gibson CL, Kendall DA, Bath PMW. Evaluating the translational potential of progesterone treatment following transient cerebral ischaemia in male mice. BMC Neurosci 2014; 15:131. [PMID: 25471043 PMCID: PMC4255926 DOI: 10.1186/s12868-014-0131-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/20/2014] [Indexed: 12/19/2022] Open
Abstract
Background Progesterone is neuroprotective in numerous preclinical CNS injury models including cerebral ischaemia. The aim of this study was two-fold; firstly, we aimed to determine whether progesterone delivery via osmotic mini-pump would confer neuroprotective effects and whether such neuroprotection could be produced in co-morbid animals. Results Animals underwent transient middle cerebral artery occlusion. At the onset of reperfusion, mice were injected intraperitoneally with progesterone (8 mg/kg in dimethylsulfoxide). Adult and aged C57 Bl/6 mice were dosed additionally with subcutaneous infusion (1.0 μl/h of a 50 mg/ml progesterone solution) via implanted osmotic minipumps. Mice were allowed to survive for up to 7 days post-ischaemia and assessed for general well-being (mass loss and survival), neurological score, foot fault and t-maze performance. Progesterone reduced neurological deficit [F(1,2) = 5.38, P = 0.027] and number of contralateral foot-faults [F(1,2) = 7.36, P = 0.0108] in adult, but not aged animals, following ischaemia. In hypertensive animals, progesterone treatment lowered neurological deficit [F(1,6) = 18.31, P = 0.0001], reduced contralateral/ipsilateral alternation ratio % [F(1,2) = 17.05, P = 0.0006] and time taken to complete trials [F(1,2) = 15.92, P = 0.0009] for t-maze. Conclusion Post-ischemic progesterone administration via mini-pump delivery is effective in conferring functional improvement in a transient MCAO model in adult mice. Preliminary data suggests such a treatment regimen was not effective in producing a protective effect in aged mice. However, in hypertensive mice, who received post-ischemic progesterone intraperitoneally at the onset of reperfusion had better functional outcomes than control hypertensive mice.
Collapse
Affiliation(s)
| | - Claire L Gibson
- School of Psychology, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, UK.
| | | | | |
Collapse
|
13
|
Progesterone treatment for experimental stroke: an individual animal meta-analysis. J Cereb Blood Flow Metab 2013; 33:1362-72. [PMID: 23838830 PMCID: PMC3764382 DOI: 10.1038/jcbfm.2013.120] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/28/2013] [Accepted: 06/20/2013] [Indexed: 11/08/2022]
Abstract
Preclinical studies suggest progesterone is neuroprotective after cerebral ischemia. The gold standard for assessing intervention effects across studies within and between subgroups is to use meta-analysis based on individual animal data (IAD). Preclinical studies of progesterone in experimental stroke were identified from searches of electronic databases and reference lists. Corresponding authors of papers of interest were contacted to obtain IAD and, if unavailable, summary data were obtained from the publication. Data are given as standardized mean differences (SMDs, continuous data) or odds ratios (binary data), with 95% confidence intervals (95% CIs). In an unadjusted analysis of IAD and summary data, progesterone reduced standardized lesion volume (SMD -0.766, 95% CI -1.173 to -0.358, P<0.001). Publication bias was apparent on visual inspection of a Begg's funnel plot on lesion volume and statistically using Egger's test (P=0.001). Using individual animal data alone, progesterone was associated with an increase in death in adjusted analysis (odds ratio 2.64, 95% CI 1.17 to 5.97, P=0.020). Although progesterone significantly reduced lesion volume, it also appeared to increase the incidence of death after experimental stroke, particularly in young ovariectomized female animals. Experimental studies must report the effect of interactions on death and on modifiers, such as age and sex.
Collapse
|