1
|
Allam C, Mouton W, Testaert H, Ginevra C, Fessy N, Ibranosyan M, Descours G, Beraud L, Guillemot J, Chapalain A, Albert-Vega C, Richard JC, Argaud L, Friggeri A, Labeye V, Jamilloux Y, Freymond N, Venet F, Lina G, Doublet P, Ader F, Trouillet-Assant S, Jarraud S. Hyper-inflammatory profile and immunoparalysis in patients with severe Legionnaires' disease. Front Cell Infect Microbiol 2023; 13:1252515. [PMID: 37965258 PMCID: PMC10641404 DOI: 10.3389/fcimb.2023.1252515] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Severe Legionnaires' disease (LD) can lead to multi-organ failure or death in 10%-30% of patients. Although hyper-inflammation and immunoparalysis are well described in sepsis and are associated with high disease severity, little is known about the immune response in LD. This study aimed to evaluate the immune status of patients with LD and its association with disease severity. Methods A total of 92 hospitalized LD patients were included; 19 plasmatic cytokines and pulmonary Legionella DNA load were measured in 84 patients on the day of inclusion (day 0, D0). Immune functional assays (IFAs) were performed from whole blood samples collected at D2 and stimulated with concanavalin A [conA, n = 19 patients and n = 21 healthy volunteers (HV)] or lipopolysaccharide (LPS, n = 14 patients and n = 9 HV). A total of 19 cytokines (conA stimulation) and TNF-α (LPS stimulation) were quantified from the supernatants. The Sequential Organ Failure Assessment (SOFA) severity score was recorded at D0 and the mechanical ventilation (MV) status was recorded at D0 and D8. Results Among the 84 patients, a higher secretion of plasmatic MCP-1, MIP1-β, IL-6, IL-8, IFN-γ, TNF-α, and IL-17 was observed in the patients with D0 and D8 MV. Multiparametric analysis showed that these seven cytokines were positively associated with the SOFA score. Upon conA stimulation, LD patients had a lower secretion capacity for 16 of the 19 quantified cytokines and a higher release of IL-18 and MCP-1 compared to HV. IL-18 secretion was higher in D0 and D8 MV patients. TNF-α secretion, measured after ex vivo LPS stimulation, was significantly reduced in LD patients and was associated with D8 MV status. Discussion The present findings describe a hyper-inflammatory phase at the initial phase of Legionella pneumonia that is more pronounced in patients with severe LD. These patients also present an immunoparalysis for a large number of cytokines, except IL-18 whose secretion is increased. An assessment of the immune response may be relevant to identify patients eligible for future innovative host-directed therapies.
Collapse
Affiliation(s)
- Camille Allam
- Centre National de Référence des Légionelles, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Legiopath team, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - William Mouton
- Unité Mixte de Recherche Hospices Civils de Lyon-bioMérieux, Pierre-Bénite, France
- Centre International de Recherche en Infectiologie (CIRI), Virpath Team Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Hugo Testaert
- Centre International de Recherche en Infectiologie (CIRI), Legiopath team, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Christophe Ginevra
- Centre National de Référence des Légionelles, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Legiopath team, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Noémie Fessy
- Centre National de Référence des Légionelles, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Marine Ibranosyan
- Centre National de Référence des Légionelles, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Legiopath team, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Ghislaine Descours
- Centre National de Référence des Légionelles, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Legiopath team, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Laetitia Beraud
- Centre National de Référence des Légionelles, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Johann Guillemot
- Centre International de Recherche en Infectiologie (CIRI), Legiopath team, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Annelise Chapalain
- Centre International de Recherche en Infectiologie (CIRI), Legiopath team, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Chloé Albert-Vega
- Centre International de Recherche en Infectiologie (CIRI), Virpath Team Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Christophe Richard
- Service de Médecine Intensive-Réanimation - Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Laurent Argaud
- Service de Médecine Intensive-Réanimation - Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Friggeri
- Département d’Anesthésie Réanimation - Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Vanessa Labeye
- Service des urgences - Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Yvan Jamilloux
- Département de Médecine Interne, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Nathalie Freymond
- Service de Pneumologie, Centre Hospitalier Lyon Sud - Hospices Civils de Lyon, Pierre-Bénite, France
| | - Fabienne Venet
- Laboratoire d’Immunologie - Hôpital Edouard Herriot - Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), NLRP3 Inflammation and Immune Response to Sepsis, Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Lyon, France
| | - Gérard Lina
- Centre National de Référence des Légionelles, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Patricia Doublet
- Centre International de Recherche en Infectiologie (CIRI), Legiopath team, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Florence Ader
- Centre National de Référence des Légionelles, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Legiopath team, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Département des Maladies Infectieuses et Tropicales - Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Sophie Trouillet-Assant
- Unité Mixte de Recherche Hospices Civils de Lyon-bioMérieux, Pierre-Bénite, France
- Centre International de Recherche en Infectiologie (CIRI), Virpath Team Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sophie Jarraud
- Centre National de Référence des Légionelles, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Legiopath team, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
2
|
Tozaki T, Ohnuma A, Kikuchi M, Ishige T, Kakoi H, Hirota KI, Kusano K, Nagata SI. Design and storage stability of reference materials for microfluidic quantitative PCR-based equine gene doping tests. J Equine Sci 2022; 32:125-134. [PMID: 35023990 PMCID: PMC8731687 DOI: 10.1294/jes.32.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/17/2021] [Indexed: 11/01/2022] Open
Abstract
One method of gene doping in horseracing is administering of exogenous genetic materials, known as transgenes. Several polymerase chain reaction (PCR)-based methods have been developed for detecting transgenes with high sensitivity and specificity. However, novel designs for reference materials (RMs) and/or positive template controls (PTCs) are necessary for simultaneous analysis of multiple transgene targets. In this study, we designed and developed a novel RM for simultaneously detecting multiple targets via microfluidic quantitative PCR (MFQPCR). Twelve equine genes were selected as targets in this study. A sequence region including primers and probes for quantitative PCR was designed, and a 10 bp sequence was inserted to allow the RM to be distinguished from the original transgene sequences. The sequences of individual detection sites were then connected for 12 genes and cloned into a single plasmid vector. We performed fragment size analysis to distinguish between the PCR products of the original transgene sequence and those of the RM, enabling identification of RM contamination. PTCs diluted to 10,000, 1,000, 100, and 10 copies/µl with horse genomic DNA from RM were stably stored at 4°C for 1 year. As digital PCR enabled absolute quantification, the designed substances can serve as an RM. These findings indicate that the RM design and storage conditions were suitable for gene doping tests using MFQPCR.
Collapse
Affiliation(s)
- Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan
| | - Aoi Ohnuma
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan
| | - Mio Kikuchi
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan
| | - Taichiro Ishige
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan
| | - Kei-Ichi Hirota
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan
| | - Kanichi Kusano
- Equine Department, Japan Racing Association, Tokyo 106-8401, Japan
| | - Shun-Ichi Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan
| |
Collapse
|
5
|
Liang W, Xu L, Sui Z, Li Y, Li L, Wen Y, Li C, Ren S, Liu G. Quantification of plasmid DNA reference materials for Shiga toxin-producing Escherichia coli based on UV, HR-ICP-MS and digital PCR. Chem Cent J 2016; 10:55. [PMID: 27621755 PMCID: PMC5018943 DOI: 10.1186/s13065-016-0201-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/01/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The accuracy and metrology traceability of DNA quantification is becoming a critical theme in many fields, including diagnosis, forensic analysis, microorganism detection etc. Thus the research of DNA reference materials (RMs) and consistency of DNA quantification methods has attracted considerable research interest. RESULTS In this work, we developed 3 plasmid candidate RMs, containing 3 target genes of Escherichia coli O157:H7 (E. coli O157:H7) and other Shiga toxin-producing Escherichia coli (STEC): stx1, stx2, and fliC (h7) respectively. Comprehensive investigation of the plasmid RMs was performed for their sequence, purity, homogeneity and stability, and then the concentration was quantified by three different methods: ultraviolet spectrophotometer (UV), high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and digital PCR. As a routinely applied method for DNA analysis, UV was utilized for the quantification (OD260) and purity analysis for the plasmids. HR-ICP-MS quantified the plasmid DNA through analysing the phosphorus in DNA molecules. Digital PCR distributed the DNA samples onto a microarray chip containing thousands of reaction chambers, and quantified the DNA copy numbers by analysing the number of positive signals without any calibration curves needed. CONCLUSIONS Based on the high purification of the DNA reference materials and the optimization of dPCR analysis, we successfully achieved good consistency between UV, HR-ICP-MS and dPCR, with relative deviations lower than 10 %. We then performed the co-quantification of 3 DNA RMs with three different methods together, and the uncertainties of their concentration were evaluated. Finally, the certified values and expanded uncertainties for 3 DNA RMs (pFliC, pStx1 and pStx2) were (1.60 ± 0.10) × 10(10) copies/μL, (1.53 ± 0.10) × 10(10) copies/μL and (1.70 ± 0.11) × 10(10) copies/μL respectively.Graphical abstractWe developed 3 plasmid candidate RMs, containing 3 target genes of Escherichia coli O157:H7 (E. coli O157:H7) and other Shiga toxin-producing Escherichia coli (STEC): stx1, stx2, and fliC (h7) respectively, and the quantification of three different methods (UV, dPCR, ICP) was studied.
Collapse
Affiliation(s)
- Wen Liang
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| | - Li Xu
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| | - Zhiwei Sui
- Division of Medical and Biological Measurement, National Institute of Metrology, No.18, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100013 People’s Republic of China
| | - Yan Li
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| | - Lanying Li
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| | - Yanli Wen
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| | - Chunhua Li
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| | - Shuzhen Ren
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| | - Gang Liu
- Laboratory of Biometrology, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai, 201203 People’s Republic of China
| |
Collapse
|
6
|
Simmons DBD, Benskin JP, Cosgrove JR, Duncker BP, Ekman DR, Martyniuk CJ, Sherry JP. Omics for aquatic ecotoxicology: control of extraneous variability to enhance the analysis of environmental effects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1693-1704. [PMID: 25827364 DOI: 10.1002/etc.3002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/09/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
There are multiple sources of biological and technical variation in a typical ecotoxicology study that may not be revealed by traditional endpoints but that become apparent in an omics dataset. As researchers increasingly apply omics technologies to environmental studies, it will be necessary to understand and control the main source(s) of variability to facilitate meaningful interpretation of such data. For instance, can variability in omics studies be addressed by changing the approach to study design and data analysis? Are there statistical methods that can be employed to correctly interpret omics data and make use of unattributed, inherent variability? The present study presents a review of experimental design and statistical considerations applicable to the use of omics methods in systems toxicology studies. In addition to highlighting potential sources that contribute to experimental variability, this review suggests strategies with which to reduce and/or control such variability so as to improve reliability, reproducibility, and ultimately the application of omics data for systems toxicology.
Collapse
Affiliation(s)
- Denina B D Simmons
- Emerging Methods Section, Aquatic Contaminants Research Division, Water Science & Technology Directorate, Environment Canada, Ontario, Canada
| | | | | | | | - Drew R Ekman
- Ecosystems Research Division, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Athens, Georgia, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology & Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - James P Sherry
- Emerging Methods Section, Aquatic Contaminants Research Division, Water Science & Technology Directorate, Environment Canada, Ontario, Canada
| |
Collapse
|