1
|
Hua R, Chu Q, Guo F, Chen Q, Li M, Zhou X, Zhu Y. DNM3OS Enhances the Apoptosis and Senescence of Spermatogonia Associated with Nonobstructive Azoospermia by Providing miR-214-5p and Decreasing E2F2 Expression. Anal Cell Pathol (Amst) 2023; 2023:1477658. [PMID: 38152068 PMCID: PMC10752680 DOI: 10.1155/2023/1477658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
Background Nonobstructive azoospermia (NOA) is a complex disease characterized by the spermatogenic dysfunction of testicular tissues. The roles played by long noncoding RNAs (lncRNAs) in NOA pathogenesis have not been extensively studied. Methods Microarray assays were performed on samples of testicular biopsy tissue obtained from patients with NOA for the purpose of identifying differentially expressed lncRNAs and messenger RNA (mRNA) transcripts, and the results were verified by quantitative real-time polymerase chain reaction. Mouse-derived GC-1 spermatogonia (spg) cells undergoing treatment with Adriamycin (ADR) were used to investigate the biological functions of the selected lncRNAs in vitro. The target microRNAs (miRNAs) of lncRNAs and the target mRNAs of miRNAs were predicted by a bioinformatics analysis. Functional studies performed using the CCK-8 assay, EdU incorporation assay, apoptosis detection, and senescence-associated β-galactosidase (SA-β-Gal) staining were conducted using GC-1 spg cells. Results Totals of 2,652 lncRNAs and 2,625 mRNAs were found to be differentially expressed in the testicular tissue of NOA patients when compared with patients in a control group. Dynamin 3 opposite strand (DNM3OS) was a provider of pe-miR-214-5p that positively regulates miR-214-5p expression in GC-1 spg cells. The E2 factor (E2F) family of transcription factor 2 (E2F2) was initially predicted and subsequently verified to be a downstream gene of miR-214-5p. E2F2 expression was upregulated after DNM3OS knockdown in ADR-treated GC-1 spg cells. Moreover, knockdown of either DNM3OS or miR-214-5p significantly alleviated ADR-induced decreases in cellular activity and proliferation, as well as increases in apoptosis and senescence of mouse spermatogonial GC-1 spg cells. Conclusions DNM3OS was found to regulate the apoptosis and senescence of spermatogonia by providing miR-214-5p and decreasing E2F2 expression, suggesting it as a novel target for gene therapy of male infertility.
Collapse
Affiliation(s)
- Rui Hua
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingjun Chu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feiyan Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinjie Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Maocai Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongtong Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Kyrgiafini MA, Giannoulis T, Chatziparasidou A, Christoforidis N, Mamuris Z. Unveiling the Genetic Complexity of Teratozoospermia: Integrated Genomic Analysis Reveals Novel Insights into lncRNAs' Role in Male Infertility. Int J Mol Sci 2023; 24:15002. [PMID: 37834450 PMCID: PMC10573971 DOI: 10.3390/ijms241915002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Male infertility is a global health issue, affecting over 20 million men worldwide. Genetic factors are crucial in various male infertility forms, including teratozoospermia. Nonetheless, the genetic causes of male infertility remain largely unexplored. In this study, we employed whole-genome sequencing and RNA expression analysis to detect differentially expressed (DE) long-noncoding RNAs (lncRNAs) in teratozoospermia, along with mutations that are exclusive to teratozoospermic individuals within these DE lncRNAs regions. Bioinformatic tools were used to assess variants' impact on lncRNA structure, function, and lncRNA-miRNA interactions. Our analysis identified 1166 unique mutations in teratozoospermic men within DE lncRNAs, distinguishing them from normozoospermic men. Among these, 64 variants in 23 lncRNAs showed potential regulatory roles, 7 variants affected 4 lncRNA structures, while 37 variants in 17 lncRNAs caused miRNA target loss or gain. Pathway Enrichment and Gene Ontology analyses of the genes targeted by the affected miRNAs revealed dysregulated pathways in teratozoospermia and a link between male infertility and cancer. This study lists novel variants and lncRNAs associated for the first time with teratozoospermia. These findings pave the way for future studies aiming to enhance diagnosis and therapy in the field of male infertility.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Alexia Chatziparasidou
- Embryolab IVF Unit, St. 173-175 Ethnikis Antistaseos, Kalamaria, 55134 Thessaloniki, Greece
| | | | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
3
|
Kyrgiafini MA, Mamuris Z. Circular RNAs and Their Role in Male Infertility: A Systematic Review. Biomolecules 2023; 13:1046. [PMID: 37509082 PMCID: PMC10377305 DOI: 10.3390/biom13071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Male infertility is a global health problem that is on the rise. Today, many noncoding RNAs (ncRNAs) are associated with male infertility. Circular RNAs (circRNAs) have recently drawn attention, but a comprehensive understanding of the role of circRNAs in male infertility is limited. This systematic review investigates the differential expression of circRNAs in male infertility or circRNAs that could serve as candidate biomarkers. The PRISMA guidelines were used to search PubMed and Web of Science on 11 January 2023. Inclusion criteria were human participants, experimental studies aiming to associate circRNAs with male infertility reporting differentially expressed circRNAs, and the English language. A total of 156 articles were found, and after the screening and eligibility stages, 13 studies were included in the final sample. Many circRNAs are deregulated in male infertility, and their interactions with miRNAs play an important role in affecting cellular processes and pathways. CircRNAs could also be used as biomarkers to screen patients before sperm retrieval. However, most studies focus on the role of circRNAs in azoospermia, and there is a knowledge gap regarding other subtypes of male infertility. Future research is needed to explore the exact mechanism of action of circRNAs and investigate their use as biomarkers.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis Mezourlo, 41500 Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
4
|
Exploring the physiological roles of circular RNAs in livestock animals. Res Vet Sci 2022; 152:726-735. [PMID: 36270182 DOI: 10.1016/j.rvsc.2022.09.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
5
|
miR-125-3p and miR-276b-3p Regulate the Spermatogenesis of Bactrocera dorsalis by Targeting the orb2 Gene. Genes (Basel) 2022; 13:genes13101861. [PMID: 36292746 PMCID: PMC9601815 DOI: 10.3390/genes13101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022] Open
Abstract
Bactrocera dorsalis is considered a major threat to horticultural crops. It has evolved resistance against insecticides. It is believed that development of new methods is highly desirable to control this destructive agricultural pest. Sterile insect technique is emerging as a potential tool to control this insect pest by reducing their reproductive ability. Here we report that orb2 has high expression in the testis of B. dorsalis which is the target of miR-125-3p and miR-276b-3p and plays a critical role in the spermatogenesis. Dual luciferase reporter assay using HEKT293 cells demonstrates that orb2 gene is downregulated by miR-125-3p and miR-276b-3p and is a common target of these miRNAs. Dietary treatment of adult male flies separately and in combination of agomir-125-3p (Ago-125-3p) and agomir-276b-3p (Ago-276b-3p) significantly downregulated the mRNA of orb2. The combined treatments of agomirs suppressed the level of mRNA of orb2 significantly more than any single treatment. Altered expression of miR-125-3p and miR-276b-3p significantly decreased the total and live spermatozoa in the testis which ultimately caused reduction in male fertility. Furthermore, we demonstrate that miR-125-3p, miR-276b-3p, and orb2 dsRNA are the novel agents that could be used in a genetic-based sterile insect technique (SIT) to control the B. dorsalis.
Collapse
|
6
|
Kyrgiafini MA, Sarafidou T, Mamuris Z. The Role of Long Noncoding RNAs on Male Infertility: A Systematic Review and In Silico Analysis. BIOLOGY 2022; 11:biology11101510. [PMID: 36290414 PMCID: PMC9598197 DOI: 10.3390/biology11101510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
Male infertility is a complex disorder affecting many couples worldwide. Long noncoding RNAs (lncRNAs) regulate important cellular processes; however, a comprehensive understanding of their role in male infertility is limited. This systematic review investigates the differential expressions of lncRNAs in male infertility or variations in lncRNA regions associated with it. The PRISMA guidelines were used to search Pubmed and Web of Science (1 June 2022). Inclusion criteria were human participants, patients diagnosed with male infertility, and English language speakers. We also performed an in silico analysis investigating lncRNAs that are reported in many subtypes of male infertility. A total of 625 articles were found, and after the screening and eligibility stages, 20 studies were included in the final sample. Many lncRNAs are deregulated in male infertility, and interactions between lncRNAs and miRNAs play an important role. However, there is a knowledge gap regarding the impact of variants found in lncRNA regions. Furthermore, eight lncRNAs were identified as differentially expressed in many subtypes of male infertility. After in silico analysis, gene ontology (GO) and KEGG enrichment analysis of the genes targeted by them revealed their association with bladder and prostate cancer. However, pathways involved in general in tumorigenesis and cancer development of all types, such as p53 pathways, apoptosis, and cell death, were also enriched, indicating a link between cancer and male infertility. This evidence, however, is preliminary. Future research is needed to explore the exact mechanism of action of the identified lncRNAs and investigate the association between male infertility and cancer.
Collapse
|
7
|
Khan IM, Liu H, Zhuang J, Khan NM, Zhang D, Chen J, Xu T, Avalos LFC, Zhou X, Zhang Y. Circular RNA Expression and Regulation Profiling in Testicular Tissues of Immature and Mature Wandong Cattle ( Bos taurus). Front Genet 2021; 12:685541. [PMID: 34880896 PMCID: PMC8647812 DOI: 10.3389/fgene.2021.685541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Wandong cattle are an autochthonous Chinese breed used extensively for beef production. The breed tolerates extreme weather conditions and raw feed and is resistant to tick-borne diseases. However, the genetic basis of testis development and sperm production as well as breeding management is not well established in local cattle. Therefore, improving the reproductive efficiency of bulls via genetic selection is crucial as a single bull can breed thousands of cows through artificial insemination (AI). Testis development and spermatogenesis are regulated by hundreds of genes and transcriptomes. However, circular RNAs (circRNAs) are the key players in many biological developmental processes that have not been methodically described and compared between immature and mature stages in Bovine testes. In this study, we performed total RNA-seq and comprehensively analyzed the circRNA expression profiling of the testis samples of six bulls at 3 years and 3 months of developmental age. In total, 17,013 circRNAs were identified, of which 681 circRNAs (p-adjust < 0.05) were differentially expressed (DE). Among these DE circRNAs, 579 were upregulated and 103 were downregulated in calf and bull testes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that the identified target genes were classified into three broad functional categories, including biological process, cellular component, and molecular function, and were enriched in the lysine degradation, cell cycle, and cell adhesion molecule pathways. The binding interactions between DE circRNAs and microRNAs (miRNAs) were subsequently constructed using bioinformatics approaches. The source genes ATM, CCNA1, GSK3B, KMT2C, KMT2E, NSD2, SUCLG2, QKI, HOMER1, and SNAP91 were found to be actively associated with bull sexual maturity and spermatogenesis. In addition, a real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed a strong correlation with the sequencing data. Moreover, the developed model of Bovine testes in the current study provides a suitable framework for understanding the mechanism of circRNAs in the development of testes and spermatogenesis.
Collapse
Affiliation(s)
- Ibrar Muhammad Khan
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hongyu Liu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jingyi Zhuang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Dandan Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jingmeng Chen
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tengteng Xu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lourdes Felicidad Córdova Avalos
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xinqi Zhou
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Comprehensive Analysis of miRNAs and Target mRNAs between Immature and Mature Testis Tissue in Chinese Red Steppes Cattle. Animals (Basel) 2021; 11:ani11113024. [PMID: 34827757 PMCID: PMC8614260 DOI: 10.3390/ani11113024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary MicroRNAs are small molecules that can regulate the relative abundance of their target genes by binding to the 3′ untranslated region of the target genes at the post-transcriptional level to affect various biological processes, such as biosynthesis, fat metabolism and proliferation, apoptosis, and cell differentiation. Fertility is one of the most important economic traits in livestock production. Bulls require the continuous production of high-quality spermatozoa in abundance. The quality of semen is an exceptionally important factor affecting the fertilization rate of the dairy cow and is also associated with the increasing conception rate in the process of artificial insemination. Therefore, accurately predicting fertility potential for a semen sample from donor bull for artificial insemination is crucial for consistently high reproductive efficiency. The present study performed a genome-wide sequencing analysis of microRNAs and mRNAs between immature and mature testes of Chinese Red Steppes. These results provide novel candidate microRNAs and functional genes related to bull reproduction traits and the networks between microRNAs and target genes, which will provide a useful genetic mechanism and epigenetic information for marker-assisted selection of bulls with excellent sperm quality in the future. Abstract This study aims to screen potential regulators and regulate fecundity networks between microRNAs (miRNAs) and target genes. The bovine testes of immature and mature Chinese Red Steppes were performed by genome-wide analysis of mRNAs and miRNAs. Compared with testicular tissues of newborns, 6051 upregulated genes and 7104 downregulated genes in adult cattle were identified as differentially expressed genes (DEGs). The DEGs were significantly enriched in 808 GO terms (p < 0.05) including male gonad development, male genitalia development, spermatogenesis, and sperm motility. Moreover, DEGs were also significantly enriched in 105 KEGG pathways (p < 0.05), including cGMP-PKG signaling pathway and calcium signaling pathway. To explore the expression of miRNA-regulated gene expression, 896 differentially expressed target genes negatively regulated with the expression levels of 31 differentially expressed miRNAs (DERs) were predicted and analyzed, and a network-integrated analysis was constructed. Furthermore, real-time PCR was performed to verify the expression levels of DEGs and DERs. Our results identified novel candidate DEGs and DERs correlated with male reproduction and intricate regulating networks between miRNAs and genes, which will be valuable for future genetic and epigenetic studies of sperm development and maturity, as well as providing valuable insights into the molecular mechanisms of male fertility and spermatogenesis in cattle.
Collapse
|
9
|
Aydos OS, Yukselten Y, Aydos D, Sunguroglu A, Aydos K. Relationship between functional Nrf2 gene promoter polymorphism and sperm DNA damage in male infertility. Syst Biol Reprod Med 2021; 67:399-412. [PMID: 34541983 DOI: 10.1080/19396368.2021.1972359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study examines the association of the -617 C > A polymorphism in the Nrf2 gene (rs6721961) with male infertility in a Turkish population and determines its functional role in spermatogenesis in correlation with the impact of different levels of DNA damage on the genotypes. A total of 100 infertile men and 100 healthy fertile men were included in the study. Nrf2 genotyping was performed with the PCR-based restriction fragment length gene polymorphism (RFLP-PCR) analysis. According to our results, the Nrf2 CC, CA, and AA genotype distribution frequencies were 58.6%, 38.4%, and 3% in the control group, respectively, and 38%, 48%, and 14% in the infertile men, respectively. The AA genotype was significantly higher in the patient group. In smokers, a significant difference was found in progressive motility values between the genotypes (p = 0.001). Also, sperm progressive motility and concentration decreased significantly in those smokers with the AA genotype; smokers carrying this genotype were also 5.75 times more likely to have oligoasthenozoospermia than those with CC (p < 0.05). There was a significant relationship between the number of cases with high sperm-DNA damage when comparing the frequency of Nrf2 AA genotype carriers with the CC genotype 16.3% vs. 6.9%, respectively (p < 0.001). These results suggest the importance of the Nrf2 gene C > A (rs 6,721,961) polymorphism in the etiology of sperm DNA damage as a risk factor for male infertility. Smokers carrying the AA genotype are more likely to impair seminal parameters through antioxidant mechanisms.Abbreviations: Polymerase chain reaction (PCR)-based restriction fragment length gene polymorphism (RFLP-PCR); reactive oxygen species (ROS); deoxyribonucleic acid (DNA); catalases (CATs); superoxide dismutase (SOD); glutathione peroxidase (GPX); glutathione-S-transferase (GST); Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2); basic leucine zipper (bZIP); antioxidant response element (ARE); World Health Organization (WHO);normospermia(NS);asthenozoospermia(AS);oligozoospermia(OS);oligoasthenozoospermia (OAS); follicle stimulating hormone (FSH); ultraviolet (UV); low-melting-point agarose (LMA); normal-melting-point agarose (NMA); arbitrary units (AU); total comet score (TCS); A one-way analysis of variance (ANOVA); standard deviation (SD); N-acetyltransferase (NAT2); small non-coding RNAs (ncRNAs); microRNAs (miRNA).
Collapse
Affiliation(s)
- O Sena Aydos
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey
| | - Yunus Yukselten
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey.,Research Laboratories for Health Science, Y Gen Biotechnology Company Ltd, Ankara, Turkey
| | - Dunya Aydos
- Department of Stem Cells and Regenerative Medicine, Stem Cell Institute, Ankara University Ankara, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey
| | - Kaan Aydos
- Department of Urology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
10
|
Ge P, Zhang X, Yang YQ, Lv MQ, Zhang J, Han SP, Zhao WB, Zhou DX. Rno_circRNA_016194 might be involved in the testicular injury induced by long-term formaldehyde exposure via rno-miR-449a-5p mediated Atg4b activation. Food Chem Toxicol 2021; 155:112409. [PMID: 34265366 DOI: 10.1016/j.fct.2021.112409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Although circular RNAs (circRNAs) can function as microRNAs (miRNAs) sponges to participate in spermatogenesis, little is known about the functions of circRNAs in testis exposed to formaldehyde. In this study, twenty-four male SD rats (6-8 weeks) were randomly assigned to four groups, including a control group, 0.5, 2.46, and 5 mg/m3 formaldehyde exposure groups, inhaling formaldehyde for eight consecutive weeks. The RT-qPCR was used to detect the expression of rno_circRNA_016194; the testicular injuries were observed by testicular histopathology. Our study illustrated up-regulated rno_circRNA_016194 was dose-dependent with formaldehyde. Simultaneously, the testicular histopathology showed an obvious damages in the 2.46 and 5 mg/m3 formaldehyde exposure rats. Combined with bioinformatics analysis, the rno-miR-449a-5p was predicted and verified that its expression decreased in the testis exposed to formaldehyde. Meanwhile, the testicular morphometry changes were contrary to the expression of rno_circRNA_016194 and consistent with rno-miR-449a-5p. Moreover, bioinformatics analysis also prompted the potential downstream target gene for rno_circRNA_016194/rno-miR-449a-5p was Atg4b, and Atg4b expression was up-regulated in rats exposed to formaldehyde verifying by Western blot. Collectively, the rno_circRNA_016194 might be involved in formaldehyde-induced male reproductive toxicity and become potential therapeutic targets for male occupational exposure to formaldehyde.
Collapse
Affiliation(s)
- Pan Ge
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Genetics and Developmental Biology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiang Zhang
- Department of Science and Education, Xi'an Children' s Hospital, Xi'an, Shaanxi, 710003, China
| | - Yan-Qi Yang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Genetics and Developmental Biology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mo-Qi Lv
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Genetics and Developmental Biology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Zhang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shui-Ping Han
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wen-Bao Zhao
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dang-Xia Zhou
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Genetics and Developmental Biology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
11
|
Comprehensive CircRNA Profiling and Selection of Key CircRNAs Reveal the Potential Regulatory Roles of CircRNAs throughout Ovarian Development and Maturation in Cynoglossus semilaevis. BIOLOGY 2021; 10:biology10090830. [PMID: 34571707 PMCID: PMC8468179 DOI: 10.3390/biology10090830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023]
Abstract
Simple Summary CircRNAs: as molecules involved in gene regulation, have become a new research hotspot in the non-coding RNA field. CircRNAs show tissue- or developmental stage-specific patterns of expression and can influence the expression levels of their parental genes. Recent studies have documented the potential biological roles of circRNAs in the growth, development, reproduction and health of humans and animals. Tongue sole (Cynoglossus semilaevis) is a marine flatfish that is an economically important farmed species in China. The commercial aquaculture of tongue sole has developed in the last few years because wild resources have decreased. Reproduction is regulated by brain-pituitary-gonad-liver axis which limits the development of artificial tongue sole culture. However, the roles of circRNAs in the ovarian development and maturation of tongue sole has never been reported. The identification of the potential functions of circRNAs provides a foundation for understanding the genetic mechanisms that regulate oocyte growth and maturation, which will allow the efficiency of tongue sole reproduction to be improved. Moreover, our findings extend the knowledge about a new type of endogenous RNA involved in regulating the ovarian development and maturation of tongue sole. Abstract CircRNAs are novel endogenous non-coding small RNAs involved in the regulation of multiple biological processes. However, little is known regarding circRNAs in ovarian development and maturation of fish. Our study, for the first time, provides the genome-wide overview of the types and relative abundances of circRNAs in tongue sole tissues during three ovarian developmental stages. We detected 6790 circRNAs in the brain, 5712 in the pituitary gland, 4937 in the ovary and 4160 in the liver. Some circRNAs exhibit tissue-specific expression, and qRT-PCR largely confirmed 6 differentially expressed (DE) circRNAs. Gene Ontology and KEGG pathway analyses of DE mRNAs were performed. Some DE circRNA parental genes were closely associated with biological processes in key signalling pathways and may play essential roles in ovarian development and maturation. We found that the selected circRNAs were involved in 10 pathways. RNase R digestion experiment and Sanger sequencing verified that the circRNA had a ring structure and was RNase R resistant. qRT-PCR results largely confirmed differential circRNA expression patterns from the RNA-seq data. These findings indicate that circRNAs are widespread in terms of present in production-related tissues of tongue sole with potentially important regulatory roles in ovarian development and maturation.
Collapse
|
12
|
Aliakbari F, Eshghifar N, Mirfakhraie R, Pourghorban P, Azizi F. Coding and Non-Coding RNAs, as Male Fertility and Infertility Biomarkers. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2021; 15:158-166. [PMID: 34155862 PMCID: PMC8233923 DOI: 10.22074/ijfs.2021.134602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
Semen analysis is usually the first step in the assessment of male fertility. Although analyzes provide valuable information about male fertility, success of cytoplasmic sperm injection using this method is not predictable. In the recent years, studies have shown that sperm quality assessment helps clinicians predict male fertility status based on the expression of biomarkers. To write this article, a comprehensive study was conducted on several RNA transcripts by searching related words on medical information databases by 2018. According to the literature, spermatogenesis based disorders in male infertility have a significant relationship with the expression level of some RNA molecules (like DAZ and PRM1/PRM2 ratio) in semen and testicular tissue. Thus, they might be used as predictor biomarkersto evaluate success rate of testicular sperm extraction (TESE) procedure, but confirmation of this hypothesis requires more extensive research. By comparing the number of RNAs attributed to each fertility disorder in men, it is possible to trace the causes of disease or return fertility to some infertile patients by regulating the mentioned molecules. Further researches can provide a better understanding of the use of RNA expression profiles in the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Fereshteh Aliakbari
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahal Eshghifar
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Pourghorban
- Department of Biology, Faculty of Biological Sciences, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Faezeh Azizi
- Non-Communicable Disease Control Department, Public Health Department, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
13
|
Tezerjani MD, Kalantar SM. Unraveling the dark matter, long non-coding RNAs, in male reproductive diseases: A narrative review. Int J Reprod Biomed 2020; 18:921-934. [PMID: 33349800 PMCID: PMC7749978 DOI: 10.18502/ijrm.v13i11.7959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/10/2020] [Accepted: 06/28/2020] [Indexed: 12/09/2022] Open
Abstract
Recent advances in human transcriptome have revealed the fundamental and functional roles of long non-coding RNA in the susceptibility to diverse diseases and pathological conditions. They participate in wide range of biological processes such as the modulating of chromatin structure, transcription, translation, and post-translation modification. In addition, based on their unique expression profiles and their association with clinical abnormalities such as those of related to male reproductive diseases, they can be used to develop therapeutic methods and biomarkers for screening of the diseases. In this study, we will review the identified lncRNAs and their molecular functions in the pathogenesis of male reproductive diseases such as prostate cancer, benign prostatic hyperplasia, prostatitis, testicular cancer, varicocele, and sperm abnormalities.
Collapse
Affiliation(s)
- Masoud Dehghan Tezerjani
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran.,Department of Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
14
|
Zhang HT, Zhang Z, Hong K, Tang WH, Liu DF, Mao JM, Yang YZ, Lin HC, Jiang H. Altered microRNA profiles of testicular biopsies from patients with nonobstructive azoospermia. Asian J Androl 2020; 22:100-105. [PMID: 31134916 PMCID: PMC6958976 DOI: 10.4103/aja.aja_35_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many studies have shown that microRNAs (miRNAs) play vital roles during the spermatogenesis. However, little is known about the altered miRNA profiles of testicular tissues in nonobstructive azoospermia (NOA). Using microarray technology, the miRNA expression profiles of testicular biopsies from patients with NOA and of normal testicular tissues were determined. Bioinformatics analyses were conducted to predict the enriched biological processes and functions of identified miRNAs. The microarray data were validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), the results of which were then validated with a larger sample size. Correlations between the miRNA expression levels and clinical characteristics were analyzed. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic ability of miRNAs for azoospermia. Hierarchical clustering showed that 129 miRNAs were significantly differentially expressed between the NOA and control groups. Bioinformatics analysis indicated that the differentially expressed miRNAs were involved in spermatogenesis, cell cycle, and mitotic prometaphase. In the subsequent qRT-PCR assays, the selected miRNA expression levels were consistent with the microarray results, and similar validated results were obtained with a larger sample size. Some clinical characteristics were significantly associated with the expression of certain miRNAs. In particular, we identified a combination of two miRNAs (miR-10b-3p and miR-34b-5p) that could serve as a predictive biomarker of azoospermia. This study provides altered miRNA profiles of testicular biopsies from NOA patients and examines the roles of miRNAs in spermatogenesis. These profiles may be useful for predicting and diagnosing the presence of testicular sperm in individuals with azoospermia.
Collapse
Affiliation(s)
- Hai-Tao Zhang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - Zhe Zhang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - Kai Hong
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - Wen-Hao Tang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China
| | - De-Feng Liu
- Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China
| | - Jia-Ming Mao
- Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China
| | - Yu-Zhuo Yang
- Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China
| | - Hao-Cheng Lin
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
15
|
Niayale R, Cui Y, Adzitey F. Male hybrid sterility in the cattle-yak and other bovines: a review. Biol Reprod 2020; 104:495-507. [PMID: 33185248 DOI: 10.1093/biolre/ioaa207] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/16/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
Hybridization is important for both animal breeders attempting to fix new phenotypic traits and researchers trying to unravel the mechanism of reproductive barriers in hybrid species and the process of speciation. In interspecies animal hybrids, gains made in terms of adaptation to environmental conditions and hybrid vigor may be offset by reduced fertility or sterility. Bovine hybrids exhibit remarkable hybrid vigor compared to their parents. However, the F1 male hybrid exhibits sterility, whereas the female is fertile. This male-biased sterility is consistent with the Haldane rule where heterogametic sex is preferentially rare, absent, or sterile in the progeny of two different species. The obstacle of fixing favorable traits and passing them to subsequent generations due to the male sterility is a major setback in improving the reproductive potential of bovines through hybridization. Multiperspective approaches such as molecular genetics, proteomics, transcriptomics, physiology, and endocrinology have been used by several researchers over the past decade in an attempt to unravel the potential mechanisms underlying male hybrid sterility. However, the mechanism of sterility in the hybrid male is still not completely unravelled. This review seeks to provide an update of the mechanisms of the sterility in the cattle-yak and other bovines.
Collapse
Affiliation(s)
- Robert Niayale
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China.,Faculty of Agriculture, Animal Science Department, University for Development Studies, Tamale, Ghana
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Fredrick Adzitey
- Faculty of Agriculture, Animal Science Department, University for Development Studies, Tamale, Ghana
| |
Collapse
|
16
|
Kyrgiafini MA, Markantoni M, Sarafidou T, Chatziparasidou A, Christoforidis N, Mamuris Z. Genome-wide association study identifies candidate markers related to lincRNAs associated with male infertility in the Greek population. J Assist Reprod Genet 2020; 37:2869-2881. [PMID: 32880781 PMCID: PMC7642051 DOI: 10.1007/s10815-020-01937-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Male infertility is currently one of the most common problems faced by couples worldwide. We performed a GWAS on Greek population and gathered statistically significant SNPs in order to investigate whether they lie within or near lncRNA regions. OBJECTIVES The aim of this study was to investigate whether polymorphisms on or near lncRNAs affect interactions with miRNAs and can cause male infertility. MATERIALS AND METHODS In the present study, a GWAS was conducted, using samples from 159 individuals (83 normozoospermic individuals and 76 patients of known fertility issues). Standard procedures for quality controls and association testing were followed, based on case-control testing. RESULTS We detected six lncRNAs (LINC02231, LINC00347, LINC02134, NCRNA00157, LINC02493, Lnc-CASK-1) that are associated with male infertility through their interaction with miRNAs. Furthermore, we identified the genes targeted by those miRNAs and highlighted their functions in spermatogenesis and the fertilization process. DISCUSSION AND CONCLUSION lncRNAs are involved in spermatogenesis through their interaction with miRNAs. Thus, their study is very important, and it may contribute to the understanding of the molecular mechanisms underlying male infertility.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Maria Markantoni
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Theologia Sarafidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | | | | | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece.
| |
Collapse
|
17
|
Nazmara Z, Shirinbayan P, Reza Asgari H, Ahadi R, Asgari F, Maki CB, Fattahi F, Hosseini B, Janzamin E, Koruji M. The epigenetic alterations of human sperm cells caused by heroin use disorder. Andrologia 2020; 53:e13799. [PMID: 33099803 DOI: 10.1111/and.13799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/24/2020] [Accepted: 07/19/2020] [Indexed: 12/15/2022] Open
Abstract
The molecular mechanisms of drug use on sexual health are largely unknown. We investigated, the relationship between heroin use disorder and epigenetic factors influencing histone acetylation in sperm cells. The volunteers included twenty-four 20- to 50-year-old men with a normal spermogram who did not consume any drugs and twenty-four age- to BMI-matched men who consume only the drug heroin for more than last four months. HDAC1 and HDAC11 mRNA expression levels in spermatozoa and miR-34c-5p and miR-125b-5p expression levels in seminal plasma were measured. The heroin-user group showed significantly increased white blood cell counts and decreased sperm motility and survival rates (8.61 ± 1.73, 21.50 ± 3.11, 69.90 ± 4.69 respectively) as compared to the control group (1.49 ± 0.32, 38.82 ± 3.05, 87.50 ± 0.99 respectively) (p ≤ .001). An increase in DNA fragmentation index (DFI) (heroin-user group: 41.93 ± 6.59% and control group: 10.14 ± 1.43%, p = .003), a change in frequency of HDAC1 (heroin-user group: 1.69 ± 0.55 and control group: 0.45 ± 0.14, p = .045) and HDAC11 (heroin-user group: 0.29 ± 0.13 and control group: 2.36 ± 0.76, p = .019) in spermatozoa and a significant decrease in seminal miR-125b-5p abundance (heroin-user group: 0.37 ± 0.11 and control group: 1.59 ± 0.47, p = .028) were reported in heroin consumers. Heroin use can lead to male infertility by causing leukocytospermia, asthenozoospermia, DFI elevation in sperm cells and alterations in seminal RNA profile.
Collapse
Affiliation(s)
- Zohreh Nazmara
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Peymaneh Shirinbayan
- Pediatric Neuro-Rehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hamid Reza Asgari
- Cellular and Molecular Research Center & Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ahadi
- Cellular and Molecular Research Center & Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Asgari
- Cellular and Molecular Research Center & Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Chad B Maki
- VetCell Therapeutics USA, Santa Ana, CA, USA
| | - Fahimeh Fattahi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Bitasadat Hosseini
- Department of Biochemistry, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Janzamin
- Department of Stem Cell and Developmental Biology, Royan Institute, Tehran, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Center & Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Lv MQ, Zhou L, Ge P, Li YX, Zhang J, Zhou DX. Over-expression of hsa_circ_0000116 in patients with non-obstructive azoospermia and its predictive value in testicular sperm retrieval. Andrology 2020; 8:1834-1843. [PMID: 32735753 DOI: 10.1111/andr.12874] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Non-obstructive azoospermia (NOA), identified in approximately 10% of infertile males, is a multifactorial disease whose molecular mechanisms remain unknown. OBJECTIVES The aim of this study was to identify the role of hsa_circ_0000116 in NOA and illustrate its predictive value in testicular sperm retrieval. MATERIALS AND METHODS The study included 78 individuals, 58 with NOA and 20 with obstructive azoospermia (OA). Serum hormones including testosterone (T), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), and estradiol II (E2) were measured. Testicular histopathology was analyzed by at least two pathologists. The expression of hsa_circ_0000116 in testicular tissue samples was detected using real-time PCR, and the circRNA-miRNA-mRNA networks were predicted using bioinformatics analysis. RESULTS Our study illustrated that the expression of hsa_circ_0000116 was significantly higher in testicular tissue samples of NOA patients than in that of OA patients. Moreover, hsa_circ_0000116 was aberrantly expressed in three different pathological types of NOA: It was significantly up-regulated in patients with Sertoli cell-only syndrome (SCOS) when compared to patients with hypospermatogenesis (HS). In addition, the expression of hsa_circ_0000116 was negatively correlated with Johnsen score, while it was positively correlated with serum FSH level. A multivariate logistic regression model demonstrated that a high level of hsa_circ_0000116 was associated with a low rate of successful testicular sperm retrieval. Bioinformatics analysis and verification experiments showed that one of the most probable potential target miRNA for hsa_circ_0000116 was hsa-miR-449a. Further analysis indicated that hsa_circ_0000116 may be affecting the fertility function through a hsa_circ_0000116-miR-449-autophagy-related competing endogenous RNA (ceRNA) network. DISCUSSION AND CONCLUSION We report for the first time that hsa_circ_0000116 may play pivotal roles in regulating spermatogenesis and may also be a potential biomarker for the diagnosis and treatment of NOA, while acting as a predictive tool for the rate of successful testicular sperm retrieval in NOA patients.
Collapse
Affiliation(s)
- Mo-Qi Lv
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Liang Zhou
- Reproductive Center Medicine, Maternal and Child Care Hospital of Shaanxi Province, Xi'an, China
| | - Pan Ge
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Yi-Xin Li
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Jian Zhang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Dang-Xia Zhou
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| |
Collapse
|
19
|
Cito G, Coccia ME, Salvianti F, Fucci R, Picone R, Giachini C, Cocci A, Falcone P, Micelli E, Verrienti P, Minervini A, Carini M, Pinzani P, Natali A. Blood plasma miR-20a-5p expression as a potential non-invasive diagnostic biomarker of male infertility: A pilot study. Andrology 2020; 8:1256-1264. [PMID: 32406197 DOI: 10.1111/andr.12816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recently, alterations in miRNAs expression profile in semen have been linked to damaged spermatogenesis, suggesting miRNAs could be used as potential infertility biomarkers. In previous animal studies, miR-20a-5p was found to be down-expressed in low motile spermatozoa, implying its potential target of genes associated with cell apoptosis. OBJECTIVE To investigate miR-20a-5p expression in blood plasma of patients suffering from non-obstructive azoospermia (NOA), compared to normozoospermic controls. MATERIALS AND METHODS Between January 2018 and December 2019, from 52 infertile couples eligible for the study, 24 couples were finally enrolled in this monocentric observational prospective pilot study. Patients were included into two groups: Group 1 comprised men with NOA (n = 14) and Group 2 fertile men partners of women with female tubal factor infertility (n = 10). All NOA patients underwent testicular sperm extraction. The expression of circulating miR-20a-5p in plasma samples was assessed by RT-qPCR. A relative quantification strategy was adopted using the 2-ΔCq method to calculate the target miR-20a-5p expression with respect to miR-16-5p as endogenous control. RESULTS Median blood plasma miR-20a-5p was significantly higher in patients affected by NOA (0.16 2-ΔCt , range: 0.05-0.79 2-ΔCt ) than in fertile controls (0.06 2-ΔCt , range: 0.04-0.10 2-ΔCt ), P < .001. MiR-20a-5p was positively correlated with follicle-stimulating hormone (FSH) (rrho = -0.490, P = .015) and luteinizing hormone (LH) (rrho = -0.462, P = .023), and negatively correlated with serum total testosterone (TT) (rrho = -0.534, P = .007) and right and left testicular size (rrho = -0.473, P = .020 and rrho = -0.471, P = .020, respectively). Successful sperm retrieval (SR) rate was 50.0%. Median value of miR-20a-5p did not differ significantly among patients with successful SR and those with negative SR. Testicular histological examination showed: hypospermatogenesis in 6/14 (42.8%), maturation arrest in 4/14 (28.6%), sertoli cell-only syndrome in 4/14 (28.6%). No significant differences in miR-20a-5p were found between histopathological patterns (P > .05). CONCLUSIONS MiR-20a-5p could represent a novel non-invasive diagnostic biomarker of male infertility.
Collapse
Affiliation(s)
- Gianmartin Cito
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Maria Elisabetta Coccia
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Francesca Salvianti
- Clinical Biochemistry and Clinical Molecular Biology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rossella Fucci
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Rita Picone
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Claudia Giachini
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Andrea Cocci
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Patrizia Falcone
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Elisabetta Micelli
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Pierangelo Verrienti
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Andrea Minervini
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Marco Carini
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Pamela Pinzani
- Clinical Biochemistry and Clinical Molecular Biology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Alessandro Natali
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| |
Collapse
|
20
|
Cai Y, Lei X, Chen Z, Mo Z. The roles of cirRNA in the development of germ cells. Acta Histochem 2020; 122:151506. [PMID: 32008790 DOI: 10.1016/j.acthis.2020.151506] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
Circular RNA (CircRNA), a type of endogenous non-coding RNAs (ncRNAs), is generally generated from precursor mRNA (pre-mRNA) by canonical splicing and head-to-tail back splicing. The structure without a polyA tail renders circRNA highly insensitive to ribonuclease. Simultaneously, the distribution of circRNAs is tissue and developmental stage-specific. There are five potential biological functions of circRNAs: 1) promote transcription of their parental genes; 2) function as a miRNA sponge; 3) RNA binding protein (RBP) sponge; 4) encode protein; 5) act as an mRNA trap. Recently, circRNA has attracted attention because studies have shown that circRNAs are associated with follicular development, ovarian senescence, spermatogenesis, and germ cell development process, suggesting that circRNAs may function in germ cells regulation. The investigation of circRNAs in germ cells will provide an excellent opportunity to understand its potential molecular basis, and potentially improving reproduction status in human. In this article, the relationship between circRNA and germ cell development will be discussed.
Collapse
Affiliation(s)
- Yaqin Cai
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Institute of Basic Medical Sciences, Center for Diabetic Systems Medicine (Guangxi Key Laboratory of Excellence), Guilin Medical University, Guangxi, Guilin, 541100, China
| | - Xiaocan Lei
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhuo Chen
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Institute of Reproductive Medicine, Yueyang, Hunan, 416000, China
| | - Zhongcheng Mo
- Institute of Basic Medical Sciences, Center for Diabetic Systems Medicine (Guangxi Key Laboratory of Excellence), Guilin Medical University, Guangxi, Guilin, 541100, China; Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Institute of Reproductive Medicine, Yueyang, Hunan, 416000, China.
| |
Collapse
|
21
|
Tian F, Wang J, Li Y, Yang C, Zhang R, Wang X, Ju Z, Jiang Q, Huang J, Wang C, Chen J, Sun Y. Integrated analysis of mRNA and miRNA in testis and cauda epididymidis reveals candidate molecular markers associated with reproduction in Dezhou donkey. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Daneshmandpour Y, Bahmanpour Z, Hamzeiy H, Mazaheri Moghaddam M, Mazaheri Moghaddam M, Khademi B, Sakhinia E. MicroRNAs association with azoospermia, oligospermia, asthenozoospermia, and teratozoospermia: a systematic review. J Assist Reprod Genet 2020; 37:763-775. [PMID: 32189180 DOI: 10.1007/s10815-019-01674-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/22/2019] [Indexed: 02/08/2023] Open
Abstract
Infertility is a major health problem across the world. One of the main reasons for male infertility are defects in sperm. Semen analysis is the most common test utilized to evaluate male fertility and since it suffers from multiple drawbacks, reproduction scientists have tried to find new molecular markers for detecting sperm defects. MicroRNAs (miRNAs) are small molecules in cells which take part in regulating gene expression. Various studies have confirmed miRNAs to have a role in defining multiple sperm characteristics, including sperm count, motility, and morphology. In this paper, we have systematically reviewed the role of miRNAs in infertile men with sperm defects including azoospermia, oligospermia, asthenozoospermia, and teratozoospermia. Also, we have assembled various bioinformatics tools to come up with a pipeline for predicting novel miRNAs which could possibly participate in sperm count, motility, and morphology. Also, related KEGG and GO terms for predicted miRNAs have been included in order to highlight their role in sperm function. Our study emphasizes the potential role of miRNAs in male infertility and provides a general overview for future studies aiming to find robust molecular markers for this condition.
Collapse
Affiliation(s)
- Yousef Daneshmandpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Bahmanpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Hamzeiy
- Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran.,Genomize Inc., Istanbul, Turkey
| | - Marziyeh Mazaheri Moghaddam
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Madiheh Mazaheri Moghaddam
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Bahareh Khademi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran. .,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Sahlu BW, Zhao S, Wang X, Umer S, Zou H, Huang J, Zhu H. Long noncoding RNAs: new insights in modulating mammalian spermatogenesis. J Anim Sci Biotechnol 2020; 11:16. [PMID: 32128162 PMCID: PMC7047388 DOI: 10.1186/s40104-019-0424-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is a complex differentiating developmental process in which undifferentiated spermatogonial germ cells differentiate into spermatocytes, spermatids, and finally, to mature spermatozoa. This multistage developmental process of spermatogenesis involves the expression of many male germ cell-specific long noncoding RNAs (lncRNAs) and highly regulated and specific gene expression. LncRNAs are a recently discovered large class of noncoding cellular transcripts that are still relatively unexplored. Only a few of them have post-meiotic; however, lncRNAs are involved in many cellular biological processes. The expression of lncRNAs is biologically relevant in the highly dynamic and complex program of spermatogenesis and has become a research focus in recent genome studies. This review considers the important roles and novel regulatory functions whereby lncRNAs modulate mammalian spermatogenesis.
Collapse
Affiliation(s)
- Bahlibi Weldegebriall Sahlu
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China.,Tigray Agricultural Research Institute, Mekelle Agricultural Research Center, Mekelle, Ethiopia
| | - Shanjiang Zhao
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Xiuge Wang
- 3Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250131 People's Republic of China
| | - Saqib Umer
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Huiying Zou
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Jinming Huang
- 3Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250131 People's Republic of China
| | - Huabin Zhu
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| |
Collapse
|
24
|
Ge P, Zhang J, Zhou L, Lv MQ, Li YX, Wang J, Zhou DX. CircRNA expression profile and functional analysis in testicular tissue of patients with non-obstructive azoospermia. Reprod Biol Endocrinol 2019; 17:100. [PMID: 31775841 PMCID: PMC6880412 DOI: 10.1186/s12958-019-0541-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) is a multifactorial disorder whose molecular basis remains largely unknown. Circular RNAs (CircRNAs), a novel class of endogenous RNAs, have been recognized to play important roles in many biological processes. However, little is known about the expression patterns and functions of circRNAs in human testes involved in NOA. METHODS In this study, the testicular circRNA expression profile were explored in NOA patients and the controls by high-throughput circRNA microarray. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to confirm the microarray data. Bioinformatics analyses including the circRNA/miRNA/mRNA interaction network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to predict the functions of differentially expressed circRNAs. RESULTS A total of 368 differentially down-regulated and 526 up-regulated circRNAs were detected in NOA patients. These findings have been verified by qRT-PCR on 6 selected circRNAs. Among these differentially expressed circRNAs, the hsa_circRNA_0023313 was obviously up-regulated in testicular tissue of NOA patients. The most likely potential target miRNA for hsa_circRNA_0023313 include hsa-miR-520d-3p, hsa-miR-373-3p, hsa-miR-372-3p, hsa-miR-302c-3p and hsa-miR-130b-5p. Function analysis indicated that hsa_circRNA_0023313 was ubiquitin-protein transferase activity and chromatin binding. KEGG analysis revealed that the top five pathways related to hsa_circRNA_0023313 were endocytosis, meiosis, FoxO signaling pathway, ubiquitin mediated proteolysis and AMPK signaling pathway. CONCLUSIONS This is the first report that the testicular circRNA expression profile is altered in NOA patients indicating circRNAs might play important roles in regulating spermatogenesis and be potential biomarkers for the diagnosis and treatment of NOA.
Collapse
Affiliation(s)
- Pan Ge
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
- Research Center of Reproductive Medicine, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Zhang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liang Zhou
- Reproductive Center Medicine, Maternal and child care Hospital of Shaanxi Province, Xi'an, 710063, China
| | - Mo-Qi Lv
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
- Research Center of Reproductive Medicine, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yi-Xin Li
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
- Research Center of Reproductive Medicine, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jin Wang
- Obstetrics and Gynecology Department, Xi'an Angel Women's & children's Hospital, Xi'an, 710077, China.
- Obstetrics and Gynecology Department, Maternal and child care Hospital of Shaanxi Province, Xi'an, 710063, China.
| | - Dang-Xia Zhou
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China.
- Research Center of Reproductive Medicine, Medical School, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
25
|
Gao Y, Li S, Lai Z, Zhou Z, Wu F, Huang Y, Lan X, Lei C, Chen H, Dang R. Analysis of Long Non-Coding RNA and mRNA Expression Profiling in Immature and Mature Bovine ( Bos taurus) Testes. Front Genet 2019; 10:646. [PMID: 31333723 PMCID: PMC6624472 DOI: 10.3389/fgene.2019.00646] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
Testis development and spermatogenesis are strictly regulated by numbers of genes and non-coding genes. However, long non-coding RNAs (lncRNAs) as key regulators in multitudinous biological processes have not been systematically identified in bovine testes during sexual maturation. In this study, we comprehensively analyzed lncRNA and mRNA expression profiling of six bovine testes at 3 days after birth and 13 months by RNA sequencing. 23,735 lncRNAs and 22,118 mRNAs were identified, in which 540 lncRNAs (P-value < 0.05) and 3,525 mRNAs (P-adjust < 0.05) were significantly differentially expressed (DE) between two stages. Correspondingly, the results of RT-qPCR analysis showed well correlation with the transcriptome data. Moreover, GO and KEGG enrichment analyses showed that DE genes and target genes of DE lncRNAs were enriched in spermatogenesis. Furthermore, we constructed lncRNA–gene interaction networks; consequently, 15 DE lncRNAs and 12 cis-target genes were involved. The target genes (SPATA16, TCF21, ZPBP, PACRG, ATP8B3, COMP, ACE, and OSBP2) were found associated with bovine sexual maturation. In addition, the expression of lncRNAs and cis-target genes was detected in bovine Leydig cells, Sertoli cells, and spermatogonia. Our study identified and analyzed lncRNAs and mRNAs in testis tissues, suggesting that lncRNAs may regulate testis development and spermatogenesis. Our findings provided new insights for further investigation of biological function in bovine lncRNA.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shipeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhenyu Lai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zihui Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
26
|
Fu K, Tian S, Tan H, Wang C, Wang H, Wang M, Wang Y, Chen Z, Wang Y, Yue Q, Xu Q, Zhang S, Li H, Xie J, Lin M, Luo M, Chen F, Ye L, Zheng K. Biological and RNA regulatory function of MOV10 in mammalian germ cells. BMC Biol 2019; 17:39. [PMID: 31088452 PMCID: PMC6515687 DOI: 10.1186/s12915-019-0659-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background RNA regulation by RNA-binding proteins (RBPs) involve extremely complicated mechanisms. MOV10 and MOV10L1 are two homologous RNA helicases implicated in distinct intracellular pathways. MOV10L1 participates specifically in Piwi-interacting RNA (piRNA) biogenesis and protects mouse male fertility. In contrast, the functional complexity of MOV10 remains incompletely understood, and its role in the mammalian germline is unknown. Here, we report a study of the biological and molecular functions of the RNA helicase MOV10 in mammalian male germ cells. Results MOV10 is a nucleocytoplasmic protein mainly expressed in spermatogonia. Knockdown and transplantation experiments show that MOV10 deficiency has a negative effect on spermatogonial progenitor cells (SPCs), limiting proliferation and in vivo repopulation capacity. This effect is concurrent with a global disturbance of RNA homeostasis and downregulation of factors critical for SPC proliferation and/or self-renewal. Unexpectedly, microRNA (miRNA) biogenesis is impaired due partially to decrease of miRNA primary transcript levels and/or retention of miRNA via splicing control. Genome-wide analysis of RNA targetome reveals that MOV10 binds preferentially to mRNAs with long 3′-UTR and also interacts with various non-coding RNA species including those in the nucleus. Intriguingly, nuclear MOV10 associates with an array of splicing factors, particularly with SRSF1, and its intronic binding sites tend to reside in proximity to splice sites. Conclusions These data expand the landscape of MOV10 function and highlight a previously unidentified role initiated from the nucleus, suggesting that MOV10 is a versatile RBP involved in a broader RNA regulatory network. Electronic supplementary material The online version of this article (10.1186/s12915-019-0659-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaiqiang Fu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Suwen Tian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Preventive Medicine, Heze Medical College, Heze, 274000, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Caifeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hanben Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Min Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yuanyuan Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zhen Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qiushi Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shuya Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Haixin Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Mingyan Lin
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Mengcheng Luo
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
27
|
Ge S, Zhao P, Liu X, Zhao Z, Liu M. Necessity to Evaluate Epigenetic Quality of the Sperm for Assisted Reproductive Technology. Reprod Sci 2018; 26:315-322. [DOI: 10.1177/1933719118808907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shaoqin Ge
- Hebei University Health Science Center, Baoding, China
- The Institute for Reproductive Medicine of Hebei University, Baoding, China
- The Center for Reproductive Medicine of Affiliated Hospital of Hebei University, Baoding, China
| | - Penghui Zhao
- Hebei University Health Science Center, Baoding, China
| | - Xuanchen Liu
- Hebei University Health Science Center, Baoding, China
| | - Zhenghui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meiyun Liu
- The Center for Reproductive Medicine of Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
28
|
Gao Y, Wu M, Fan Y, Li S, Lai Z, Huang Y, Lan X, Lei C, Chen H, Dang R. Identification and characterization of circular RNAs in Qinchuan cattle testis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180413. [PMID: 30109096 PMCID: PMC6083711 DOI: 10.1098/rsos.180413;180413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/21/2018] [Indexed: 05/27/2023]
Abstract
Circular RNA (circRNA) is a new class of non-coding RNA that has recently attracted researchers' interest. Studies have demonstrated that circRNA can function as microRNA sponges or competing endogenous RNAs. Although circRNA has been explored in some species and tissues, the genetic basis of testis development and spermatogenesis in cattle remains unknown. We performed ribo-depleted total RNA-Seq to detect circRNA expression profiles of neonatal (one week old) and adult (4 years old) Qinchuan cattle testes. We obtained 91 112 596 and 80 485 868 clean reads and detected 21 753 circRNAs. A total of 4248 circRNAs were significantly differentially expressed between neonatal and adult cattle testes. Among these circRNAs, 2225 were upregulated, and 2023 were downregulated in adult cattle testis. Genomic feature, length distribution and other characteristics of the circRNAs in cattle testis were studied. Moreover, Gene Ontology and KEGG pathway analyses were performed for source genes of circRNAs. These source genes were mainly involved in tight junction, adherens junction, TGFβ signalling pathway and reproduction, such as PIWIL1, DPY19L2, SLC26A8, IFT81, SMC1B, IQCG and TTLL5. CircRNA expression patterns were validated by RT-qPCR. Our discoveries provide a solid foundation for the identification and characterization of key circRNAs involved in testis development or spermatogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ruihua Dang
- Author for correspondence: Ruihua Dang e-mail:
| |
Collapse
|
29
|
Gao Y, Wu M, Fan Y, Li S, Lai Z, Huang Y, Lan X, Lei C, Chen H, Dang R. Identification and characterization of circular RNAs in Qinchuan cattle testis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180413. [PMID: 30109096 PMCID: PMC6083711 DOI: 10.1098/rsos.180413] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Circular RNA (circRNA) is a new class of non-coding RNA that has recently attracted researchers' interest. Studies have demonstrated that circRNA can function as microRNA sponges or competing endogenous RNAs. Although circRNA has been explored in some species and tissues, the genetic basis of testis development and spermatogenesis in cattle remains unknown. We performed ribo-depleted total RNA-Seq to detect circRNA expression profiles of neonatal (one week old) and adult (4 years old) Qinchuan cattle testes. We obtained 91 112 596 and 80 485 868 clean reads and detected 21 753 circRNAs. A total of 4248 circRNAs were significantly differentially expressed between neonatal and adult cattle testes. Among these circRNAs, 2225 were upregulated, and 2023 were downregulated in adult cattle testis. Genomic feature, length distribution and other characteristics of the circRNAs in cattle testis were studied. Moreover, Gene Ontology and KEGG pathway analyses were performed for source genes of circRNAs. These source genes were mainly involved in tight junction, adherens junction, TGFβ signalling pathway and reproduction, such as PIWIL1, DPY19L2, SLC26A8, IFT81, SMC1B, IQCG and TTLL5. CircRNA expression patterns were validated by RT-qPCR. Our discoveries provide a solid foundation for the identification and characterization of key circRNAs involved in testis development or spermatogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ruihua Dang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
30
|
1700108J01Rik and 1700101O22Rik are mouse testis-specific long non-coding RNAs. Histochem Cell Biol 2018; 149:517-527. [PMID: 29411102 DOI: 10.1007/s00418-018-1642-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 01/29/2023]
Abstract
Long non-coding RNAs (lncRNAs; > 200 nucleotides in length) have attracted attention as fine-tuners of gene expression. However, little is known about the cell- and stage-specific expression pattern and function of lncRNAs in spermatogenesis. The purpose of this study was to identify mouse testis-associated lncRNAs using a combination of computational and experimental approaches. We first used the FANTOM5 database to survey lncRNA expression in the mouse testis and performed reverse transcription quantitative polymerase chain reaction (real-time PCR) and in situ hybridization (ISH) analyses. In silico analysis showed that most of the highly expressed lncRNAs in the adult mouse testis were testis-specific lncRNAs and were expressed at and following the initiation of spermatogenesis. We selected the antisense lncRNA 1700108J01Rik and long intergenic non-coding RNA 1700101O22Rik from the most highly expressed lncRNAs in the adult testis for further analysis. Real-time PCR analysis confirmed that 1700108J01Rik and 1700101O22Rik were specifically expressed in the testis. ISH analysis revealed that the two mouse-testis-specific lncRNAs were expressed exclusively in testicular germ cells in meiotic prophase and the round spermatid stage, which coincide with the period of transcriptional reactivation during spermatogenesis. The cytoplasmic distribution of these lncRNAs revealed by ISH suggests their involvement in post-transcriptional gene regulation rather than in epigenetic or transcriptional regulation. Our data provide new insight into testis-associated lncRNAs that will be useful in expression and functional studies of spermatogenesis.
Collapse
|
31
|
MicroRNAs in Sertoli cells: implications for spermatogenesis and fertility. Cell Tissue Res 2017; 370:335-346. [DOI: 10.1007/s00441-017-2667-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/30/2017] [Indexed: 12/12/2022]
|
32
|
Weng B, Ran M, Chen B, He C, Dong L, Peng F. Genome-wide analysis of long non-coding RNAs and their role in postnatal porcine testis development. Genomics 2017; 109:446-456. [PMID: 28746831 DOI: 10.1016/j.ygeno.2017.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022]
Abstract
A comprehensive and systematic understanding of the roles of lncRNAs in the postnatal development of the pig testis has still not been achieved. In the present study, we obtained more than one billion clean reads and identified 15,528 lncRNA transcripts; these transcripts included 5032 known and 10,496 novel porcine lncRNA transcripts and corresponded to 10,041 lncRNA genes. Pairwise comparisons identified 449 known and 324 novel lncRNAs that showed differential expression patterns. GO and KEGG pathway enrichment analyses revealed that the targeted genes were involved in metabolic pathways regulating testis development and spermatogenesis, such as the TGF-beta pathway, the PI3K-Akt pathway, the Wnt/β-catenin pathway, and the AMPK pathway. Using this information, we predicted some lncRNAs and coding gene pairs were predicted that may function in testis development and spermatogenesis; these are listed in detail. This study has provided the most comprehensive catalog to date of lncRNAs in the postnatal pig testis and will aid our understanding of their functional roles in testis development and spermatogenesis.
Collapse
Affiliation(s)
- Bo Weng
- College of Animal Science and Technology, Hunan Agriculture University, Hunan, Changsha 410128, China; Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha 410128, China
| | - Maoliang Ran
- College of Animal Science and Technology, Hunan Agriculture University, Hunan, Changsha 410128, China; Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha 410128, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Agriculture University, Hunan, Changsha 410128, China; Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha 410128, China.
| | - Changqing He
- College of Animal Science and Technology, Hunan Agriculture University, Hunan, Changsha 410128, China; Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha 410128, China
| | - Lianhua Dong
- College of Animal Science and Technology, Hunan Agriculture University, Hunan, Changsha 410128, China; Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha 410128, China
| | - Fuzhi Peng
- College of Animal Science and Technology, Hunan Agriculture University, Hunan, Changsha 410128, China; Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha 410128, China
| |
Collapse
|
33
|
Dong WW, Li HM, Qing XR, Huang DH, Li HG. Identification and characterization of human testis derived circular RNAs and their existence in seminal plasma. Sci Rep 2016; 6:39080. [PMID: 27958373 PMCID: PMC5153637 DOI: 10.1038/srep39080] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) have emerged as novel molecules of interest in gene regulation as other noncoding RNAs. Though they have been explored in some species and tissues, the expression and functions of circRNAs in human reproductive systems remain unknown. Here we revealed the expression profiles of circRNAs in human testis tissue using high-throughput sequencing. The conformation of these testis-derived circRNAs in seminal plasma was also investigated, aiming to provide a non-invasive liquid biopsy surrogate for testicular biopsy. We predicted >15,000 circRNAs in human testis, with most of them (10,792; 67%) new. In all the 5,928 circRNA forming genes, 1,017 are first reported by us to generate circRNAs. Interestingly, these genes are mostly related to spermatogenesis, sperm motility, fertilization, etc. The sequence feature, chromosome location, alternative splicing and other characteristics of the circRNAs in human testis were also explored. Moreover, we found that these testis-derived circRNAs could be stably detected in seminal plasma. Most of them were probably bound with proteins in seminal plasma and were very stable at room temperature. Our work has laid the foundations to decipher regulation mechanisms of circRNAs in spermatogenesis and to develop circRNAs as novel noninvasive biomarkers for male infertile diseases.
Collapse
Affiliation(s)
- Wei-Wei Dong
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Hui-Min Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xing-Rong Qing
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Dong-Hui Huang
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430030, P. R. China
| | - Hong-Gang Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430030, P. R. China
| |
Collapse
|
34
|
Noveski P, Popovska-Jankovic K, Kubelka-Sabit K, Filipovski V, Lazarevski S, Plaseski T, Plaseska-Karanfilska D. MicroRNA expression profiles in testicular biopsies of patients with impaired spermatogenesis. Andrology 2016; 4:1020-1027. [DOI: 10.1111/andr.12246] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Affiliation(s)
- P. Noveski
- Research Center for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’; Macedonian Academy of Science and Arts; Skopje Republic of Macedonia
| | - K. Popovska-Jankovic
- Research Center for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’; Macedonian Academy of Science and Arts; Skopje Republic of Macedonia
| | - K. Kubelka-Sabit
- Clinical Hospital ‘Acibadem Sistina’; Skopje Republic of Macedonia
| | - V. Filipovski
- Clinical Hospital ‘Acibadem Sistina’; Skopje Republic of Macedonia
| | - S. Lazarevski
- Clinical Hospital ‘Acibadem Sistina’; Skopje Republic of Macedonia
| | - T. Plaseski
- Faculty of Medicine; Clinic of Endocrinology and Metabolic Disorders; Skopje Republic of Macedonia
| | - D. Plaseska-Karanfilska
- Research Center for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’; Macedonian Academy of Science and Arts; Skopje Republic of Macedonia
| |
Collapse
|
35
|
Abstract
It is known that spermatogenic disorders are associated with genetic deficiency, although the primary mechanism is still unclear. It is difficult to demonstrate the molecular events occurring in testis, which contains germ cells at different developmental stages. However, transcriptomic methods can help us reveal the molecular drive of male gamete generation. Many transcriptomic studies have been performed on rodents by utilizing the timing of the first wave of spermatogenesis, which is not a suitable strategy for research in fertile men. With the development of separation methods for male germ cells, transcriptome research on the molecular drive of spermatogenesis in fertile men has seen great progress, and the results could be ultimately applied to improve the diagnosis and treatment for male infertility.
Collapse
Affiliation(s)
| | | | - Zheng Li
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127; Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
36
|
Marczylo EL, Jacobs MN, Gant TW. Environmentally induced epigenetic toxicity: potential public health concerns. Crit Rev Toxicol 2016; 46:676-700. [PMID: 27278298 PMCID: PMC5030620 DOI: 10.1080/10408444.2016.1175417] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Throughout our lives, epigenetic processes shape our development and enable us to adapt to a constantly changing environment. Identifying and understanding environmentally induced epigenetic change(s) that may lead to adverse outcomes is vital for protecting public health. This review, therefore, examines the present understanding of epigenetic mechanisms involved in the mammalian life cycle, evaluates the current evidence for environmentally induced epigenetic toxicity in human cohorts and rodent models and highlights the research considerations and implications of this emerging knowledge for public health and regulatory toxicology. Many hundreds of studies have investigated such toxicity, yet relatively few have demonstrated a mechanistic association among specific environmental exposures, epigenetic changes and adverse health outcomes in human epidemiological cohorts and/or rodent models. While this small body of evidence is largely composed of exploratory in vivo high-dose range studies, it does set a precedent for the existence of environmentally induced epigenetic toxicity. Consequently, there is worldwide recognition of this phenomenon, and discussion on how to both guide further scientific research towards a greater mechanistic understanding of environmentally induced epigenetic toxicity in humans, and translate relevant research outcomes into appropriate regulatory policies for effective public health protection.
Collapse
Affiliation(s)
- Emma L Marczylo
- a Toxicology Department, CRCE, PHE, Chilton , Oxfordshire , UK
| | - Miriam N Jacobs
- a Toxicology Department, CRCE, PHE, Chilton , Oxfordshire , UK
| | - Timothy W Gant
- a Toxicology Department, CRCE, PHE, Chilton , Oxfordshire , UK
| |
Collapse
|
37
|
Salas-Huetos A, Blanco J, Vidal F, Godo A, Grossmann M, Pons MC, F-Fernández S, Garrido N, Anton E. Spermatozoa from patients with seminal alterations exhibit a differential micro-ribonucleic acid profile. Fertil Steril 2015; 104:591-601. [DOI: 10.1016/j.fertnstert.2015.06.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/22/2015] [Accepted: 06/15/2015] [Indexed: 01/03/2023]
|
38
|
Miozzo M, Vaira V, Sirchia SM. Epigenetic alterations in cancer and personalized cancer treatment. Future Oncol 2015; 11:333-48. [DOI: 10.2217/fon.14.237] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT Based on the pivotal importance of epigenetics for transcription regulation, it is not surprising that cancer is characterized by several epigenetic abnormalities. Conversely to genetic alterations, epigenetic changes are not permanent, thus represent opportunities for therapeutic strategies designed to reverse transcriptional abnormalities, and cancer is the first disease in which epigenetic therapies with chromatin remodeling agents were introduced. The role of miRNAs in gene regulation supports their potential as innovative therapeutic strategy. Recent evidences have proven that the environment can profoundly influence the epigenome: diet, smoking and alcohol consumption can negatively impact the expression profile. Given the plasticity of epigenetic marks, it is challenging the idea that the epigenetic alterations are ‘druggable’ sites using specific food components.
Collapse
Affiliation(s)
- Monica Miozzo
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
- Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Integrative Biology Unit, Milano, Italy
| | | |
Collapse
|
39
|
O'Doherty AM, McGettigan PA. Epigenetic processes in the male germline. Reprod Fertil Dev 2015; 27:725-38. [DOI: 10.1071/rd14167] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022] Open
Abstract
Sperm undergo some of the most extensive chromatin modifications seen in mammalian biology. During male germline development, paternal DNA methylation marks are erased and established on a global scale through waves of demethylation and de novo methylation. As spermatogenesis progresses, the majority of the histones are removed and replaced by protamines, enabling a tighter packaging of the DNA and transcriptional shutdown. Following fertilisation, the paternal genome is rapidly reactivated, actively demethylated, the protamines are replaced with histones and the embryonic genome is activated. The development of new assays, made possible by high-throughput sequencing technology, has resulted in the revisiting of what was considered settled science regarding the state of DNA packaging in mammalian spermatozoa. Researchers have discovered that not all histones are replaced by protamines and, in certain experiments, various species of RNA have been detected in what was previously considered transcriptionally quiescent spermatozoa. Most controversially, several groups have suggested that environmental modifications of the epigenetic state of spermatozoa may operate as a non-DNA-based form of inheritance, a process known as ‘transgenerational epigenetic inheritance’. Other developments in the field include the increased focus on the involvement of short RNAs, such as microRNAs, long non-coding RNAs and piwi-interacting RNAs. There has also been an accumulation of evidence illustrating associations between defects in sperm DNA packaging and disease and fertility. In this paper we review the literature, recent findings and areas of controversy associated with epigenetic processes in the male germline, focusing on DNA methylation dynamics, non-coding RNAs, the biology of sperm chromatin packaging and transgenerational inheritance.
Collapse
|