1
|
Zheng T, Ji L, Chen Y, Cao C, Bing J, Hu T, Zheng Q, Wu D, Chu H, Huang G. Biology and genetic diversity of Candida krusei isolates from fermented vegetables and clinical samples in China. Virulence 2024; 15:2411543. [PMID: 39359062 PMCID: PMC11487970 DOI: 10.1080/21505594.2024.2411543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Candida krusei, also known as Pichia kudriavzevii, is an emerging non-albicans Candida (NAC) species causing both superficial and deep-seated infections in humans. This fungal pathogen is inherently resistant to the first-line antifungal drug, fluconazole, and is widely distributed in natural environments such as soil, foods, vegetables, and fruits. In this study, we collected 86 C. krusei strains from clinical settings and traditional fermented vegetables from different areas of China. Compared to C. krusei strains from fermented vegetables, clinical isolates exhibited a higher ability to undergo filamentation and biofilm development, which could facilitate its host colonization and infections. Isolates from fermented vegetables showed higher resistance to several antifungal drugs including fluconazole, voriconazole, itraconazole, amphotericin B, and caspofungin, than clinical strains, while they were more susceptible to posaconazole than clinical strains. Although C. krusei has been thought to be a diploid organism, we found that one-fourth of clinical strains and the majority of isolates from fermented vegetables (87.5%) are triploid. Whole-genome sequencing and population genetic analyses demonstrated that isolates from clinical settings and fermented food are genetically associated, and distributed across a wide range of genetic clusters. Additionally, we found that six nucleotide substitutions at the promoter region of the ABC11 gene, encoding a multidrug efflux pump, could play a critical role in antifungal resistance in this species. Given the ubiquitous distribution of C. krusei strains in fermented vegetables and their genetic association with clinical strains, a One Health approach will be necessary to control the prevalence of this pathogen.
Collapse
Affiliation(s)
- Tianhong Zheng
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Lingyu Ji
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Yi Chen
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengjun Cao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jian Bing
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Tianren Hu
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiushi Zheng
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Dan Wu
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guanghua Huang
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| |
Collapse
|
2
|
Wang F, Wang Y, Shen X, Zhao R, Li Z, Wu J, Shen H, Yao X. Research Progress on Methods for the Deacidification of Small Berry Juice: An Overview. Molecules 2024; 29:4779. [PMID: 39407707 PMCID: PMC11478338 DOI: 10.3390/molecules29194779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
As some of the richest sources of natural antioxidants, small berry fruits have attractive colors and special tastes, with recognized benefits for human health. However, sour tastes in small berry juices result in a poor flavor and low acceptance among consumers, greatly limiting their marketability. Among the most commonly used deacidification methods, chemical deacidification methods can neutralize fruit juice via the addition of a deacidification agent, while physical deacidification methods include freezing deacidification, ion-exchange resin deacidification, electrodialysis deacidification, and chitosan deacidification. All of these methods can markedly improve the pH of fruit juice, but they introduce new substances into the juice that may have an influence on its color, taste, and stability. Biological deacidification can effectively remove malic acid from fruit juice, reducing the content from 15 g/L to 3 g/L; additionally, it maintains the taste and stability of the juice. Therefore, it is widely applied for fruit juice deacidification. On this basis, some compound deacidification technologies have also emerged, but they also present problems such as high costs and complicated working procedures. This review of deacidification methods for small berry juice provides a foundation for the industrial development of such juices.
Collapse
Affiliation(s)
- Fei Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Yao Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinting Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Rui Zhao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Zhebin Li
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Jiawu Wu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Huifang Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinmiao Yao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (F.W.); (Y.W.); (X.S.); (R.Z.); (Z.L.); (J.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| |
Collapse
|
3
|
Mazzucco MB, Rodríguez ME, Catalina Caballero A, Ariel Lopes C. Differential consumption of malic acid and fructose in apple musts by Pichia kudriavzevii strains. J Appl Microbiol 2024; 135:lxae019. [PMID: 38268424 DOI: 10.1093/jambio/lxae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
AIMS To assess the capability of Pichia kudriavzevii strains isolated from wine, cider, and natural environments in North Patagonia to produce ciders with reduced malic acid levels. METHODS AND RESULTS Fermentation kinetics and malic acid consumption were assessed in synthetic media and in regional acidic apple musts. All P. kudriavzevii strains degraded malic acid and grew in synthetic media with malic acid as the sole carbon source. Among these strains, those isolated from cider exhibited higher fermentative capacity, mainly due to increased fructose utilization; however, a low capacity to consume sucrose present in the must was also observed for all strains. The NPCC1651 cider strain stood out for its malic acid consumption ability in high-malic acid Granny Smith apple must. Additionally, this strain produced high levels of glycerol as well as acceptable levels of acetic acid. On the other hand, Saccharomyces cerevisiae ÑIF8 reference strain isolated from Patagonian wine completely consumed reducing sugars and sucrose and showed an important capacity for malic acid consumption in apple must fermentations. CONCLUSIONS Pichia kudriavzevii NPCC1651 strain isolated from cider evidenced interesting features for the consumption of malic acid and fructose in ciders.
Collapse
Affiliation(s)
- María Belén Mazzucco
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina
- Facultad de Ciencias y Tecnología de los Alimentos, Universidad Nacional del Comahue, 8336 Villa Regina, Río Negro, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, 8324 Cipolletti, Río Negro, Argentina
| | - María Eugenia Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, 8324 Cipolletti, Río Negro, Argentina
| | - Adriana Catalina Caballero
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina
- Facultad de Ciencias y Tecnología de los Alimentos, Universidad Nacional del Comahue, 8336 Villa Regina, Río Negro, Argentina
| | - Christian Ariel Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, 8303 Cinco Saltos, Río Negro, Argentina
| |
Collapse
|
4
|
Gerard LM, Corrado MB, Davies CV, Soldá CA, Dalzotto MG, Esteche S. Isolation and identification of native yeasts from the spontaneous fermentation of grape musts. Arch Microbiol 2023; 205:302. [PMID: 37550458 DOI: 10.1007/s00203-023-03646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Recently, there has been growing interest in the characterization of native yeasts for their use in production of wines with regional characteristics. This study aimed to investigate Saccharomyces and non-Saccharomyces yeasts present in the spontaneous fermentation of Tannat and Marselan grape musts collected from Concordia (Entre Ríos, Argentina) over 2019, 2020, and 2021 vintages. The evolution of these fermentative processes was carried out by measuring total soluble solids, total acidity, volatile acidity, pH, ethanol concentration, and total carbon content. Isolated Saccharomyces and non-Saccharomyces yeasts were identified based on colony morphology in WL medium, 5.8S-ITS-RFLP analysis, and 26S rDNA D1/D2 gene sequencing. Two hundred and ten yeast colonies were isolated and identified as Pichia kudriavzevii, Saccharomyces cerevisiae, Hanseniaspora uvarum, Metschnikowia pulcherrima, Candida albicans, Candida parapsilosis, Pichia occidentalis, Pichia bruneiensis, Hanseniaspora opuntiae, Issatchenkia terricola, and Hanseniaspora vineae. P. kudriavzevii isolated from all vintages was associated with the spontaneous fermentation of grape musts from the Concordia region.
Collapse
Affiliation(s)
- Liliana Mabel Gerard
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina.
| | - María Belén Corrado
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| | - Cristina Verónica Davies
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| | - Carina Alejandra Soldá
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| | - María Gabriela Dalzotto
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Concordia, Argentina
| | - Sofía Esteche
- Laboratorio de Microbiología y Biotecnología de Alimentos, Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Monseñor Tavella 1450, 3200, Concordia, Entre Ríos, Argentina
| |
Collapse
|
5
|
Combined Use of Schizosaccharomyces pombe and a Lachancea thermotolerans Strain with a High Malic Acid Consumption Ability for Wine Production. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The development of new fermentative strategies exploiting the potential of different wine-related species is of great interest for new winemaking conditions and consumer preferences. One of the most promising non-conventional approaches to wine fermentation is the combined use of deacidifying and acidifying yeasts. Lachancea thermotolerans shows several other properties besides lactic acid production; among them, high malic acid consumption is of great interest in the production of red wines for avoiding undesirable refermentations once bottled. The combination of a L. thermotolerans strain that is able to consume malic acid with a Schizosaccharomyces pombe strain helps to ensure malic acid elimination during alcoholic fermentation while increasing the final acidity by lactic acid production. To properly assess the influence of this alternative strategy, we developed combined fermentations between specific strains of L. thermotolerans and S. pombe under sequential inoculation. Both species showed a great performance under the studied conditions, influencing not only the acidity but also the aromatic compound profiles of the resulting wines. The new proposed biotechnological strategy reduced the final concentrations of ethanol, malic acid and succinic acid, while it increased the concentrations of lactic acid and esters.
Collapse
|
6
|
Advances in the Application of the Non-Conventional Yeast Pichia kudriavzevii in Food and Biotechnology Industries. J Fungi (Basel) 2023; 9:jof9020170. [PMID: 36836285 PMCID: PMC9961021 DOI: 10.3390/jof9020170] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Pichia kudriavzevii is an emerging non-conventional yeast which has attracted increased attention for its application in food and biotechnology areas. It is widespread in various habitats and often occurs in the spontaneous fermentation process of traditional fermented foods and beverages. The contributions of P. kudriavzevii in degrading organic acid, releasing various hydrolase and flavor compounds, and displaying probiotic properties make it a promising starter culture in the food and feed industry. Moreover, its inherent characteristics, including high tolerance to extreme pH, high temperature, hyperosmotic stress and fermentation inhibitors, allow it the potential to address technical challenges in industrial applications. With the development of advanced genetic engineering tools and system biology techniques, P. kudriavzevii is becoming one of the most promising non-conventional yeasts. This paper systematically reviews the recent progress in the application of P. kudriavzevii to food fermentation, the feed industry, chemical biosynthesis, biocontrol and environmental engineering. In addition, safety issues and current challenges to its use are discussed.
Collapse
|
7
|
Paup VD, Aplin JJ, Potter RI, Edwards CG, Lee J, Ross CF. Sensory properties of 6- and 18-month-stored wines made with pectinase-producing non-Saccharomyces yeasts. J Food Sci 2023; 88:462-476. [PMID: 36529878 PMCID: PMC10107785 DOI: 10.1111/1750-3841.16418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Recently, the use and commercial availability of non-Saccharomyces yeasts (NSY) in winemaking to reduce alcohol content have increased. However, research exploring the influence on sensory quality of the wine, particularly during storage, is limited. Therefore, the objective of this study was to characterize the sensory profiles of Merlot and Chardonnay wines made with pectinase-producing NSY, with added substrate, that is, pectin. Apple pectin (0 or 0.5 g/L) was added to Merlot and Chardonnay grape musts after inoculation with (a) only Saccharomyces cerevisiae or (b) a three species mixture of NSY; after 3 days, S. cerevisiae was added. Addition of NSY with added pectin resulted in higher concentrations of d-galacturonic acid and glycerol concentration in the wines after 6 months of aging. However, mouthfeel (viscosity or weight) of wines with or without added pectin as determined by a sensory evaluation panel was not altered by the presence of these yeasts. Significant interactions among the yeast utilized, pectin addition, and 6-month aging affected some flavors (solvent) of Merlot, while addition of NSY increased other attributes (cherry) during aging. No sensory differences were perceived among Chardonnay samples due to NSY; however, aging from 6 to 18 months increased the intensity of 40 sensory attributes. Though mouthfeel was not specifically affected, the utilization of NSY may be a useful tool to alter wine quality in Merlot by increasing specific aromas during storage. PRACTICAL APPLICATION: We found that must fermented with pectinase-producing non-Saccharomyces yeasts (NSY) modified the chemical composition of the final young wine. After one additional year of aging, an increase in cherry flavor was observed in Merlot wines made with NSY, which may increase perceived quality. Thus, the use of these pectinase-producing NSY may be a useful tool for winemakers.
Collapse
Affiliation(s)
- Victoria D Paup
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Jesse J Aplin
- School of Food Science, Washington State University, Pullman, Washington, USA.,United States Pharmacopeia, Rockville, Maryland, USA
| | - Rachel I Potter
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Charles G Edwards
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Jungmin Lee
- Horticultural Crops Production and Genetic Improvement Research Unit, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Corvallis, Oregon, USA
| | - Carolyn F Ross
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
8
|
Takahashi S, Hudagula H, Minami N, Maeno N, Yoshida K, Onodera S, Takeda Y, Tobiyama T, Nakamura T, Hanai J, Tanaka T, Uramoto T, Kondo R, Yamaguchi A. A model study for contributing factors of the fermentation of qvevri wine. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Paup VD, Barton TL, Edwards CG, Lange I, Lange BM, Lee J, Ross CF. Improving the chemical and sensory characteristics of red and white wines with pectinase‐producing non‐
Saccharomyces
yeasts. J Food Sci 2022; 87:5402-5417. [DOI: 10.1111/1750-3841.16371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Victoria D. Paup
- School of Food Science Washington State University Pullman Washington USA
| | - Tara L. Barton
- School of Food Science Washington State University Pullman Washington USA
| | - Charles G. Edwards
- School of Food Science Washington State University Pullman Washington USA
| | - Iris Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory Washington State University Pullman Washington USA
| | - B. Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory Washington State University Pullman Washington USA
| | - Jungmin Lee
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS) Horticultural Crops Research Unit Corvallis Oregon USA
| | - Carolyn F. Ross
- School of Food Science Washington State University Pullman Washington USA
| |
Collapse
|
10
|
Scarano L, Mazzone F, Mannerucci F, D’Amico M, Bruno GL, Marsico AD. Preliminary Studies on the In Vitro Interactions Between the Secondary Metabolites Produced by Esca-Associated Fungi and Enological Saccharomyces cerevisiae Strains. PLANTS 2022; 11:plants11172277. [PMID: 36079659 PMCID: PMC9459945 DOI: 10.3390/plants11172277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Esca-affected vines alter the carbohydrate metabolism, xylem transport of water and photosynthesis and show regular grapes (but berries do not reach maturity), and phenolic compounds are reduced in concentration, oxidate and polymerizate. Pullulan and a mixture of scytalone and isosclerone (9:1; w/w), secondary metabolites produced in vitro and in planta by Phaeoacremonium minimum (syn. P. aleophilum) and Phaeomoniella chlamydospora, were assayed against the strains Byosal HS1 and IOC 18-2007 in microvinifications with synthetic grape must. The presence of pullulan and pentaketides mix affects the growth and metabolism of the tested Saccharomyces cerevisiae strains. Assays at 100 and 1000 µg mL−1 inhibited the growth of both strains, while no effects were recorded when evaluated at 1 and 5 µg mL−1. In comparison with the controls, pullulan and the scytalone/isosclerone mixture at 10 µg mL−1 had a growth reduction, a lower alcohol yield, reduced the concentration of tartaric acid and malic acid; and slowed down the production of lactic acid, acetic acid and total polyphenol content of the tested S. cerevisiae strains. These metabolites could be applied as an alternative to the sulfite addition in the early stages of vinification to support the action of selected Saccharomyces. Appealing is the subtractive action of pullulan against tartaric acid. Further data are needed to confirm and validate the enological performance in freshly pressed grape juice.
Collapse
Affiliation(s)
- Leonardo Scarano
- Department of Soil, Plant and Food Sciences (Di.S.S.P.A.), University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA-VE), Via Casamassima, 148, 70010 Turi, Italy
| | - Francesco Mazzone
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA-VE), Via Casamassima, 148, 70010 Turi, Italy
| | - Francesco Mannerucci
- Department of Soil, Plant and Food Sciences (Di.S.S.P.A.), University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Margherita D’Amico
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA-VE), Via Casamassima, 148, 70010 Turi, Italy
| | - Giovanni Luigi Bruno
- Department of Soil, Plant and Food Sciences (Di.S.S.P.A.), University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
- Correspondence:
| | - Antonio Domenico Marsico
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA-VE), Via Casamassima, 148, 70010 Turi, Italy
| |
Collapse
|
11
|
Vicente J, Baran Y, Navascués E, Santos A, Calderón F, Marquina D, Rauhut D, Benito S. Biological management of acidity in wine industry: A review. Int J Food Microbiol 2022; 375:109726. [DOI: 10.1016/j.ijfoodmicro.2022.109726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
12
|
Scansani S, van Wyk N, Nader KB, Beisert B, Brezina S, Fritsch S, Semmler H, Pasch L, Pretorius IS, von Wallbrunn C, Schnell S, Rauhut D. The film-forming Pichia spp. in a winemaker's toolbox: A simple isolation procedure and their performance in a mixed-culture fermentation of Vitis vinifera L. cv. Gewürztraminer must. Int J Food Microbiol 2022; 365:109549. [DOI: 10.1016/j.ijfoodmicro.2022.109549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 01/21/2023]
|
13
|
Zhao Y, Sun Q, Tian B, Zhu S, Du F, Mao R, Li S, Liu L, Zhu Y. Evaluation of Four Indigenous Non-Saccharomyces Yeasts Isolated from the Shangri-La Wine Region (China) for Their Fermentation Performances and Aroma Compositions in Synthetic Grape Juice Fermentation. J Fungi (Basel) 2022; 8:jof8020146. [PMID: 35205900 PMCID: PMC8879568 DOI: 10.3390/jof8020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the fermentation performances and aroma compositions of synthetic grape juice that was fermented by four indigenous non-Saccharomyces yeast isolates that were obtained from the Shangri-La wine region (China): Meyerozyma guilliermondii (AD-58), Saccharomycopsis vini (BZL-28), Saturnispora diversa (BZL-11), and Wickerhamomyces anomalus (DR-110), in comparison to those of Saccharomyces cerevisiae (EC1118). The four indigenous non-Saccharomyces yeasts showed a lower fermentative capacity and a lower conversion rate of sugar to alcohol, but a higher yield of volatile acidity. W. anomalus (DR-110) had a greater ability to produce numerous esters and short-chain fatty acids and the representative flavors of its fermented medium were fruity and fatty. Sac. vini (BZL-28), interestingly, exhibited great capacity in the formation of many monoterpenes, particularly (Z)-β-ocimene, E-β-ocimene, linalool, citral, and geraniol and its fermented medium was characterized by a strong fruity (citrus-like) and floral flavor. M. guilliermondii (AD-58) and Sat. diversa (BZL-11) only mildly affected the aroma profiles of their resultant fermented media, since the concentrations of most of the volatiles that were produced by these two isolates were much lower than their sensory thresholds. The four indigenous non-Saccharomyces yeasts exhibited distinctive fermentation performances and aroma production behaviors. In particularly, W. anomalus (DR-110) and Sac. vini (BZL-28) have shown good potential in enhancing the aromas and complexity of wine.
Collapse
Affiliation(s)
- Yue Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.Z.); (Q.S.); (S.Z.); (F.D.)
- College of Food Science, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China
| | - Qingyang Sun
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.Z.); (Q.S.); (S.Z.); (F.D.)
| | - Bin Tian
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Shusheng Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.Z.); (Q.S.); (S.Z.); (F.D.)
| | - Fei Du
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.Z.); (Q.S.); (S.Z.); (F.D.)
| | - Ruzhi Mao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (L.L.)
- University Engineering Research Center for Grape & Wine of Yunan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Su Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Lijing Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (L.L.)
- University Engineering Research Center for Grape & Wine of Yunan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yifan Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.Z.); (Q.S.); (S.Z.); (F.D.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (L.L.)
- University Engineering Research Center for Grape & Wine of Yunan Province, Yunnan Agricultural University, Kunming 650201, China
- Correspondence:
| |
Collapse
|
14
|
Effect of Yeast Assimilable Nitrogen Content on Fermentation Kinetics, Wine Chemical Composition and Sensory Character in the Production of Assyrtiko Wines. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two wild-type Saccharomyces cerevisiae yeast strains (Sa and Sb) were tested for white wine production using Assyrtiko grape of Santorini. A third commercial Saccharomyces strain was also studied for comparison reasons. Two concentrations of yeast extract and diammonium phosphate (DAP) were added to the must (150 and 250 mg/L) in order to evaluate the effect of nitrogen content on the final wine quality. Analytical methods (HPLC, GC-MS) and sensory analysis were employed to assess the quality of the wines. Fermentation kinetics were monitored throughout the experiment. By the second day of fermentation, all strains showed an approximate consumption of 70% of amino acids. Differences among strains were observed regarding inorganic nitrogen requirements. Sb strain resulted in higher concentrations of higher alcohols (1.9-fold) and ketones (5.6-fold) and lower concentrations of esters (1.2-fold) compared to the control, while Sa strain resulted in higher content of fatty acids (2.1-fold). Both indigenous strains scored better results in aroma quality, body and acidity compared to control. The overall evaluation of the data highlights the great potential of the indigenous S. cerevisiae strains as fermentation starters providing promising results in the sector of terroir wines.
Collapse
|
15
|
Liu S, Laaksonen O, Li P, Gu Q, Yang B. Use of Non- Saccharomyces Yeasts in Berry Wine Production: Inspiration from Their Applications in Winemaking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:736-750. [PMID: 35019274 DOI: 10.1021/acs.jafc.1c07302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although berries (nongrape) are rich in health-promoting bioactive compounds, and their consumption is associated with a lower risk of diverse chronic diseases, only a fraction of the annual yield of berries is exploited and consumed. Development of berry wines presents an approach to increase the utilization of berries. Alcoholic fermentation is a complex process driven by yeasts, which influence key properties of wine diversification and quality. In winemaking, non-Saccharomyces yeasts were traditionally considered as undesired microorganisms because of their high production of metabolites with negative connotations. However, there has been a recent and growing interest in the application of non-Saccharomyces yeast in many innovative wineries. Numerous studies have demonstrated the potential of these yeasts to improve properties of wine as an alternative or complement to Saccharomyces cerevisiae. The broad use of non-Saccharomyces yeasts in winemaking provides a promising picture of these unconventional yeasts in berry wine production, which can be considered as a novel biotechnological approach for creating value-added berry products for the global market. This review provides an overview of the current use of non-Saccharomyces yeasts in winemaking and their applicative perspective in berry wine production.
Collapse
Affiliation(s)
- Shuxun Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
16
|
Qin T, Liao J, Zheng Y, Zhang W, Zhang X. Oenological Characteristics of Four Non- Saccharomyces Yeast Strains With β-Glycosidase Activity. Front Microbiol 2021; 12:626920. [PMID: 34539588 PMCID: PMC8446184 DOI: 10.3389/fmicb.2021.626920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Non-Saccharomyces yeast with β-glucosidase activity might positively contribute to the flavor and quality of wines. The contribution of four non-Saccharomyces yeast strains Issatchenkia terricola SLY-4, Pichia kudriavzevii F2-24, P. kudriavzevii F2-16, and Metschnikowia pulcherrima HX-13 with β-glucosidase activity to the flavor and quality of wine making was studied. Compared with those of S. cerevisiae single fermentation, the four non-Saccharomyces yeast strains could grow and consume sugar completely with longer fermentation periods, and with no significantly negative effect on chemical characteristics of wines. Moreover, they produced lower content of C6 compounds, benzene derivative, and fatty acid ethyl ester compounds and higher content of terpene, β-ionone, higher alcohol, and acetate compounds. Different yeast strains produced different aroma compounds profiles. In general, the sensory evaluation score of adding non-Saccharomyces yeast-fermented wine was better than that of S. cerevisiae, and I. terricola SLY-4 fermentation received the highest one, followed by P. kudriavzevii F2-24, P. kudriavzevii F2-16, and M. pulcherrima HX-13 from high to low. The research results provide a theoretical basis for the breeding of non-Saccharomyces yeast and its application in wine making.
Collapse
Affiliation(s)
| | | | | | | | - Xiuyan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Elhalis H, Cox J, Frank D, Zhao J. Microbiological and Chemical Characteristics of Wet Coffee Fermentation Inoculated With Hansinaspora uvarum and Pichia kudriavzevii and Their Impact on Coffee Sensory Quality. Front Microbiol 2021; 12:713969. [PMID: 34421873 PMCID: PMC8371688 DOI: 10.3389/fmicb.2021.713969] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hansinaspora uvarum and Pichia kudriavzevii were used as starter cultures to conduct inoculated wet fermentations of coffee beans, and their growth, metabolic activities and impact on the flavor, aroma and overall sensory quality of coffee were compared with spontaneous fermentation (control). H. uvarum and P. kudriavzevii dominated the fermentations, growing to maximum populations of about 10.0 log CFU/ml compared with 8.0 log CFU/ml in the spontaneous fermentation. The dominance of the inoculated yeasts led to faster and more complete utilization of sugars in the mucilage, with resultant production of 2–3 fold higher concentrations of metabolites such as glycerol, alcohols, aldehydes, esters, and organic acids in the fermented green beans. Cup tests showed coffee produced from the inoculated fermentations, especially with P. kudriavzevii, received higher scores for flavor, aroma and acidity than the control. The findings of this study confirmed the crucial role of yeasts in the wet fermentation of coffee beans and their contribution to high quality coffee, and demonstrated the potential H. uvarum and P. kudriavzevii as starter cultures in the process.
Collapse
Affiliation(s)
- Hosam Elhalis
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Julian Cox
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Damian Frank
- Commonwealth Scientific Industry Research Organisation (CSIRO), North Ryde, NSW, Australia
| | - Jian Zhao
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
18
|
Qiu X, Yu L, Wang W, Yan R, Zhang Z, Yang H, Zhu D, Zhu B. Comparative Evaluation of Microbiota Dynamics and Metabolites Correlation Between Spontaneous and Inoculated Fermentations of Nanfeng Tangerine Wine. Front Microbiol 2021; 12:649978. [PMID: 34046021 PMCID: PMC8144288 DOI: 10.3389/fmicb.2021.649978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/31/2021] [Indexed: 01/16/2023] Open
Abstract
Understanding the evolution of microorganisms and metabolites during wine fermentation is essential for controlling its production. The structural composition and functional capacity of the core microbiota determine the quality and quantity of fruit wine. Nanfeng tangerine wine fermentation involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this product fermentation remain unclear. Therefore, high-throughput sequencing (HTS) and headspace-gas chromatography-mass spectrometry (HS/GC-MS) were employed to reveal the core functional microbiota for the production of volatile flavors during spontaneous fermentation (SF) and inoculated fermentation (IF) with Saccharomyces cerevisiae of Nanfeng tangerine wine. A total of 13 bacterial and 8 fungal genera were identified as the core microbiota; Lactobacillus and Acetobacter were the dominant bacteria in SF and IF, respectively. The main fungal genera in SF and IF were Hanseniaspora, Pichia, and Saccharomyces with a clear succession. In addition, the potential correlations analysis between microbiota succession and volatile flavor dynamics revealed that Lactobacillus, Acetobacter, Hanseniaspora, and Saccharomyces were the major contributors to the production of the volatile flavor of Nanfeng tangerine wine. The results of the present study provide insight into the effects of the core functional microbiota in Nanfeng tangerine wine and can be used to develop effective strategies for improving the quality of fruit wines.
Collapse
Affiliation(s)
- Xiangyu Qiu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Linlin Yu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Weiying Wang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Riming Yan
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Zhibin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Huilin Yang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bo Zhu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
19
|
Hao F, Tan Y, Lv X, Chen L, Yang F, Wang H, Du H, Wang L, Xu Y. Microbial Community Succession and Its Environment Driving Factors During Initial Fermentation of Maotai-Flavor Baijiu. Front Microbiol 2021; 12:669201. [PMID: 34025626 PMCID: PMC8139626 DOI: 10.3389/fmicb.2021.669201] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/01/2021] [Indexed: 01/11/2023] Open
Abstract
The microbial composition and environmental factors can take a great influence on community succession during the solid-state fermentation (SSF) of Maotai-flavor Baijiu. In this paper, high-throughput sequencing was used to reveal the dominant microorganisms and the evolution process of microbial community structure in the initial fermentation of Maotai-flavor Baijiu. The correlation analysis was carried out for the relationship between physicochemical factors and fermented microbes. The results showed that microorganisms were obviously enriched and the diversity of bacteria and fungi showed a downward trend during the heap fermentation process of Maotai-flavor Baijiu. However, the diversity of fungi in the pit fermentation process increased. Generally, Lactobacillus, Pichia, and Saccharomyces were the dominant microorganisms in the initial fermentation of Maotai-flavor Baijiu. According to the redundancy analysis, we found that reducing sugar was the key driving factor for microbial succession in the heap fermentation, while acidity, alcohol, and temperature were the main driving forces in pit fermentation. This study revealed the microbial succession and its related environmental factors in the initial fermentation of Maotai-flavor Baijiu, which will enrich our knowledge of the mechanism of solid-state liquor fermentation.
Collapse
Affiliation(s)
- Fei Hao
- Kweichow Moutai Distillery Co., Ltd., Guizhou, China
| | - Yuwei Tan
- Key Laboratory of Industrial Biotechnology, Center for Brewing Science and Enzyme Technology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xibin Lv
- Kweichow Moutai Distillery Co., Ltd., Guizhou, China
| | | | - Fan Yang
- Kweichow Moutai Distillery Co., Ltd., Guizhou, China
| | - Heyu Wang
- Kweichow Moutai Distillery Co., Ltd., Guizhou, China
| | - Hai Du
- Kweichow Moutai Distillery Co., Ltd., Guizhou, China
| | - Li Wang
- Kweichow Moutai Group, Guizhou, China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, Center for Brewing Science and Enzyme Technology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Adhesion Properties, Biofilm Forming Potential, and Susceptibility to Disinfectants of Contaminant Wine Yeasts. Microorganisms 2021; 9:microorganisms9030654. [PMID: 33809953 PMCID: PMC8004283 DOI: 10.3390/microorganisms9030654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
In this study, yeasts isolated from filter membranes used for the quality control of bottled wines were identified and tested for their resistance to some cleaning agents and potassium metabisulphite, adhesion to polystyrene and stainless-steel surfaces, and formation of a thin round biofilm, referred to as a MAT. A total of 40 strains were identified by rRNA internal transcribed spacer (ITS) restriction analysis and sequence analysis of D1/D2 domain of 26S rRNA gene. Strains belong to Pichia manshurica (12), Pichia kudriavzevii (9), Pichia membranifaciens (1), Candida sojae (6), Candida parapsilosis (3), Candida sonorensis (1), Lodderomyces elongisporus (2), Sporopachydermia lactativora (3), and Clavispora lusitaniae (3) species. Regarding the adhesion properties, differences were observed among species. Yeasts preferred planktonic state when tested on polystyrene plates. On stainless-steel supports, adhered cells reached values of about 6 log CFU/mL. MAT structures were formed only by yeasts belonging to the Pichia genus. Yeast species showed different resistance to sanitizers, with peracetic acid being the most effective and active at low concentrations, with minimum inhibitory concentration (MIC) values ranging from 0.08% (v/v) to 1% (v/v). C. parapsilosis was the most sensible species. Data could be exploited to develop sustainable strategies to reduce wine contamination and establish tailored sanitizing procedures.
Collapse
|
21
|
The potential correlations between the fungal communities and volatile compounds of traditional dry sausages from Northeast China. Food Microbiol 2021; 98:103787. [PMID: 33875215 DOI: 10.1016/j.fm.2021.103787] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
The fungal communities and volatile compounds of traditional dry sausages collected from five different regions in Northeast China, including Harbin (HRB), Daqing (DQ), Suihua (SH), Hegang (HG) and Mudanjiang (MDJ) were investigated in this study. The results revealed clear differences among the fungal community structures of the sausages. Aspergillus pseudoglaucus, Debaryomyces hansenii, and Trichosporon asahii were found to be the predominant species in the sausages from HRB, HG, and MDJ, respectively. Candida zeylanoides was the predominant species in the sausage from DQ and SH. Additionally, 88 volatile compounds were identified in all sausages, of which 31 volatile compounds were the most important flavor contributors (odor activity value > 1). Potential correlation analysis revealed that 8 fungi (D. hansenii, C. zeylanoides, T. asahii, A. pseudoglaucus, Aspergillus sydowii, Penicillium expansum, A. alternata, and Alternaria tenuissima) showed significant positive correlations with ≥3 key volatile compounds. Among these fungi, D. hansenii was regarded as a core functional fungus responsible for the formation of the volatile compounds, given its strong connection with the highest number of key volatile compounds. These results provide detailed insight into the fungal communities of traditional dry sausages and a deeper understanding of the contribution of these fungi to sausage flavor.
Collapse
|
22
|
Zhao Y, Sun Q, Zhu S, Du F, Mao R, Liu L, Tian B, Zhu Y. Biodiversity of non-Saccharomyces yeasts associated with spontaneous fermentation of Cabernet Sauvignon wines from Shangri-La wine region, China. Sci Rep 2021; 11:5150. [PMID: 33664299 PMCID: PMC7933366 DOI: 10.1038/s41598-021-83216-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/27/2021] [Indexed: 01/06/2023] Open
Abstract
Shangri-La is a wine region that has the highest altitude vineyards in China. This is the first study investigated the biodiversity of non-Saccharomyces yeasts associated with spontaneous fermentation of Cabernet Sauvignon wines produced from two sub-regions (Lancang River and Jinsha River) of Shangri-La. The culturable yeasts were preliminarily classified based on their colonial morphology on the Wallerstein Laboratory nutrient agar plates. Yeast species were identified by the sequencing of the 26S rRNA D1/D2 region and the 5.8S rRNA ITS region. Twenty-five non-Saccharomyces yeast species belonging to sixteen genera were isolated and identified in Shangri-La wine region. Candida, Hanseniaspora, Pichia, and Starmerella were found in both sub-regions, but the Lancang River showed more diverse yeast species than the Jinsha River. Shangri-La not only exhibited high diversity of non-Saccharomyces yeasts, and furthermore, seven species of non-Saccharomyces yeasts were exclusively found in this region, including B. bruxellensis, D. hansenii, M. guilliermondii, S. vini, S. diversa, T. delbrueckii and W. anomalus, which might play an important role in distinctive regional wine characteristics. This study provide a relatively comprehensive analysis of indigenous non-Saccharomyces yeasts associated with Cabernet Sauvignon from Shangri-La, and has significance for exploring 'microbial terroir' of wine regions in China.
Collapse
Affiliation(s)
- Yue Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Qingyang Sun
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Shusheng Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Fei Du
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Ruzhi Mao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Lijing Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.,University Engineering Research Center for Grape and Wine of Yunan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Bin Tian
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand.
| | - Yifan Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China. .,University Engineering Research Center for Grape and Wine of Yunan Province, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
23
|
Microbiological and biochemical performances of six yeast species as potential starter cultures for wet fermentation of coffee beans. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110430] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Study on microbial communities and higher alcohol formations in the fermentation of Chinese Xiaoqu Baijiu produced by traditional and new mechanical technologies. Food Res Int 2021; 140:109876. [DOI: 10.1016/j.foodres.2020.109876] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 01/13/2023]
|
25
|
Vicente J, Calderón F, Santos A, Marquina D, Benito S. High Potential of Pichia kluyveri and Other Pichia Species in Wine Technology. Int J Mol Sci 2021; 22:ijms22031196. [PMID: 33530422 PMCID: PMC7866185 DOI: 10.3390/ijms22031196] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 01/03/2023] Open
Abstract
The surfaces of grapes are covered by different yeast species that are important in the first stages of the fermentation process. In recent years, non-Saccharomyces yeasts such as Torulaspora delbrueckii, Lachancea thermotolerans, Metschnikowia pulcherrima, and Pichia kluyveri have become popular with regard to winemaking and improved wine quality. For that reason, several manufacturers started to offer commercially available strains of these non-Saccharomyces species. P. kluyveri stands out, mainly due to its contribution to wine aroma, glycerol, ethanol yield, and killer factor. The metabolism of the yeast allows it to increase volatile molecules such as esters and varietal thiols (aroma-active compounds), which increase the quality of specific varietal wines or neutral ones. It is considered a low- or non-fermentative yeast, so subsequent inoculation of a more fermentative yeast such as Saccharomyces cerevisiae is indispensable to achieve a proper fermented alcohol. The impact of P. kluyveri is not limited to the grape wine industry; it has also been successfully employed in beer, cider, durian, and tequila fermentation, among others, acting as a promising tool in those fermentation processes. Although no Pichia species other than P. kluyveri is available in the regular market, several recent scientific studies show interesting improvements in some wine quality parameters such as aroma, polysaccharides, acid management, and color stability. This could motivate yeast manufacturers to develop products based on those species in the near future.
Collapse
Affiliation(s)
- Javier Vicente
- Unit of Microbiology, Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain; (J.V.); (A.S.); (D.M.)
| | - Fernando Calderón
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain;
| | - Antonio Santos
- Unit of Microbiology, Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain; (J.V.); (A.S.); (D.M.)
| | - Domingo Marquina
- Unit of Microbiology, Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain; (J.V.); (A.S.); (D.M.)
| | - Santiago Benito
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain;
- Correspondence: ; Tel.: +34-913363710 or +34-913363984
| |
Collapse
|
26
|
Valorization of apple and grape wastes with malic acid-degrading yeasts. Folia Microbiol (Praha) 2021; 66:341-354. [PMID: 33474701 DOI: 10.1007/s12223-021-00850-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
It is estimated that more than 20% of processed apples and grapes are discarded as waste, which is dominated by pomace rich in malic acid that could be converted to high-value organic acids or other chemicals. A total of 98 yeast strains isolated from apple, grape, and plum wastes were evaluated for their ability to degrade malic acid relative to known yeast strains. Most (94%) of the new isolates degraded malic acid efficiently (> 50%) in the presence and absence of exogenous glucose, whereas only 14% of the known strains could do so, thus confirming the value of exploring (and exploiting) natural biodiversity. The best candidates were evaluated in synthetic media for their ability to convert malic acid to other valuable products under aerobic and oxygen-limited conditions, with two strains that produced ethanol and acetic acid as potential biorefinery products during aerobic cultivations and oxygen-limited fermentations on sterilized apple and grape pomace. Noteworthy was the identification of a Saccharomyces cerevisiae strain that is more efficient in degrading malic acid than other members of the species. This natural strain could be of value in the wine-making industry that often requires pH corrections due to excess malic acid.
Collapse
|
27
|
Pérez-Escalante JJ, Gómez-Chávez IA, Estela-Escalante WD. Isolation of microorganisms from the feces of ring-tailed coati related to the production of "misha coffee" in the central forest of Peru and evaluation of some features of technological importance. Microbiol Res 2020; 245:126670. [PMID: 33418399 DOI: 10.1016/j.micres.2020.126670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/06/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
A diversity of yeasts and lactic bacteria were isolated from the feces of ring-tailed coaties bred in captivity and related to the production of "misha coffee". Isolation of yeasts was carried out using oxytetracycline-glucose-yeast extract agar containing 100 mg/L oxytetracycline and, lactic bacteria using de Man-Rogosa and Sharpe agar containing 20 mg/L of vancomicin. Then, isolates were biochemically analysed using API strips (ID 32C for yeasts and 50CHL for lactic bacteria) followed by 16S and 26S rRNA gene sequencing. Among the yeasts, Debaryomyces hansenii, Pichia kluyveri, Pichia kudriavzevii, and Candida sorboxilosa were the most frequent, whereas Weissella cibaria, Weissella paramesenteroides, Enterococcus thailandicus and Enterococcus faecalis were the most important lactic bacteria. Cultivation of the isolated yeasts under agitated conditions, showed that Pichia kluyveri LBFT.Lev3 (0.15 ± 0.01 h-1) and Pichia kudriavzevii LBTF.Lev7 (0.14 ± 0.01 h-1) had higher specific growth rates than Debaryomyces hansenii LBFT.Lev9 (0.09 ± 0.01 h-1), whereas cultivation of lactic bacteria under static fashion showed that Weisella paramesenteroides LBTF.Bal2 (0.16 ± 0.01 h-1) and Weisella cibaria LBTF.Bal3 (0.18 ± 0.01 h-1) had better growth than Enterococcus thailandicus LBTF.Bal1 (0.1 ± 0.015 h-1) and Enterococcus faecalis LBTF.Bal7 (0.14 ± 0.01 h-1). Additionally, evaluation of pectinolytic activity revealed that Pichia kudriavzevii LBTF.Lev7 and Debaryomyces hansenii LBFT.Lev9 were able to use pectin as carbon source for their growth. On the other hand, W. cibaria LBTF.Bal3, E. thailandicus LBTF.Bal1 and W. paramesenteroides LBTF.Bal2 showed inhibitory activity against S. mutans ATCC 35668, B. subtilis subsp. spizizenii ATCC 6633 and Staph. epidermidis ATCC 14990. Results of this study are useful for the search of potential application of the isolated yeasts and lactic bacteria in coffee and other food fermentations.
Collapse
Affiliation(s)
| | - Israel Alexs Gómez-Chávez
- Cooperativa Agraria Cafetalera Sostenible Valle Ubiriki, Carretera Marginal Km. 61, Pichanaki, Chanchamayo, Junín, Peru
| | - Waldir Desiderio Estela-Escalante
- Universidad Nacional Mayor de San Marcos, Facultad de Química e Ingeniería Química, Laboratorio de Bioprocesos y Tecnología de Fermentación, Av. Germán Amézaga 375, Lima 1, Peru.
| |
Collapse
|
28
|
Zhu LX, Wang GQ, Aihaiti A. Combined indigenous yeast strains produced local wine from over ripen Cabernet Sauvignon grape in Xinjiang. World J Microbiol Biotechnol 2020; 36:122. [DOI: 10.1007/s11274-020-02831-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 03/18/2020] [Indexed: 11/28/2022]
|
29
|
Deng N, Du H, Xu Y. Cooperative Response of Pichia kudriavzevii and Saccharomyces cerevisiae to Lactic Acid Stress in Baijiu Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4903-4911. [PMID: 32180399 DOI: 10.1021/acs.jafc.9b08052] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lactic acid is a universal metabolite, as well as a growth inhibitor of ethanol producers in Baijiu fermentation. Revealing the mechanism of lactic acid tolerance is essential for the yield of fermented foods. Here, we employed reverse transcription-quantitative polymerase chain reaction to explore the degradation mechanism of lactic acid, based on the coculture of Pichia kudriavzevii and Saccharomyces cerevisiae. Under high lactic acid stress, P. kudriavzevii decreased lactic acid from 40.00 to 35.46 g L-1 within 24 h. Then, S. cerevisiae restored its capacity to degrade lactic acid. Finally, lactic acid decreased to 26.29 g L-1. Coculture significantly enhanced lactic acid consumption compared to the monoculture of P. kudriavzevii (90% higher) or S. cerevisiae (209% higher). We found that lactate catabolism, H+ extrusion, and glycerol transport were the lactic acid tolerance pathways in yeasts. This study reveals the novel acid tolerance mechanisms of microbiota and would provide new strategies for ethanol production under acid stress.
Collapse
Affiliation(s)
- Nan Deng
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hai Du
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute for Chinese Jiang-Flavor Baijiu (Liquor), Renhuai, Guizhou 564500, China
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute for Chinese Jiang-Flavor Baijiu (Liquor), Renhuai, Guizhou 564500, China
| |
Collapse
|
30
|
Lara-Hidalgo CE, Dorantes-Álvarez L, Hernández-Sánchez H, Santoyo-Tepole F, Martínez-Torres A, Villa-Tanaca L, Hernández-Rodríguez C. Isolation of Yeasts from Guajillo Pepper (Capsicum annuum L.) Fermentation and Study of Some Probiotic Characteristics. Probiotics Antimicrob Proteins 2020; 11:748-764. [PMID: 29696516 DOI: 10.1007/s12602-018-9415-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three yeast strains were isolated from the spontaneous fermentation of guajillo pepper: Hanseniaspora opuntiae, Pichia kudriavzevii, and Wickerhamomyces anomalus, which were identified by amplification of the ITS/5.8S ribosomal DNA. Some probiotic characteristics of these strains were evaluated and compared with one commercial probiotic yeast (Saccharomyces boulardii). The survival percentage of all the yeasts was similar to that of the commercial product. They showed different hydrophobicity characteristics with hydrocarbons, autoaggregation > 90%, and characteristics of co-aggregation with pathogenic microorganisms. The adhesion capacity to mucin of the three yeast samples was similar to the reference yeast. The antioxidant activity of the yeasts varied between 155 and 178 μM Trolox equivalents. All exhibited cholesterol reduction capacity, and W. anomalus was able to decrease up to 83% of cholesterol after 48 h of incubation. The 7.5-fold concentrated H. opuntiae supernatant had antimicrobial activity against Salmonella enterica ser. Typhimurium ATCC 14028 and Candida albicans ENCBDM2; tests suggest this activity against S. Typhimurium is due to a proteinaceous metabolite with a weight between 10 and 30 kDa. Among the yeasts, P. kudriavzevii exhibited the highest protective effect on the viability of Lactobacillus casei Shirota in gastric and intestinal conditions. These results suggest that yeasts isolated from guajillo pepper may have a probiotic potential.
Collapse
Affiliation(s)
- C E Lara-Hidalgo
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional López Mateos, Av. Wilfrido Massieu esq. Cda. Manuel L. Stampa s/n, C.P. 07738, Ciudad de México, Mexico
| | - L Dorantes-Álvarez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional López Mateos, Av. Wilfrido Massieu esq. Cda. Manuel L. Stampa s/n, C.P. 07738, Ciudad de México, Mexico.
| | - H Hernández-Sánchez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional López Mateos, Av. Wilfrido Massieu esq. Cda. Manuel L. Stampa s/n, C.P. 07738, Ciudad de México, Mexico
| | - F Santoyo-Tepole
- Departamento de Investigación, Central de Instrumentación de Espectroscopía, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Sto. Tomás, C.P. 11340, Ciudad de México, Mexico
| | - A Martínez-Torres
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Sto. Tomás, C.P. 11340, Ciudad de México, Mexico
| | - L Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Sto. Tomás, C.P. 11340, Ciudad de México, Mexico
| | - C Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Sto. Tomás, C.P. 11340, Ciudad de México, Mexico
| |
Collapse
|
31
|
Elhalis H, Cox J, Zhao J. Ecological diversity, evolution and metabolism of microbial communities in the wet fermentation of Australian coffee beans. Int J Food Microbiol 2020; 321:108544. [PMID: 32086129 DOI: 10.1016/j.ijfoodmicro.2020.108544] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
Abstract
The microbial ecology in the fermentation of Australian coffee beans was investigated in this study. Pulped coffee beans were kept underwater for 36 h before air dried. Samples were collected periodically, and the microbial communities were analyzed by culture-dependent and independent methods. Changes in sugars, organic acids and microbial metabolites in the mucilage and endosperm of the coffee beans during fermentation were monitored by HPLC. Culture-dependent methods identified 6 yeast and 17 bacterial species, while the culture-independent methods, multiple-step total direct DNA extraction and high throughput sequencing, identified 212 fungal and 40 bacterial species. Most of the microbial species in the community have been reported for wet fermentation of coffee beans in other parts of the world, but the yeast Pichia kudriavzevii was isolated for the first time in wet coffee bean fermentation. The bacterial community was dominated by aerobic mesophilic bacteria (AMB) with Citrobacter being the predominant genus. Hanseniaspora uvarum and Pichia kudriavzevii were the predominant yeasts while Leuconostoc mesenteroides and Lactococcus lactis were the predominant LAB. The yeasts and bacteria grew significantly during fermentation, utilizing sugars in the mucilage and produced mannitol, glycerol, and lactic acid, leading to a significant decrease in pH. The results of this study provided a preliminary understanding of the microbial ecology of wet coffee fermentation under Australian conditions. Further studies are needed to explore the impact of microbial growth and metabolism on coffee quality, especially flavour.
Collapse
Affiliation(s)
- Hosam Elhalis
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Julian Cox
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jian Zhao
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
32
|
Li J, Hu WZ, Xu YP. Diversity and Dynamics of Yeasts During Vidal Blanc Icewine Fermentation: A Strategy of the Combination of Culture-Dependent and High-Throughput Sequencing Approaches. Front Microbiol 2019; 10:1588. [PMID: 31354677 PMCID: PMC6637317 DOI: 10.3389/fmicb.2019.01588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/25/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, attention has been focused on the ecology of yeasts during the spontaneous and inoculated fermentation processes of Vidal blanc icewine in northeast China, which is very important for screening autochthonous yeast strains, understanding the roles of these strains, and managing fermentation. The strategies were to conduct spontaneous and inoculated laboratory-scale fermentation processes simultaneously and to analyze the samples taken at different fermentation stages by culture-dependent and -independent methods. Three hundred and thirty-eight yeast strains were isolated and twelve genera were identified by sequencing. During the spontaneous fermentation process, non-Saccharomyces yeasts were predominant in the initial and middle stages, whereas Saccharomyces dominated in the later stages; Candida was preponderant in the whole process, and its abundance in the final stages was only lower than Saccharomyces. The inoculated fermentation was characterized by a predominance of Saccharomyces throughout the fermentation process; non-Saccharomyces yeasts were observed in the early stage. The internal transcribed spacer (ITS) 2 region gene was firstly used to analyze the yeast diversity in the samples during the icewine fermentation processes by high-throughput sequencing (HTS), and a more complex mycobiota was revealed. Moreover, the dynamics of other major fungi (mainly Davidiella and Alternaria) during icewine fermentation processes were also revealed, which have never been reported in icewine before.
Collapse
Affiliation(s)
- Jing Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.,Institute of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Wen-Zhong Hu
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Yong-Ping Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| |
Collapse
|
33
|
van Rijswijck IM, Kruis AJ, Wolkers – Rooijackers JC, Abee T, Smid EJ. Acetate-ester hydrolase activity for screening of the variation in acetate ester yield of Cyberlindnera fabianii, Pichia kudriavzevii and Saccharomyces cerevisiae. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Abstract
In recent years, in line with consumer preferences and due to the effects of global climate change, new trends have emerged in wine fermentation and wine technology. Consumers are looking for wines with less ethanol and fruitier aromas, but also with a good balance in terms of acidity and mouthfeel. Nonconventional yeasts contain a wide range of different genera of non-Saccharomyces. If in the past they were considered spoilage yeasts, now they are used to enhance the aroma profile of wine or to modulate wine composition. Recent publications highlight the role of non-Saccharomyces as selected strains for controlling fermentations mostly in cofermentation with Saccharomyces. In this article, I have reviewed the ability of some bacteria and non-Saccharomyces strains to modulate wine acidity.
Collapse
|
35
|
Bravo SME, Morales M, Del Mónaco SM, Caballero AC. Apple bagasse as a substrate for the propagation of Patagonian wine yeast biomass. J Appl Microbiol 2019; 126:1414-1425. [PMID: 30729620 DOI: 10.1111/jam.14216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/22/2019] [Accepted: 02/02/2019] [Indexed: 11/28/2022]
Abstract
AIMS A culture medium based on apple bagasse was designed and tested as a substrate for biomass production of conventional and unconventional native wine yeasts. METHODS AND RESULTS The physicochemical characterization of the apple bagasse was carried out and its potential utility as a constituent of a complete culture medium for the production of yeast biomass was analysed using the experimental statistical designs. Growth parameters of conventional and nonconventional Patagonian wine yeasts were analysed with Placket-Burman designs and response surface methodology, comparing in each assay the apple bagasse substrate with the commonly used substrate for biomass development, cane molasses. Culture media composition was optimized and models were validated. CONCLUSIONS This study demonstrates that, both from a nutritional and from an economic point of view, apple bagasse constitutes a more advantageous substrate than cane molasses for the propagation of native yeasts from Patagonia. SIGNIFICANCE AND IMPACT OF THE STUDY We used an alternate carbon-rich material, generously available in our region, originally generated as fruit industrial waste, to transform it into a source of sustainable, economically profitable and environmentally friendly energy resource.
Collapse
Affiliation(s)
- S M E Bravo
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), CONICET-Universidad Nacional del Comahue, Buenos Aires, Neuquén, Neuquén, Argentina.,Facultad de Ciencias y Tecnología de los Alimentos, Universidad Nacional del Comahue, Villa Regina, Río Negro, Argentina
| | - M Morales
- Facultad de Ciencias y Tecnología de los Alimentos, Universidad Nacional del Comahue, Villa Regina, Río Negro, Argentina
| | - S M Del Mónaco
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), CONICET-Universidad Nacional del Comahue, Buenos Aires, Neuquén, Neuquén, Argentina.,Facultad de Ciencias y Tecnología de los Alimentos, Universidad Nacional del Comahue, Villa Regina, Río Negro, Argentina
| | - A C Caballero
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), CONICET-Universidad Nacional del Comahue, Buenos Aires, Neuquén, Neuquén, Argentina.,Facultad de Ciencias y Tecnología de los Alimentos, Universidad Nacional del Comahue, Villa Regina, Río Negro, Argentina
| |
Collapse
|
36
|
Luan Y, Zhang BQ, Duan CQ, Yan GL. Effects of different pre-fermentation cold maceration time on aroma compounds of Saccharomyces cerevisiae co-fermentation with Hanseniaspora opuntiae or Pichia kudriavzevii. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Smukowski Heil C, Burton JN, Liachko I, Friedrich A, Hanson NA, Morris CL, Schacherer J, Shendure J, Thomas JH, Dunham MJ. Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C. Yeast 2017; 35:71-84. [PMID: 28892574 DOI: 10.1002/yea.3280] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022] Open
Abstract
Interspecific hybridization is a common mechanism enabling genetic diversification and adaptation; however, the detection of hybrid species has been quite difficult. The identification of microbial hybrids is made even more complicated, as most environmental microbes are resistant to culturing and must be studied in their native mixed communities. We have previously adapted the chromosome conformation capture method Hi-C to the assembly of genomes from mixed populations. Here, we show the method's application in assembling genomes directly from an uncultured, mixed population from a spontaneously inoculated beer sample. Our assembly method has enabled us to de-convolute four bacterial and four yeast genomes from this sample, including a putative yeast hybrid. Downstream isolation and analysis of this hybrid confirmed its genome to consist of Pichia membranifaciens and that of another related, but undescribed, yeast. Our work shows that Hi-C-based metagenomic methods can overcome the limitation of traditional sequencing methods in studying complex mixtures of genomes. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Joshua N Burton
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Anne Friedrich
- Genetics, Genomics, and Microbiology, University of Strasbourg, Strasbourg, France
| | - Noah A Hanson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Joseph Schacherer
- Genetics, Genomics, and Microbiology, University of Strasbourg, Strasbourg, France
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - James H Thomas
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
van Rijswijck IMH, Wolkers-Rooijackers JCM, Abee T, Smid EJ. Performance of non-conventional yeasts in co-culture with brewers' yeast for steering ethanol and aroma production. Microb Biotechnol 2017; 10:1591-1602. [PMID: 28834151 PMCID: PMC5658577 DOI: 10.1111/1751-7915.12717] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/09/2017] [Accepted: 03/20/2017] [Indexed: 11/27/2022] Open
Abstract
Increasing interest in new beer types has stimulated the search for approaches to extend the metabolic variation of brewers’ yeast. Therefore, we tested two approaches using non‐conventional yeast to create a beer with lower ethanol content and a complex aroma bouquet. First, the mono‐culture performance was monitored of 49 wild yeast isolates of Saccharomyces cerevisiae (16 strains), Cyberlindnera fabianii (9 strains) and Pichia kudriavzevii (24 strains). Interestingly, both C. fabianii and P. kudriavzevii isolates produced relatively more esters compared with S. cerevisiae isolates, despite their limited fermentation capacity. Next, one representative strain of each species (Sc131, Cf65 and Pk129) was applied as co‐culture with brewers’ yeast (ratio 1:1). Co‐cultures with Cf65 and Pk129 resulted in a beer with lower alcohol content (3.5, 3.8 compared with 4.2% v/v) and relatively more esters. At higher inoculum ratios of Cf65 over brewers’ yeast, growth inhibition of brewers’ yeast was observed, most likely caused by competition for oxygen between brewers’ yeast and Cf65 resulting in a reduced level of ethanol and altered aroma profiles. With this study, we demonstrate the feasibility of using non‐conventional yeast species in co‐cultivation with traditional brewers’ yeast to tailor aroma profiles as well as the final ethanol content of beer.
Collapse
Affiliation(s)
- Irma M H van Rijswijck
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen Campus, PO Box 17, 6700 AA, Wageningen, The Netherlands
| | - Judith C M Wolkers-Rooijackers
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen Campus, PO Box 17, 6700 AA, Wageningen, The Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen Campus, PO Box 17, 6700 AA, Wageningen, The Netherlands
| | - Eddy J Smid
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen Campus, PO Box 17, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
39
|
Mendes SDC, Ramírez-Castrillón M, Feldberg NP, Bertoldi FC, Valente P. Environmental yeast communities in vineyards in the mountains of Santa Catarina State, Brazil. World J Microbiol Biotechnol 2017; 33:128. [DOI: 10.1007/s11274-017-2298-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/23/2017] [Indexed: 12/30/2022]
|
40
|
Genome Sequences of Cyberlindnera fabianii 65, Pichia kudriavzevii 129, and Saccharomyces cerevisiae 131 Isolated from Fermented Masau Fruits in Zimbabwe. GENOME ANNOUNCEMENTS 2017; 5:5/14/e00064-17. [PMID: 28385833 PMCID: PMC5383881 DOI: 10.1128/genomea.00064-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cyberlindnera fabianii 65, Pichia kudriavzevii 129, and Saccharomyces cerevisiae 131 have been isolated from the microbiota of fermented masau fruits. C. fabianii and P. kudriavzevii especially harbor promising features for biotechnology and food applications. Here, we present the draft annotated genome sequences of these isolates.
Collapse
|
41
|
Yeasts found in vineyards and wineries. Yeast 2016; 34:111-128. [DOI: 10.1002/yea.3219] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 11/07/2022] Open
|
42
|
The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl Microbiol Biotechnol 2016; 100:9861-9874. [DOI: 10.1007/s00253-016-7941-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/17/2022]
|
43
|
Wang P, Li A, Sun H, Dong M, Wei X, Fan M. Selection and characterization of Oenococcus oeni strains for use as new malolactic fermentation starter cultures. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1217-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
44
|
Del Mónaco SM, Rodríguez ME, Lopes CA. Pichia kudriavzevii as a representative yeast of North Patagonian winemaking terroir. Int J Food Microbiol 2016; 230:31-9. [PMID: 27124468 DOI: 10.1016/j.ijfoodmicro.2016.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 11/30/2022]
Abstract
Terroir concept includes specific soil, topography, climate, landscape characteristics and biodiversity features. In reference to the last aspect, recent studies investigating the microbial biogeography (lately called 'microbial terroir') have revealed that different wine-growing regions maintain different microbial communities. The aim of the present work was to identify potential autochthonous fermentative yeasts isolated from native plants in North Patagonia, Schinus johnstonii, Ephedra ochreata and Lycium chilense, that could be associated to the specific vitivinicultural terroir of this region. Different Pichia kudriavzevii isolates were recovered from these plants and physiologically and genetically compared to regional wine isolates and foreign reference strains of the same species. All isolates were subjected to molecular characterization including mtDNA-RFLP, RAPD-PCR and sequence analysis. Both wine and native P. kudriavzevii isolates from Patagonia showed similar features, different from those showed by foreign strains, suggesting that this species could be part of a specific regional terroir from North Patagonia.
Collapse
Affiliation(s)
- Silvana M Del Mónaco
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue), Buenos Aires, Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Argentina
| | - María E Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue), Buenos Aires, Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Argentina.
| | - Christian A Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue), Buenos Aires, Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Argentina
| |
Collapse
|
45
|
Evaluation of Fermentation Products of Palm Wine Yeasts and Role of Sacoglottis gabonensis Supplement on Products Abundance. BEVERAGES 2016. [DOI: 10.3390/beverages2020009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Padilla B, Gil JV, Manzanares P. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity. Front Microbiol 2016; 7:411. [PMID: 27065975 PMCID: PMC4814449 DOI: 10.3389/fmicb.2016.00411] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 11/20/2022] Open
Abstract
It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition, and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of mixed starters of selected non-Saccharomyces yeasts with strains of Saccharomyces cerevisiae represents an alternative to both spontaneous and inoculated wine fermentations, taking advantage of the potential positive role that non-Saccharomyces wine yeast species play in the organoleptic characteristics of wine. In this context mixed starters can meet the growing demand for new and improved wine yeast strains adapted to different types and styles of wine. With the aim of presenting old and new evidences on the potential of non-Saccharomyces yeasts to address this market trend, we mainly review the studies focused on non-Saccharomyces strain selection and design of mixed starters directed to improve primary and secondary aroma of wines. The ability of non-Saccharomyces wine yeasts to produce enzymes and metabolites of oenological relevance is also discussed.
Collapse
Affiliation(s)
- Beatriz Padilla
- Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i VirgiliTarragona, Spain
| | - José V. Gil
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones CientíficasPaterna, Spain
- Departamento de Medicina Preventiva y Salud Pública, Ciencias de la Alimentación, Toxicología y Medicina Legal, Facultad de Farmacia, Universitat de ValènciaBurjassot, Spain
| | - Paloma Manzanares
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones CientíficasPaterna, Spain
| |
Collapse
|
47
|
Teixeira A, Caldeira I, Duarte F. Molecular and oenological characterization of Touriga Nacional non-Saccharomyces
yeasts. J Appl Microbiol 2015; 118:658-71. [DOI: 10.1111/jam.12727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/28/2022]
Affiliation(s)
- A. Teixeira
- Laboratório de Enologia, U.I.S. Tecnologia e Segurança Alimentar; Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta da Almoínha; Dois Portos Portugal
| | - I. Caldeira
- Laboratório de Enologia, U.I.S. Tecnologia e Segurança Alimentar; Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta da Almoínha; Dois Portos Portugal
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora; Évora Portugal
| | - F.L. Duarte
- Laboratório de Enologia, U.I.S. Tecnologia e Segurança Alimentar; Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta da Almoínha; Dois Portos Portugal
| |
Collapse
|