1
|
Li F, Liu R, Qin S, Deng Z, Li W. Progress in culture technology and active substance research on Nostoc sphaeroides Kützing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39087308 DOI: 10.1002/jsfa.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
Nostoc sphaeroides Kützing is a freshwater edible cyanobacterium that is rich in active substances such as polysaccharides, proteins and lipids; it has a variety of pharmacological effects such as antioxidant, anti-inflammatory, antitumor and cholesterol-lowering effects; and is often used as a traditional Chinese medicine with many potential applications in food, cosmetics, medical diagnostics and disease treatment. However, to meet the needs of different fields, such as medicine, there is an urgent need for basic research and technological innovation in culture technology, extraction and preparation of active substances, and the pharmacological mechanism of N. sphaeroides. This paper reviews the pharmacological effects of N. sphaeroides active substances, discusses current culture techniques and methods for extracting active components, and outlines the challenges encountered in cultivating and industrializing N. sphaeroides while discussing future development trends. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengcheng Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
- Chinese Academy of Sciences, Yantai Institute of Coastal Zone Research, Yantai, China
| | - Runze Liu
- Chinese Academy of Sciences, Yantai Institute of Coastal Zone Research, Yantai, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
- Chinese Academy of Sciences, Yantai Institute of Coastal Zone Research, Yantai, China
| | - Zhongyang Deng
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
- Chinese Academy of Sciences, Yantai Institute of Coastal Zone Research, Yantai, China
| |
Collapse
|
2
|
Ndlovu S, Kumar A. Precious Metal Recovery from Wastewater Using Bio-Based Techniques. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 38877308 DOI: 10.1007/10_2024_257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
The recovery of metals from waste material has been on the increase in the past few years due to a number of reasons such as supporting the diversification of metal supply resources. In addition, the alternative use of the waste material for metal recovery can add to the main production line, boosting production throughput and profitability thus, allowing companies to sustain their activities during times of low commodity prices. While there has been a lot of research and interest in the recovery of precious metals such as platinum group metals (PGMs), Au, and Ag from solid waste material, there has been limited focus on the recovery of these value metals from wastewater. This is mostly related to challenges associated with finding cost-effective technologies that can recover these metals from solutions of low metal concentrations. In recent years, bio-based technologies have, however, become established as potential alternatives to traditional techniques in the treatment of wastewater due to their ability to recover metals from solutions of low concentrations. While wastewater might be characterized by some significant value metal content, it also contains other components that have potential economic value if recovered or converted to by-products. Such an approach may not only provide an opportunity for extraction of metal resources from wastewater but also contributes toward the circular economy. This chapter presents insights into precious metal recovery from wastewater using bio-based technologies, compares such an approach to the traditional techniques, explores the recovery of other value-added products and finally considers some of the challenges associated with the large-scale application of the bio-based technologies.
Collapse
Affiliation(s)
- Sehliselo Ndlovu
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, South Africa.
| | - Anil Kumar
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Ghalkhani M, Teymourinia H, Ebrahimi F, Irannejad N, Karimi-Maleh H, Karaman C, Karimi F, Dragoi EN, Lichtfouse E, Singh J. Engineering and application of polysaccharides and proteins-based nanobiocatalysts in the recovery of toxic metals, phosphorous, and ammonia from wastewater: A review. Int J Biol Macromol 2023; 242:124585. [PMID: 37105252 DOI: 10.1016/j.ijbiomac.2023.124585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Global waste production is anticipated reach to 2.59 billion tons in 2030, thus accentuating issues of environmental pollution and health security. 37 % of waste is landfilled, 33 % is discharged or burned in open areas, and only 13.5 % is recycled, which makes waste management poorly efficient in the context of the circular economy. There is therefore a need for methods to recycle waste into valuable materials through resource recovery process. Progress in the field of recycling is strongly dependent on the development of efficient, stable, and reusable, yet inexpensive catalysts. In this case, a growing attention has been paid to development and application of nanobiocatalysts with promising features. The main purpose of this review paper is to: (i) introduce nanobiomaterials and describe their effective role in the preparation of functional nanobiocatalysts for the recourse recovery aims; (ii) provide production methods and the efficiency improvement of nanobaiocatalysts; (iii) give comprehensive description of valued resource recovery for reducing toxic chemicals from the contaminated environment; (iv) describe various technologies for the valued resource recovery; (v) state the limitation of the valued resource recovery; (vi) and finally economic importance and current scenario of nanobiocatalysts strategies applicable for the resource recovery processes.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | | | - Fatemeh Ebrahimi
- Thin Layer and Nanotechnology Laboratory, Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Neda Irannejad
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld. D. Mangeron no 73, 700050, Iasi, Romania
| | - Eric Lichtfouse
- Tate Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| | - Jagpreet Singh
- Department of Chemical Engineering, University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| |
Collapse
|
4
|
Zhu S, Xu J, Adhikari B, Lv W, Chen H. Nostoc sphaeroides Cyanobacteria: a review of its nutritional characteristics and processing technologies. Crit Rev Food Sci Nutr 2022; 63:8975-8991. [PMID: 35416723 DOI: 10.1080/10408398.2022.2063251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nostoc sphaeroides is an edible Cyanobacterium which has high nutritional value and is widely used in dietary supplements and therapeutic products. N. sphaeroides contains protein, fatty acid, minerals and vitamins. Its polysaccharides, phycobilin, phycobiliproteins and some lipids are highly bioactive. Thus, N. sphaeroides possesses anti-oxidation, anti-inflammation and cholesterol reducing functions. This paper reviews and evaluates the literature on nutritionally and functionally important compounds of N. sphaeroides. It also reviews and evaluates the processing of technologies used to process N. sphaeroides from fresh harvest to dry particulates including pretreatment, sterilization and drying, including their impact on sensorial and nutritional values. This review shows that a suitable combination of ultrasound, radio frequency and pulse spouted microwave with traditional sterilization and drying technologies greatly improves the sensorial and nutritive quality of processed N. sphaeroides and improves their shelf life; however, further research is needed to evaluate these hybrid technologies. Once suitably processed, N. sphaeroides can be used in food, cosmetics and pharmaceutical drugs as an ingredient.
Collapse
Affiliation(s)
- Shengnan Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, China
| | - Jicheng Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing, China
| | - Huizhi Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Biosorption of Precious Metals Present at Dilute Concentrations on Fungal Pellets. Processes (Basel) 2022. [DOI: 10.3390/pr10040645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Biosorption on fungal pellets constitutes a promising way of removing precious metals, which are often present at dilute concentrations in wastewater. Herein, we studied the Ag and Au biosorption by Aspergillus tabacinus and Cladosporium cladosporioides pellets. For A. tabacinus pellets the optimum pH values for the biosorption of Ag and Au were 5 and 4, respectively, while for C. cladosporioides granules, the best-suited values were 3 and 4, respectively. Biosorption kinetics of both metals were also studied at low adsorbate concentrations (1 mg/L) and the pH values mentioned above, and the contact times that allow maximum recovery of the two metals were defined. At the pH values estimated as optimum, A. tabacinus pellets adsorbed greater amounts of Ag than C. cladosporioides pellets, while for Au the opposite occurred. We found that the pseudo-second-order model adequately represents Ag and Au biosorption kinetics under the conditions tested. Due to the growing demand and limited availability of these metals, their recovery from aqueous residual solutions is economically attractive and desirable in the expanding circular economy scheme.
Collapse
|
6
|
Adams E, Maeda K, Kato T, Tokoro C. Mechanism of gold and palladium adsorption on thermoacidophilic red alga Galdieria sulphuraria. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Chang SH. Gold(III) recovery from aqueous solutions by raw and modified chitosan: A review. Carbohydr Polym 2021; 256:117423. [PMID: 33483013 DOI: 10.1016/j.carbpol.2020.117423] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022]
Abstract
Chitosan, a prestigious versatile biopolymer, has recently received considerable attention as a promising biosorbent for recovering gold ions, mainly Au(III), from aqueous solutions, particularly in modified forms. Confirming the assertion, this paper provides an up-to-date overview of Au(III) recovery from aqueous solutions by raw (unmodified) and modified chitosan. A particular emphasis is placed on the raw chitosan and its synthesis from chitin, characteristics of raw chitosan and their effects on metal sorption, modifications of raw chitosan for Au(III) sorption, and characterization of raw chitosan before and after modifications for Au(III) sorption. Comparisons of the sorption (conditions, percentage, capacity, selectivity, isotherms, thermodynamics, kinetics, and mechanisms), desorption (agents and percentage), and reusable properties between raw and modified chitosan in Au(III) recovery from aqueous solutions are also outlined and discussed. The major challenges and future prospects towards the large-scale applications of modified chitosan in Au(III) recovery from aqueous solutions are also addressed.
Collapse
Affiliation(s)
- Siu Hua Chang
- Faculty of Chemical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Penang, Malaysia; Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
8
|
He J, Kappler A. Recovery of precious metals from waste streams. Microb Biotechnol 2017; 10:1194-1198. [PMID: 28703887 PMCID: PMC5609314 DOI: 10.1111/1751-7915.12759] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 02/01/2023] Open
Abstract
As there is a high potential for microbe‐based technologies to bring the recovery of metals from waste streams to an ecologically friendly and financially reasonable level, it is worth to invest efforts into the advancement of these biotechnologies in the future.
![]()
Collapse
Affiliation(s)
- Jing He
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
9
|
Puyol D, Batstone DJ, Hülsen T, Astals S, Peces M, Krömer JO. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Front Microbiol 2017; 7:2106. [PMID: 28111567 PMCID: PMC5216025 DOI: 10.3389/fmicb.2016.02106] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/13/2016] [Indexed: 01/07/2023] Open
Abstract
Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept.
Collapse
Affiliation(s)
- Daniel Puyol
- Group of Chemical and Environmental Engineering, School of Experimental Sciences and Technology, King Juan Carlos UniversityMostoles, Spain
| | - Damien J. Batstone
- Advanced Water Management Centre, University of Queensland, BrisbaneQLD, Australia
- CRC for Water Sensitive Cities, ClaytonVIC, Australia
| | - Tim Hülsen
- Advanced Water Management Centre, University of Queensland, BrisbaneQLD, Australia
- CRC for Water Sensitive Cities, ClaytonVIC, Australia
| | - Sergi Astals
- Advanced Water Management Centre, University of Queensland, BrisbaneQLD, Australia
| | - Miriam Peces
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, University of Queensland, BrisbaneQLD, Australia
| | - Jens O. Krömer
- Advanced Water Management Centre, University of Queensland, BrisbaneQLD, Australia
- Centre for Microbial Electrochemical Systems, University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
10
|
Adessi A, Spini G, Presta L, Mengoni A, Viti C, Giovannetti L, Fani R, De Philippis R. Draft genome sequence and overview of the purple non sulfur bacterium Rhodopseudomonas palustris 42OL. Stand Genomic Sci 2016; 11:24. [PMID: 26966509 PMCID: PMC4785650 DOI: 10.1186/s40793-016-0145-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022] Open
Abstract
Rhodopseudomonas palustris strain 42OL was isolated in 1973 from a sugar refinery waste treatment pond. The strain has been prevalently used for hydrogen production processes using a wide variety of waste-derived substrates, and cultured both indoors and outdoors, either freely suspended or immobilized. R. palustris 42OL was suitable for many other applications and capable of growing in very different culturing conditions, revealing a wide metabolic versatility. The analysis of the genome sequence allowed to identify the metabolic pathways for hydrogen and poly-β-hydroxy-butyrate production, and confirmed the ability of using a wide range of organic acids as substrates.
Collapse
Affiliation(s)
- Alessandra Adessi
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144 Firenze, Italy ; Institute of Chemistry of Organometallic Compounds, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Giulia Spini
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144 Firenze, Italy
| | - Luana Presta
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Carlo Viti
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144 Firenze, Italy
| | - Luciana Giovannetti
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144 Firenze, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Roberto De Philippis
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144 Firenze, Italy ; Institute of Chemistry of Organometallic Compounds, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Grégoire DS, Poulain AJ. A little bit of light goes a long way: the role of phototrophs on mercury cycling. Metallomics 2014; 6:396-407. [DOI: 10.1039/c3mt00312d] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Geobiological Cycling of Gold: From Fundamental Process Understanding to Exploration Solutions. MINERALS 2013. [DOI: 10.3390/min3040367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Hennebel T, Boon N, Maes S, Lenz M. Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. N Biotechnol 2013; 32:121-7. [PMID: 23994422 DOI: 10.1016/j.nbt.2013.08.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 11/29/2022]
Abstract
Europe is confronted with an increasing supply risk of critical raw materials. These can be defined as materials of which the risks of supply shortage and their impacts on the economy are higher compared to most of other raw materials. Within the framework of the EU Innovation Partnership on raw materials Initiative, a list of 14 critical materials was defined, including some bulk metals, industrial minerals, the platinum group metals and rare earth elements. To tackle the supply risk challenge, innovation is required with respect to sustainable primary mining, substitution of critical metals, and urban mining. In these three categories, biometallurgy can play a crucial role. Indeed, microbe-metal interactions have been successfully applied on full scale to win materials from primary sources, but are not sufficiently explored for metal recovery or recycling. On the one hand, this article gives an overview of the microbial strategies that are currently applied on full scale for biomining; on the other hand it identifies technologies, currently developed in the laboratory, which have a perspective for large scale metal recovery and the needs and challenges on which bio-metallurgical research should focus to achieve this ambitious goal.
Collapse
Affiliation(s)
- Tom Hennebel
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA 94720, USA; Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Synthia Maes
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Markus Lenz
- Institute for Ecopreneurship, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), School of Life Sciences, Gründenstrasse 40, 4132 Muttenz, Switzerland; Sub-Department of Environmental Technology, Wageningen University, 6700 EV Wageningen, The Netherlands.
| |
Collapse
|