1
|
Ucun OK, Montazeri B, Arslan-Alaton I, Olmez-Hanci T. Degradation of 3,5-dichlorophenol by UV-C photolysis and UV-C-activated persulfate oxidation process in pure water and simulated tertiary treated urban wastewater. ENVIRONMENTAL TECHNOLOGY 2021; 42:3877-3888. [PMID: 32072867 DOI: 10.1080/09593330.2020.1732478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
UV-C and UV-C/peroxydisulfate (PS) treatments of 3,5-dichlorophenol (3,5-DCP), a model industrial pollutant, were comparatively investigated in two different water matrices namely distilled water (DW) and simulated treated urban wastewater (SWW). The treatment performance of the selected treatment processes was comprehensively examined by following changes in 3,5-DCP, dissolved organic carbon (DOC), PS consumption, Cl- release, aromatic/aliphatic degradation products and acute toxicities towards the marine photobacterium Vibrio fischeri and freshwater microalga Pseudokirchneriella subcapitata. The treatability of 2 mg/L (12.3 µM) 3,5-DCP in DW was investigated under different operating conditions such as initial PS concentrations (0.00-1.00 mM) and pH values (3-11) at a fixed light intensity (0.5 W/L). Increasing the pH and PS concentration exhibited positive effects on 3,5-DCP degradation. Even 10 mg/L 3,5-DCP was completely degraded with UV-C/PS treatment in 40 min in the presence of 0.03 mM PS at pH 6.3 accompanied with 95% DOC removal that was achieved after 120 min treatment. The second-order rate constant of 3,5-DCP (10 mg/L) with SO4⋅- was determined as 1.77×109 M-1s-1 using competition kinetics. Cl- release and formation of hydroquinone were evidences of 3,5-DCP degradation involving SO4⋅-. 3,5-DCP (2 mg/L) was also subjected to UV-C and UV-C/PS treatments in SWW. 3,5-DCP (100% after 60 min) and in particular DOC (26% after 120 min treatment) removal efficiencies observed in DW decreased dramatically in SWW. The original and UV-C/PS-treated samples were non-toxic towards Vibrio fischeri; however, Pseudokirchneriella subcapitata toxicity increased from 20% to 47% through 80 min UV-C/PS treatment of 3,5-DCP.
Collapse
Affiliation(s)
- Olga Koba Ucun
- Department of Environmental Engineering, School of Civil Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Bahareh Montazeri
- Department of Environmental Engineering, School of Civil Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Idil Arslan-Alaton
- Department of Environmental Engineering, School of Civil Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Tugba Olmez-Hanci
- Department of Environmental Engineering, School of Civil Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
2
|
Montazeri B, Ucun OK, Arslan-Alaton I, Olmez-Hanci T. UV-C-activated persulfate oxidation of a commercially important fungicide: case study with iprodione in pure water and simulated tertiary treated urban wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22169-22183. [PMID: 32030586 DOI: 10.1007/s11356-020-07974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Recently, the European Food Safety Authority (EFSA) has banned the use of iprodione (IPR), a common hydantoin fungicide and nematicide that was frequently used for the protective treatment of crops and vegetables. In the present study, the treatment of 2 mg/L (6.06 μM) aqueous IPR solution through ultraviolet-C (UV-C)-activated persulfate (PS) advanced oxidation process (UV-C/PS) was investigated. Baseline experiments conducted in distilled water (DW) indicated that complete IPR removal was achieved in 20 min with UV-C/PS treatment at an initial PS concentration of 0.03 mM at pH = 6.2. IPR degradation was accompanied with rapid dechlorination (followed as Cl- release) and PS consumption. UV-C/PS treatment was also effective in IPR mineralization; 78% dissolved organic carbon (DOC) was removed after 120-min UV-C/PS treatment (PS = 0.30 mM) compared with UV-C at 0.5 W/L photolysis where no DOC removal occurred. LC analysis confirmed the formation of dichloroaniline, hydroquinone, and acetic and formic acids as the major aromatic and aliphatic degradation products of IPR during UV-C/PS treatment whereas only dichloroaniline was observed for UV-C photolysis under the same reaction conditions. IPR was also subjected to UV-C/PS treatment in simulated tertiary treated urban wastewater (SWW) to examine its oxidation performance and ecotoxicological behavior in a more complex aquatic environment. In SWW, IPR and DOC removal rates were inhibited and PS consumption rates decreased. The originally low acute toxicity (9% relative inhibition towards the photobacterium Vibrio fischeri) decreased to practically non-detectable levels (4%) during UV-C/PS treatment of IPR in SWW.
Collapse
Affiliation(s)
- Bahareh Montazeri
- School of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Olga Koba Ucun
- School of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Idil Arslan-Alaton
- School of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Tugba Olmez-Hanci
- School of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| |
Collapse
|
3
|
Mantovani M, Marazzi F, Fornaroli R, Bellucci M, Ficara E, Mezzanotte V. Outdoor pilot-scale raceway as a microalgae-bacteria sidestream treatment in a WWTP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135583. [PMID: 31785903 DOI: 10.1016/j.scitotenv.2019.135583] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/05/2019] [Accepted: 11/15/2019] [Indexed: 05/27/2023]
Abstract
This study aims at demonstrating the feasibility of using microalgae-bacteria consortia for the treatment of the sidestream flow of the supernatant from blackwater dewatering (centrate) in an urban wastewater treatment plant in Northern Italy. A 1200 L raceway reactor was used for the outdoor cultivation of a diverse community of Chlorella spp., Scenedesmus spp. and Chlamydomonas spp. in continuous operation mode with 10 days hydraulic retention time. During the trial, an average daily areal productivity of 5.5 ± 7.4 g TSS m-2 day-1 was achieved while average nutrient removal efficiencies were 86% ± 7% and 71% ± 10% for NH4-N and PO4-P, respectively. The microalgal nitrogen assimilation accounted for 10% of the nitrogen in the centrate while 34% was oxidized to nitrite and nitrate. The oxygen produced by microalgae fully covert the oxygen demand for nitrification. This suggests that the proposed process would reduce the aeration demand for nitrification in the water line of the plant, while producing algal biomass to be further valorized for energy or material recovery.
Collapse
Affiliation(s)
- Marco Mantovani
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy.
| | - Francesca Marazzi
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy
| | - Riccardo Fornaroli
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy
| | - Micol Bellucci
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci 32, 20133 Milano, Italy
| | - Elena Ficara
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci 32, 20133 Milano, Italy
| | - Valeria Mezzanotte
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
4
|
Sousa JM, Macedo G, Pedrosa M, Becerra-Castro C, Castro-Silva S, Pereira MFR, Silva AMT, Nunes OC, Manaia CM. Ozonation and UV 254nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:434-441. [PMID: 27072309 DOI: 10.1016/j.jhazmat.2016.03.096] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/09/2016] [Accepted: 03/31/2016] [Indexed: 05/03/2023]
Abstract
Conventional wastewater treatment has a limited capacity to reduce antibiotic resistant bacteria and genes (ARB&ARG). Tertiary treatment processes are promising solutions, although the transitory inactivation of bacteria may select ARB&ARG. This study aimed at assessing the potential of ozonation and UV254nm radiation to inactivate cultivable fungal and bacterial populations, and the selected genes 16S rRNA (common to all bacteria), intI1 (common in Gram-negative bacteria) and the ARG vanA, blaTEM, sul1 and qnrS. The abundance of the different microbiological parameters per volume of wastewater was reduced by ∼2 log units for cultivable fungi and 16S rRNA and intI1 genes, by∼3-4 log units, for total heterotrophs, enterobacteria and enterococci, and to values close or below the limits of quantification for ARG, for both processes, after a contact time of 30min. Yet, most of the cultivable populations, the 16S rRNA and intI1 genes as well as the ARG, except qnrS after ozonation, reached pre-treatment levels after 3days storage, suggesting a transitory rather than permanent microbial inactivation. Noticeably, normalization per 16S rRNA gene evidenced an increase of the ARG and intI1 prevalence, mainly after UV254nm treatment. The results suggest that these tertiary treatments may be selecting for ARB&ARG populations.
Collapse
Affiliation(s)
- José M Sousa
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Gonçalo Macedo
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Marta Pedrosa
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cristina Becerra-Castro
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Sérgio Castro-Silva
- Adventech-Advanced Environmental Technologies, Centro Empresarial e Tecnológico, Rua de Fundões 151, 3700-121 São João da Madeira, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olga C Nunes
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| |
Collapse
|
5
|
Detection of methoxylated and hydroxylated polychlorinated biphenyls in sewage sludge in China with evidence for their microbial transformation. Sci Rep 2016; 6:29782. [PMID: 27417462 PMCID: PMC4945941 DOI: 10.1038/srep29782] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/23/2016] [Indexed: 11/10/2022] Open
Abstract
The concentrations of methoxylated polychlorinated biphenyls (MeO-PCBs) and hydroxylated polychlorinated biphenyls (OH-PCBs) were measured in the sewage sludge samples collected from twelve wastewater treatment plants in China. Two MeO-PCB congeners, including 3′-MeO-CB-65 and 4′-MeO-CB-101, were detected in three sludge with mean concentrations of 0.58 and 0.52 ng/g dry weight, respectively. OH-PCBs were detected in eight sludge samples, with an average total concentration of 4.2 ng/g dry weight. Furthermore, laboratory exposure was conducted to determine the possible source of OH-PCBs and MeO-PCBs in the sewage sludge, and their metabolism by the microbes. Both 4′-OH-CB-101 and 4′-MeO-CB-101 were detected as metabolites of CB-101 at a limited conversion rate after 5 days. Importantly, microbial interconversion between OH-PCBs and MeO-PCBs was observed in sewage sludge. Demethylation of MeO-PCBs was favored over methylation of OH-PCBs. The abundant and diverse microbes in sludge play a key role in the transformation processes of the PCB analogues. To our knowledge, this is the first report on MeO-PCBs in environmental matrices and on OH-PCBs in sewage sludge. The findings are important to understand the environmental fate of PCBs.
Collapse
|
6
|
Bellucci M, Ofiţeru ID, Beneduce L, Graham DW, Head IM, Curtis TP. A preliminary and qualitative study of resource ratio theory to nitrifying lab-scale bioreactors. Microb Biotechnol 2015; 8:590-603. [PMID: 25874592 PMCID: PMC4408191 DOI: 10.1111/1751-7915.12284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/21/2015] [Accepted: 03/05/2015] [Indexed: 11/30/2022] Open
Abstract
The incorporation of microbial diversity in design would ideally require predictive theory that would relate operational parameters to the numbers and distribution of taxa. Resource ratio-theory (RRT) might be one such theory. Based on Monod kinetics, it explains diversity in function of resource-ratio and richness. However, to be usable in biological engineered system, the growth parameters of all the bacteria under consideration and the resource supply and diffusion parameters for all the relevant nutrients should be determined. This is challenging, but plausible, at least for low diversity groups with simple resource requirements like the ammonia oxidizing bacteria (AOB). One of the major successes of RRT was its ability to explain the ‘paradox of enrichment’ which states that diversity first increases and then decreases with resource richness. Here, we demonstrate that this pattern can be seen in lab-scale-activated sludge reactors and parallel simulations that incorporate the principles of RRT in a floc-based system. High and low ammonia and oxygen were supplied to continuous flow bioreactors with resource conditions correlating with the composition and diversity of resident AOB communities based on AOB 16S rDNA clone libraries. Neither the experimental work nor the simulations are definitive proof for the application of RRT in this context. However, it is sufficient evidence that such approach might work and justify a more rigorous investigation.
Collapse
Affiliation(s)
- Micol Bellucci
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK; Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Foggia, via Napoli 25, Foggia, 71122, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Correlation of seasonal nitrification failure and ammonia-oxidizing community dynamics in a wastewater treatment plant treating water from a saline thermal spa. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0811-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|